
 

INTEGRATED INCIDENT DECISION SUPPORT USING TRAFFIC SIMULATION 1 

AND DATA-DRIVEN MODELS 2 

 3 

Tao Wen, Corresponding Author 4 

Research Scientist, DATA61| CSIRO 5 

13 Garden St, Eveleigh, 2015, NSW, Australia 6 

Tel: (+61) 02 9490 4918; Email: tao.wen@data61.csiro.au  7 

 8 

Adriana-Simona Mihăiţă 9 

Research Scientist, DATA61|CSIRO 10 

13 Garden St, Level 5, Eveleigh, 2015, NSW 11 

Email: simona.mihaita@data61.csiro.au  12 

 13 

Hoang Nguyen 14 

Research Scientist, DATA61|CSIRO 15 

13 Garden St, Level 5, Eveleigh, 2015, NSW 16 

Email: hoang.nguyen@data61.csiro.au  17 

 18 

Chen Cai 19 

Senior Researcher, Leader of Advanced Data Analytics in Transport group, DATA61| CSIRO 20 

13 Garden St, Level 5, Eveleigh, 2015, NSW 21 

Email: chen.cai@data61.csiro.au  22 

 23 

Fang Chen 24 

Senior Principal Researcher, DATA61| CSIRO 25 

13 Garden St, Level 5, Eveleigh, 2015, NSW 26 

Email: fang.chen@data61.csiro.au  27 

 28 

 29 

 30 

 31 

Word count:  6250 words text + 5 figures x 250 words = 7500 words 32 

 33 

TRR Paper number: 18-06575 34 

 35 

 36 

mailto:tao.wen@data61.csiro.au
mailto:simona.mihaita@data61.csiro.au
mailto:hoang.nguyen@data61.csiro.au
mailto:chen.cai@data61.csiro.au
mailto:fang.chen@data61.csiro.au


     Wen et al                                                                                                                                                               2                                
 

ABSTRACT: 1 

This paper introduces the framework of an innovative incident management platform with the 2 

main objective to provide decision support and situation awareness for transport management 3 

purposes on a real-time basis. The logic of the platform is to detect and then classify incidents into 4 

two types: recurrent and non-recurrent, based on their frequency and characteristics. Under this 5 

logic, recurrent incidents trigger the data-driven machine learning module which can predict and 6 

analyse the incident impact, in order to facilitate informed decisions for transport management 7 

operators. Non-recurrent incidents activate the simulation module which then evaluates 8 

quantitatively the performance of candidate response plans in parallel. The simulation output is 9 

used for choosing the most appropriate response plan for incident management. The current 10 

platform uses a data processing module to integrate complementary data sets, for the purpose of 11 

improving modelling outputs. Two real-world case studies are presented: 1) for recurrent incident 12 

management using data-driven model, 2) for non-recurrent incident management using traffic 13 

simulation with parallel scenario evaluation. The case studies demonstrate the viability of the 14 

proposed incident management framework which provides an integrated approach for real-time 15 

incident decision-support on large-scale networks. 16 

 17 

Keywords: Incident management, machine learning, data fusion, transport simulation, cloud-18 

based data platform 19 

20 
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1. Introduction 1 

An initiative of great value in the era of ‘Big Data’ is to effectively and consistently generate 2 

insights and actionable outcomes from multiple data sources. This would typically require a 3 

number of data handling processes, including data forwarding, parsing and integration, before data 4 

becoming usable by dedicated applications, say machine learning models. These data handling 5 

processes were conventionally deployed to enterprise data infrastructure, like the enterprise data 6 

warehouse (EDW). With the advent of cloud based infrastructure being epitomized by AWS and 7 

Azure, data handling, storage and computing are increasingly being integrated into a cloud data 8 

platform. Such a platform offers agility, scalability, and serviceability with substantial financial 9 

cost incentives, as compared to EDW solutions. Generic machine learning analytics are also being 10 

integrated with cloud data platforms, for the benefit of generating valuable insights on-demand. 11 

