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Predicting the traffic conditions in urban networks is a priority for all traffic management 

centres around the world. This becomes very challenging, especially when the network 

is affected by traffic incidents that vary in both time and space. Although data-driven 

modelling can be considered an ideal tool for short-term traffic predictions, its 

performance is severely degraded if little historical traffic information is available under 

incident conditions. This paper addresses this challenge by integrating data-driven and 

traffic simulation modelling approaches. Instead of directly predicting the traffic states 

using limited historical data, we employ a traffic simulation reinforced by data-driven 

models. The traffic simulation uses newly reported incident information and the 

estimated origin-destination (OD) demand flows to capture the complex interaction 

between drivers and road network, and predicts traffic states under extreme conditions. 

Because accurate real-time OD flows cannot be directly measured in large-scale areas, 

we propose a rolling-horizon OD demand estimation problem to estimate demand flows 

based on the most recent measured link volumes. We showcase the capability of the 

proposed data-driven enforced traffic simulation platform for incident impact analysis in 

a real-life sub-network in Sydney, Australia. 

Keywords: demand estimation and prediction; micro-simulation; machine learning; 

incident management 

1. Introduction  

Short-term traffic forecasting is a necessary step for efficient traffic network operations and is 

an integral part of intelligent transportation system (ITS) applications. The abundance and 

recent increase of various traffic data sources have led many researchers and data scientists to 

employ a wide range of data-driven models to predict future traffic conditions. Various 

parametric and non-parametric methods are used for the short-term forecast of speed (Xu et al., 

2018; Yao et al., 2017), travel time (Wang et al. 2016; Oh et al. 2015) and traffic volume 

(Polson and Sokolov 2017), which offer predictions from a few minutes to several hours into 
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the future. However, two challenges are highlighted in the previous studies as the main critical 

limitations of the majority of data-driven models (Tedjopurnomo et al., 2020; Vlahogianni et 

al., 2014). Firstly, most data-driven forecasting models have been applied to freeways or 

arterial corridors rather than urban networks. The complex spatial configuration of all network 

connections and the dynamics of the travel demand make traffic forecasting in urban networks 

challenging, particularly for large suburban networks. Secondly, a wide variability of traffic 

incidents can occur at different times of the day and rarely in the same location or with the 

same severity. These incidents can range from temporary lane closures due to car breakdowns 

and small-scale accidents to more complicated incidents such as sudden weather changes and 

train system breakdowns (Tercan et al., 2020). All these varying characteristics of traffic 

disruptions increase forecasting complexity and make it difficult to find similar patterns in any 

historical dataset. To address this issue, some studies focus only on a particular type of incident, 

for example, highway lane closures due to roadway reconstruction projects (Du et al., 2017; 

Karim and Adeli, 2003). However, in most cases, there are limited recorded data for each 

particular type of incident, and thus, forecasting traffic measurements such as traffic volume, 

speed, or travel time can result in inaccurate outcomes. 

On a parallel research track, the traffic state is estimated using real-time traffic simulation 

models (Oh et al. 2018; Li et al. 2015). In these models, each traveller attempts to minimise 

their travel time/cost, and their decision impact other travellers’ decisions in the network. By 

considering this essential principle, the intricate traveller route decisions can be modelled in 

the traffic network. In addition, the propagation of traffic along the network is replicated by 

traffic flow theories that determine the traffic flows and the associated travel times on network 

links (Cascetta, 2009). However, the traffic simulation models require several parameters that 

should be well-calibrated for operational applications (Balakrishna et al., 2012).  

In this paper, instead of directly predicting the link traffic features using only limited historical 

data (which does not have recorded correlations of specific anomalies or past accidents), we 

used data-driven models to reinforce a traffic micro-simulation by providing the origin-

destination (OD) information as one of the most important required inputs. In our proposed 

framework, once an incident is categorised as severe by an artificial intelligence (AI) engine 

(Nguyen et al., 2017), a summary of incident characteristics such as the location and the 

number of affected lanes is transferred to the traffic simulation. Moreover, a machine learning 

method predicts short-term OD demand flows and feeds them into the traffic simulation. With 
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knowledge of the incident information and predicted OD demand flows, the simulation applies 

traffic flow principles to predict the traffic state under non-recurrent conditions.  

For this study, we assumed that network commuters hardly cancel their short-term trips even 

if affected by disruptions. This assumption holds for morning peak hours in which a large 

proportion of trips like home-to-work or home-to-education still need to continue. Some 

travellers respond to a new prevailing bad network condition by updating or changing their 

route trips. Such behavioural phenomena can be modelled accurately in traffic simulations. We 

propose a rolling-horizon bi-level optimisation model to keep the traffic simulation model 

calibrated based on the most recent measured traffic data. Finally, we investigate the impacts 

of traffic incidents on a real-life application in an urban sub-network and showcase the benefit 

of the integrated approach. To summarise, we present our main contributions for this paper as: 

• proposing a prototype for an incident management platform using integrated data-

driven and dynamic traffic simulation modelling; 

• estimating day-to-day OD flows for the OD demand prediction module when an 

incident occurs. We propose several machine learning models for OD demand 

prediction to reinforce the traffic simulation; 

• deploying traffic micro-simulation modelling according to real-life adaptive signal 

control by applying the same controllers’ logics to simulated vehicles. 

This paper extends our previous study presented in (Shafiei et al., 2020) by adding travel time 

validation, real-life adaptive signal control integration, and improving OD flow prediction 

methodology. The rest of the paper is organised as follow: Section 2 describes the methodology 

applied over a real sub-network in Sydney, Australia and Section 3 showcases the results. 

Finally, Section 4 provides the concluding remarks and outlines some research extensions for 

future studies. 

2. Methodology 

This section explains the general data flow used for building an operational incident 

management platform tailored to the needs of the Traffic Management Centre (TMC) in 

Sydney, Australia. Next, OD demand estimation and prediction methodology are discussed as 

the main focused components of the incident management platform in this paper. 
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2.1  Incident management platform 

Figure1 presents the proposed incident impact analysis platform using integrated data-driven 

and traffic simulation models. The methodological diagram treats the cases of recurrent versus 

non-recurrent traffic conditions differently by triggering various modules detailed below.  

Our proposed framework is using various data types, including:  

• measured link traffic count: link traffic counts are essential inputs for the OD demand 

estimation module as well as to validate the framework’s output.  

• Network and demand data: which contains the primary information of the links of 

the network, public transport lines and their frequency, and signal configuration. This 

data is exported and used to construct the baseline simulation model in an offline matter. 

• Incident data logs: includes the incident location ([x,y] coordinates), the number of 

affected lanes, the start time of the incident, the incident duration and more details about 

the incident severity.  

By having such information