Examples of these are IBM Watson and Google Cloud Platform.   12 

Of greater complexity from the generic cloud data platform are the domain platforms. The 13 

latter would require a considerable degree of knowledge on a particular domain, say urban 14 

transportation. Using the incident detection and classification as an example, which is further 15 

elaborated in the subsequent sections, a number of data sources would complement each other for 16 

improving the reliability and accuracy. Related data sources may include real-time traffic data, 17 

real-time incident monitoring data, crowd-sourced data, etc. Without a well-developed 18 

mathematical modeling framework that implements a number of fundamental principles, like the 19 

decision tree and support vector machines, it is unlikely the generic analytics would arrive at a 20 

deterministic and meaningful outcome.  21 

In this paper, we present a part of the Advanced Data Analytics in Transport (ADAIT) 22 

platform (1). ADAIT is a cloud data platform hosted on AWS (Amazon Web Service) and 23 

dedicated to urban transport data analytics. In particular, we address the innovative approach of 24 

integrating data analytics with traffic simulation for incident decision-support. This approach 25 

exploits the distinction between recurrent and non-recurrent traffic incidents. With an adequate 26 

number of observations, information of a recurrent incident can be parsed into a number of 27 

prominent features and represented by a feature space. Data-driven models, i.e. machine learning 28 

models, could then be built to map the feature space into observed impact. The more observed 29 

repetitions of the recurrent incident, the better the data-driven model could explain the variance in 30 

the incident impact. On the other hand, for a non-recurrent incident, building a viable data-driven 31 

model may be prohibitive due to the lack of data. Instead, the detected incident information could 32 

be used to populate a simulation model. The latter can then run multiple scenarios in parallel, faster 33 

than real-time, to provide the expected impact of the incident. This paper discusses how the two 34 

modeling techniques could be integrated via the ADAIT platform to provide incident decision-35 

support capabilities.  36 

The rest of the paper is organised as follows: Section 2 presents the incident decision-37 

support framework deployed in the ADAIT platform; Section 3 provides technical details for the 38 

key modules of the incident decision-support framework; Section 4 contains the case studies on 39 

handling recurrent incident and non-recurrent incident respectively; Section 5 summaries the 40 

findings of the paper.  41 

2. Incident decision-support framework 42 

The work presented in this paper focuses on incident detection and impact analysis on the traffic 43 

network and is a part of the ADAIT general framework, currently under development in 44 

collaboration with the traffic management center (TMC) of Sydney. FIGURE 1 presents the 45 

general flow chart of the incident detection framework, which comprises various types of 46 
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interconnected modules, from the raw data processing and cleaning to the machine learning 1 

predictive module and traffic simulation core.  2 

Incident is one of the main factors that affect urban transport mobility (2). To reduce the 3 

congestion caused by incident, an incident decision support system should have prompt response 4 

time to help operators make timely decision. Various models and methods have focused on signal 5 

priority (3), subnetwork and tunnel segment (4) or incident management system infrastructure (5). 6 

However, scalability still remains an issue. In addition, some simulation-based incident decision 7 

support system can provide quantitative estimation of different traffic operations, but struggles to 8 

provide automated situation awareness (6). The major characteristic of the ADAIT platform is that 9 

it offers a continuous situation awareness by real-time monitoring of the traffic condition, and 10 

triggers the data-driven pattern reconstruction or traffic simulation modules only when reported 11 

incident may appear in the network. If no incident occurred, the platform will continue monitoring 12 

and reporting the traffic state in the network. All outputs of each module are stored in a dedicated 13 

cloud data base and the results are provided for consumption and further use through public APIs. 14 

Amongst the modules of the platform, we detail the following: 15 

1. Incident detection and classification module (detailed in Section 3.3): which 16 

comprises: a) real-time data fusion from various sources for detecting recent incidents, b) incident 17 

ranking algorithms based on type and severity, and c) incident duration classification based on 18 

available characteristics of the reported accident. The main outcomes of this module is to 19 

determine if the reported incident follows a recurrent pattern or not to support decision making for 20 

operator. It also estimates the incident duration and severity to efficiently trigger the simulation 21 

module for impact analysis and response plan evaluation. 22 
2. Machine learning data-driven predictive module (see Section 3.4): which is based on 23 

historical observations of both transport and incident log data, and can predict the severity and 24 

duration of the detected incident.  25 
3. Automatic simulation module (see Section 3.5): which is triggered only if the incident 26 

pattern is identified as non-recurrent. In this case, the incident feature information and candidate 27 

response plans are passed to the simulation module. The module then automatically selects the 28 

subnetwork where the incident takes place based on the incident feature information. It further 29 

generates a traversal demand matrix for the selected sub-network based on the path assignment 30 

obtained from previously running regular macroscopic static traffic assignment on the large-scale 31 

network. This will facilitate the application of mesoscopic or microscopic traffic scenarios at the 32 

subnetwork level for a more detailed simulation of the condition in the affected area while 33 

maintaining computation efficiency. Each response plan is simulated in parallel and the 34 

corresponding outcome will be evaluated according to user-defined performance metrics. Such 35 

parallel simulations can significantly reduce computation time, while providing quantitative 36 

insights on a mesoscopic or microscopic level. It is worth mentioning that this type of simulation 37 

module requires periodic calibration and validation of the simulation outputs by using existing 38 

data sources. 39 
4. Multimodal O-D (Origin-Destination) matrix estimation module (see Section 3.2): it 40 

estimates the multimodal O-D demand of large-scale network based on historical transport data. 41 

The output of this module is a fundamental input for subsequent analysis and is critical to the 42 

simulation module’s performance. 43 
5. Response plan evaluation module: it chooses the best plan to mitigate the impact of 44 

the incident. The simulated outputs will be compared to the observed traffic data which will 45 

facilitate the transport operators to make informed decisions by various scenario testing and 46 

evaluation. 47 
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Combining these various modules with different characteristics and inputs/outputs, from 1 

data-driven incident detection/classification/prediction to automatic traffic simulation models, 2 

represents a unique and innovative method to evaluate the impact of incidents in a highly affected 3 

traffic network. The advantages of the proposed platform in the aforementioned perspectives are:  4 

1. Integrating and fusing multiple data sources to improve the reliability and accuracy of 5 

results.  6 

2. Applying machine learning algorithms to learn from previous incidents and make 7 

predictions. 8 

3. Detecting and classifying incidents based on real-time data. The innovation is to only 9 

trigger the simulation model when the impact of a new incident could not be determined. 10 

4. Automated simulation to provide quantitative evaluation of incident impact and 11 

response plan performance. 12 

The logic and mechanism behind the platform are to provide a viable and practical solution 13 

to incident management. Such incident management system needs a detailed decomposition and 14 

theoretical analysis in terms of processing flow, traffic modeling, predictive analytics and response 15 

plan selection for mitigating the impact of traffic incidents on both normal and public transport 16 

modes. In the following, we will only focus on detailing the major modules for incident impact 17 

analysis and the way the information flow is propagated from one module to another with a major 18 

focus on the incident detection, duration prediction, and response plan evaluation. 19 

3. Module details 20 

In this section, we describe each module of the decision-support platform, as well as the 21 

implications and the afferent data sources needed for obtaining accurate insights.  22 

3.1. Data processing module 23 

The data sets used in the platform have a wide variety of formats and specifications, are often 24 

sparse and need constant cleaning and monitoring. Amongst them we cite:  25 

a) Survey data: such as household travel survey data, census survey data etc., which are 26 

very time-consuming and become available every few years; they can provide insights on the O-27 

D demand but may also be obsolete. On this platform, survey data is processed and provided to 28 

the multimodal O-D matrix estimation module as prior estimates of O-D matrix.   29 

b) Traffic counts: are provided by the SCATS (Sydney Coordinated Adaptive Traffic 30 

System) system. The integration of SCATS data into the platform is challenging due to a high 31 

complexity and duplication of streams, which needs supplementary processing, outlier detection, 32 

error elimination, etc.  33 

c) Smart transit card data: provides tap-on and tap-off information of each user travelling 34 

in the city by public transport modes.  35 

d) Public transit monitoring data: includes information such as fixed-route schedules, 36 

routes, and bus stop data. The GTFS (General Transit Feed Specification) provides such 37 

information on the Sydney network and is used for the validation of simulation results.  38 

e) Crowd-sourced data: such as Twitter and Waze data are used on the platform as they 39 

provide textual information on incidents, and is processed directly by the incident detection and 40 

classification module. 41 

f) Real-time incident monitoring data: provided by the transport management centre 42 

which reports incidents and actions taken on a real-time basis. This data is used by the Incident 43 

detection and classification module. 44 
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g) Travel time data: can be provided by many ITS applications; on the current platform 1 

the Google Travel Time is used for the validation of the simulation outputs. 2 

3.2. Multimodal O-D matrix estimation module 3 

The origin-destination demand matrix, which represents the number of trips from one urban 4 

centroid to another, is a fundamental element in many transport models. Having a reliable and 5 

accurate O-D matrix can significantly enhance the prediction quality (7). In this paper, road traffic 6 

demand and public transport demand are estimated independently, and data fusion techniques are 7 

applied in both estimations. Multimodal O-D matrix estimation algorithms accounting for modal 8 

choice require additional information on behavioural analysis and choice modelling (8) and is not 9 

adopted here due to computation complexity and data availability. Researchers have proposed 10 

various methods for data fusion in public transport (9; 10), even the traditional road traffic O-D 11 

estimation is an example of data fusion- the survey data is used as prior estimates of O-D matrix 12 

and is calibrated based on traffic counts (11). However, the integration of the multi-modal O-D 13 

estimation into the automated incident management platform is a novel approach which offers 14 

valuable input for the simulation module.    15 

3.3. Incident detection and classification module 16 

3.3.1 Incident detection 17 

Incident detection is considered an important component of many modern intelligent transport 18 

systems. Multiple data sources may provide complementary data, and data fusion can produce a 19 

better understanding of the observed situation by decreasing the uncertainty related to the 20 

individual (9). Traffic control operator can set a threshold to trigger and clear an incident alert 21 

using the alert score. The method to estimate the alert score is explained below in Equation (1), 22 

while the data used in this paper is explained in Section 3.1. 23 

By analyzing the historical data sources along with confirmed incident logs, the important 24 

factor of the individual source is evaluated using attribute ranking algorithms (e.g. information 25 

gain, principal component analyses) (12). 26 

Besides the reliability of individual source, the alert score is dependent on spatial and 27 

temporal aspects. Furthermore, a recent detection (e.g. within 10 minutes) should have more 28 

attention than past report (e.g. reported over 30 minutes). As a consequence, the spatial-temporal 29 

adjusted weight should be considered. The total alert score for an incident over the time is 30 

calculated as: 31 

 32 

𝑠𝑐𝑜𝑟𝑒(𝑡) = ∑ 𝑅𝑖 𝑊
𝑖
𝑗 𝑆(𝑟)𝑇(𝑡)

𝑛

𝑖=1

   (1) 

Where, i represents data source i, Ri is the reliability score for source ith, 𝑊𝑖
𝑗
 is the weight 33 

for subtype of source i, S(r) is the spatial adjustment function which depends on road type r and 34 

T(t) is the temporal adjustment which depends on time t. 35 

3.3.2 Incident classification 36 

When an incident is detected and confirmed by the system, a classification process is applied based 37 

on the incident description to divide it into different categories including accident, breakdown, 38 

delay, etc. Historical incident data is also used to train machine learning incident classification 39 

model to further classify incidents based on duration and severity.  40 
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For incident duration classification, our system applies the method proposed by (13) to 1 

predict the duration of an incident that has just happened by using the available characteristics 2 

known at the onset, e.g. location, time, type of incident, lanes affected, operator in charge etc.  3 

Understanding the estimated incident duration is useful to traffic operators when choosing an 4 

appropriate response plan. Estimated incident duration is also one of the inputs for the traffic 5 

simulation module. Although several machine learning detection methods (14; 15) have been 6 

applied to detect an incident, few of them combined advanced machine learning, active learning 7 

and outlier detection techniques and achieves approximately 90% accuracy in predicting incident 8 

severity (16). This severity classification approach is integrated into our proposed system.  9 

Finally, the detailed incident impact on the road network is then predicted by machine 10 

learning approaches (for recurrent incidents/congestions) or simulation modules (for unseen 11 

incidents). 12 

3.4. Machine learning data-driven predictive module 13 

When incidents occur in an urban traffic network, they are likely to affect the traffic flows of 14 

surrounding areas, especially to all the traffic leading to the congested roads. Some of the causal 15 

congestions follow the same patterns or sequences over the time. Therefore, it is useful to discover 16 

frequent patterns (if any) of congestion propagations by reviewing historical data in the traffic 17 

networks.  18 

This section reviews an algorithm that finds congestion propagation pattern by looking at 19 

the relationships of congestions from the earliest data record through the latest one (17). The main 20 

insight is that congestion C1 is a parent of congestion C2 if C1 occurred before C2 in time and they 21 

are spatially connected. 22 

A frequent tree represents expected congestion propagation pattern when an incident 23 

happens on a root segment. A root of a congestion tree is defined as a segment where traffic from 24 

other segments are flowing into it and causing congestion.  25 

A Dynamic Bayesian Network (DBN) approach is used to model the spatial-temporal 26 

characteristics of a recurrent congestion propagation. Using this method, the probabil ity of a 27 

recurrent incident’s impact can be estimated. A DBN is usually referred as a 2-Time slice Bayesian 28 

Network (2TBN) because at any given time T, the value of a variable is computed from the internal 29 

regressors and the immediate prior value (time T-1) (18). Therefore, DBN is reasonably close to 30 

the real-world phenomenon of traffic congestion where the status of a segment at a specific time 31 

can be determined by its previous condition and previous conditions of connecting segments.  32 

However, this assumption depends on the length of the time interval and traffic segment. If either 33 

the time interval or traffic segment is too long or too short, the dependency may not be applicable. 34 

In our experiment, due to the availability of dataset, the time interval was 5 minutes and segment 35 

lengths were pre-defined by data supplier.  36 

To build the DBN traffic network, the road segments are presented by a set of Nh random 37 

variables,𝑂𝑡
(𝑖) ∈ [0,1], where i represents a congested segment at time t. Snapshot t is a storage of 38 

the traffic condition from all segments in the network at time t. 39 

In a DBN, the transition (denoted as B→) and observation model 𝑃(𝑍𝑡|𝑍𝑡−1) is then defined 40 

as a product of the conditional probability distribution (CPD) in the 2TBN:  41 

𝑃(𝑍𝑡|𝑍𝑡−1) = ∏ 𝑃(𝑍𝑡
(𝑖)

|𝑃𝑎(𝑍𝑡
(𝑖)

))

𝑁

𝑖=1

   (2) 

Where 𝑍𝑡
(𝑖)

 is the ith node in snapshot t and 𝑃𝑎(𝑍𝑡
(𝑖)

)  are the parents of  𝑍𝑡
(𝑖)

 . The 42 



     Wen et al                                                                                                                                                               8                                
 

unconditional initial state distribution  𝑃(𝑍1
1:𝑁)  is presented by a standard Bayesian Network, 1 

namely B1. Together, B1 and B→ define the DBN. 2 

Suppose we have a simple traffic network which comprises of three segments: EB and GB 3 

are connected to BA. As EB and GB both lead to BA, when BA is congested, it becomes the 4 

potential cause for congestions at EB and GB in the next time frame. The corresponding DBN 5 

network is presented in FIGURE 2. 6 

When the propagation pattern is generated, the joint distribution for a known-structure tree 7 

which includes T consecutive snapshots (slices) can be obtained by “unrolling” the network until 8 

we have T slices, and then multiplying together all of the conditional probability distribution.  9 

𝑃(𝑍1:𝑇
(1:𝑁)) =  ∏ 𝑃𝐵1

(𝑍1
(𝑖)

|𝑃𝑎(𝑍𝑡
(𝑖)

) × 

𝑁

𝑖=1

∏ ∏ 𝑃𝐵→
(𝑍1

(𝑖)
|𝑃𝑎(𝑍𝑡

(𝑖)
)

𝑁

𝑖=1

𝑇

𝑡=2

   (3) 

In case the detected incident belongs to the root of congestion propagation tree and the 10 

probability to form a propagation pattern is higher than a predefined threshold, the traffic controller 11 

may decide to rely on this impact pattern to control the traffic rather than executing simulation 12 

which is more time-consuming. If there is no propagation that exceeded the predefined threshold, 13 

the simulation technique is applied to test the impact of an incident on the road network. When the 14 

system is implemented, real-world threshold will be suggested by TMC to decide when it is reliable 15 

to use the predicted patterns.  16 

3.5. Simulation module 17 

In the real world, the location, type, and severity of an incident may vary significantly and hence 18 

a number of incidents may not be accurately and reliably predicted by the machine learning data 19 

driven predictive module. In this case, the simulation module needs to be activated to evaluate the 20 

impact of the incident quantitatively. However, simulation of large-scale networks in a reasonable 21 

time can hardly be viable due to the computational complexity. Some real-time traffic simulation 22 

models have opted for simulation at a corridor/motorway level (19-21) but few offer automatic 23 

sub-network selection and real-time incident simulation based on duration prediction. 24 

Therefore, we have proposed an automated parallel simulation module to address these 25 

issues. In this module, a large-scale traffic simulation model is constructed for the city of Sydney, 26 

Australia, and a macroscopic assignment process is implemented every day based on the new 27 

incoming data received from the data processing module. Macroscopic assignment models have 28 

been well studied by many researchers and many existing models are available (22), in the case 29 

study, the algorithm by Florian is used (23). 30 

To achieve a reasonable computation time, the large-scale network is sub-divided into 31 

small subnetworks. For example, the Bureau of Transport Statistics in New South Wales, Australia, 32 

applies a geometrical zoning configuration which is open to the public (24). In addition, some 33 

research papers also provide methods for automatic zoning when zoning information is not 34 

available (25). Based on the incident information (location, severity, lanes affected), the module 35 

automatically selects the afferent subnetwork, where further analysis and prediction are applied. 36 

Then, the traversal demand matrix is generated for the selected sub-network. Here, the traversal 37 

demand matrix represents the travelers that travel through, in and out of the subnetwork. To further 38 

reduce the computation time, each response plan is simulated simultaneously by the parallel 39 

simulation module. This is because transport operators can have multiple candidate response plans, 40 

and the simulation module can facilitate them to choose the most suitable plan. On this platform, 41 

the mesoscopic simulation has been adopted because it is computationally more efficient than 42 
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microscopic simulation, less data-demanding while capturing the essentials of the traffic dynamics. 1 

Note that all the aforementioned simulation processes are automated from the beginning, which is 2 

also critical to reducing the computation time to satisfy the strict requirement on response time for 3 

incident management purposes. 4 

The reliability of this decision-making process relies on a simulation model that 5 

represents the system’s behavior closely enough (26), and hence the simulated outputs are 6 

validated with several data sources: travel time data (e.g. probe vehicle data, taxi data or Google 7 

travel time data), traffic counts (e.g. loop detector data) and public transport data (e.g. smart card 8 

data and public transport monitoring data). If the results do not closely approximate the 9 

observations, further calibration is conducted to fine tune the parameters such as sub-network 10 

traversal demand, mesoscopic reaction time and so forth until the result quality is satisfactory. 11 

3.6. Response plan evaluation module  12 

As each city or traffic management centre has its own unique characteristics and preferences, it is 13 

important that the best response is chosen based on bespoke metrics, so that the ramification of 14 

incident is mitigated in a user-defined way. For example, the average travel time per kilometre can 15 

be used to evaluate performance: 16 

 17 

𝑇𝑇𝑛𝑒𝑡𝑤𝑜𝑟𝑘 =  
∑ 𝑇𝑇𝑖

𝑁𝑛𝑒𝑡𝑤𝑜𝑟𝑘
𝑖=1

𝑁𝑛𝑒𝑡𝑤𝑜𝑟𝑘
   (4) 

Where, 𝑇𝑇𝑖 is the average travel time per kilometre of vehicle i, 𝑁𝑛𝑒𝑡𝑤𝑜𝑟𝑘  is the number of 18 
vehicles in the network. When travel time reliability or other factors are considered important, they 19 

may also be used to choose the most effective response plan. Such a user-defined metric embodies 20 

the platform’s flexibility and customizability. 21 

4. Case study 22 

In this section, we present a case study of the Sydney large-scale network consisting of more than 23 

70000 links and 2000 centroids. This case study focuses mainly on the incident detection and 24 

classification, recurrent incident impact prediction and non-recurrent incident simulation. The data 25 

sources used on this platform have been explained in Section 3.1.  26 

4.1. Recurrent incident: congestion propagation and impact prediction 27 

When an incident is detected, the incident detection and classification module will also analyze 28 

and determine whether the incident is recurrent or not. In this subsection, an example of recurrent 29 

incident is presented, to demonstrate that the machine learning data-driven predictive module can 30 

predict the congestion propagation, incident impact for transport operators to make informative 31 

decisions.  32 

As illustrated in FIGURE 3, at 8:30 am on a weekday, an incident was detected at George 33 

St near Campbell St in the Sydney CBD. Given that the incident first happened at the root segment 34 

BA, using congestion discovery algorithm and DBN (Section 3.4), a 5-segment congestion 35 

propagation pattern was detected with a joint distribution probability estimated at 74%. This 36 

probability is higher than the predefined threshold hence this predicted impact can be used by the 37 

operator to manage the incident. 38 

The detected congestion pattern was then validated using the real-time traffic data 39 

collected from SCATS. The congestion was initially detected at segment BA. Five minutes later, 40 

both segments DB and CB also became congested. Until 8:45 am which is 15 minutes after the 41 
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incident happened, similar congestion propagation patterns were detected on all five segments . 1 

The case study shows the efficiency and capability of the machine learning module in decision 2 

support and impact prediction for recurrent incidents. 3 

4.2. Non-recurrent incident: parallel simulation and performance evaluation 4 

Although the machine learning data-driven predictive module shows its efficiency in predicting 5 

incident impact, a number of incidents may not be predicted correctly when little historical 6 

information is available. The simulation module needs to be triggered to assist transport operators 7 

when such non-recurrent incidents are detected. As previously explained, simulation of the whole 8 

Sydney network on a Mesoscopic or Microscopic level is extremely time-consuming, which 9 

cannot satisfy the computational time requirements for transport management purposes. Therefore, 10 

the Sydney network has been sub-divided into many sub-networks beforehand using the Statistical 11 

Area definition in (24), so that the simulation module can select a sub-network promptly for 12 

simulation. The transport simulation model of the Sydney network is implemented in AIMSUN, 13 

which is regularly calibrated using periodically aggregated SCATS traffic counts and smart card 14 

data. The AIMSUN network simulation model uses the multimodal O-D matrix previously 15 

estimated (see Section 3.2) and runs a macroscopic multimodal traffic assignment for the Sydney 16 

network. The output will be saved for later use in generating a traversal demand for the chosen 17 

sub-network where the incident happens. 18 

The non-recurrent incident presented here is reported by the incident detection and 19 

classification module with the following information: 20 

a. Location (including x and y coordinates): Pyrmont bridge road, Pyrmont. 21 

b. Estimated duration: 30 minutes. 22 

c. Severity: major accident affecting all lanes in both directions. 23 

d. Start time: 07:15 a.m. 24 

e. Incident pattern: non-recurrent. 25 

The non-recurrent incident pattern triggers the simulation module. To demonstrate the 26 

network state and performance before and after the incident, a 2-hour simulation period is chosen, 27 

from 7:00 a.m. to 9:00 a.m. Using the incident location, a subnetwork has been automatically 28 

selected from the list of available subnetworks in the city, which is identified as -Pyrmont. Pyrmont 29 

is a suburb adjacent to Sydney CBD and the majority of its area is zoned for commercial purposes. 30 

See FIGURE 4: 31 

After automatically selecting the sub-network area in which the incident has occurred, the 32 

traversal demand matrix for Pyrmont is generated and calibrated for the morning rush hour (7:00 33 

a.m. to 9:00 a.m.). The model is also validated by comparing the average travel time obtained from 34 

simulation (STT) on each road section with the average travel time from Google (GTT) or the 35 

average travel time obtained from the SCATS data in Pyrmont (SCATSTT). FIGURE 5a) presents 36 

an example of comparison between the average STT and GTT on the road section 2839_2840 from 37 

Pyrmont, on a Wednesday morning from 7 to 9 AM. The plot of travel time every 15 minutes 38 

indicates that the simulation provides good results of the TT on this section as it falls between the 39 

5th and 95th percentile of the GTT. This finding is validated once more on a different section 40 

(5_2839), where the STT is compared to GTT SCATSTT which is available for computation 41 

(FIGURE 5b). 42 

Based on the received incident information, assume the operators choose the following 43 

incident response plans (RPs) for evaluation: 44 
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1) RP1- Do nothing. 1 

2) RP2- Redirect all traffic in intersections 1 and 2 (marked as red rectangular in 2 

FIGURE 4 towards adjacent intersections. 3 

3) RP3: Combined actions: Activate the VMS to redirect all off-ramp flow from the 4 

bridge towards Little Mount St. (see FIGURE 4), and redirect all traffic in intersection 1 towards 5 

surrounding intersections. 6 

4) RP4: Activate the VMS to redirect all off-ramp flow from the bridge towards Little 7 

Mount St. 8 

RP1 is intended to keep monitoring the network but take no action, in order to evaluate the 9 

true impact of the incident if no action is taken. RP2 redirects all traffic in intersections 1 and 2 10 

towards adjacent intersections in order to prevent vehicles from queuing and eventually blocking 11 

the intersection. RP3 has the role to activate the VMS (Variable message sign), which will inform 12 

drivers to make a left turn before reaching intersection 1. Also, traffic will be redirected at 13 

intersection 1 to prevent queuing. RP3 aims to let the major traffic from the bridge (Western 14 

distributor) bypass intersection 1. RP4 simplifies RP3 by keeping only the VMS activation action. 15 

Note that the parameters for driver behaviour in the microsimulation (such as acceleration and 16 

reaction time) will remain unchanged due to the difficulty in collecting sufficient data.  17 

These response plans are then simulated in parallel on a microscopic level by the 18 

microsimulation engine in AIMSUN. FIGURE 5c) presents the average travel time per kilometre 19 

(including bus and private vehicles) obtained after applying each of the 4 response plans. Plan 1 is 20 

the baseline and demonstrates that the average travel time reaches a high point at 8:00 a.m., when 21 

the incident has already ended. This is due to the accumulation of queue and the increase in traffic 22 

and public transport demand. Plan 4 shows a very marginal improvement over plan 1, the average 23 

travel time over the 2 hours is also quite close to plan 1. Although plan 2 mitigates the congestion 24 

during 7:45 a.m. to 8:15 a.m., the travel time increases after 8:15 a.m. gradually, making the 25 

eventual average travel time over the 2 hours very similar to response plan 1. Overall, plan 3 26 

performs the best, it smooths the travel time after the incident happens, while having a 7% 27 

reduction in average travel time over the 2 hours simulation period. 28 

The finding indicates that the best response plan for mitigating congestion produced by a 29 

non-recurrent incident is actually a combination of various actions which complement each other 30 

and help to reduce the incident clearance time. Therefore a possible extension of this work is to 31 

automatically recommend the best combination of response plans to apply for efficiently easing 32 

congestion.    33 

5. Conclusion 34 

In this paper, we introduced the general framework of the ADAIT platform and explained the main 35 

function of each module. The platform can detect and then classify incidents into recurrent and 36 

non-recurrent pattern, the former one triggers the machine learning data-driven predictive module 37 

which predicts the incident duration and impact, so transport management operators can decide if 38 

the simulation module needs to be activated. Non-recurrent incident is directly passed to the 39 

simulation module, the performance of candidate response plans is evaluated quantitatively, and 40 

then operators can opt for the best plan to mitigate the negative impact of an incident. Case studies 41 

demonstrate that the impact of recurrent incident, such as congestion propagation, can be predicted 42 

by the machine learning module, and the simulation module can help choose the best response 43 

plan to mitigate the negative incident impact. In short, data-driven incident detection/classification, 44 

machine learning analytics for incident prediction and automatic traffic simulation models  are 45 

integrated into the cloud-based platform, which represents a unique and innovative method to 46 
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evaluate the impact of incidents in real-time for large-scale networks. 1 

There are various possible opportunities to further extend the platform: The response plans 2 

can be generated automatically by advanced machine learning techniques based on the information 3 

of a detected incident (such as location, duration, severity etc.), and hence save time on manually 4 

input response plans. Also, the platform’s modularity allows integration of advanced transport 5 

algorithms in each module, which can enhance the platform’s applicability. Because DBN model 6 

depends on the length of the time interval and traffic segment, in our future work, time interval 7 

between two continuous snapshots will be considered as an additional parameter. Furthermore, the 8 

algorithm will be tested on different traffic network settings which different average segment 9 

lengths to evaluate the effect. 10 
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FIGURE 1 Incident detection and impact analysis framework. 2 
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FIGURE 2 Modelling congestion propagation of a 3-segment traffic network by DBN. 5 
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FIGURE 3. The frequent congestion propagation pattern in the Sydney CBD. 2 
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FIGURE 4 The selected sub-network (Pyrmont, New South Wales). 2 
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FIGURE 5. Average travel-time comparison between: a) simulation and Google Travel 4 

Time, b) simulation, Google TT and SCATS c) each response plan (RP1, RP2, RP3, RP4). 5 
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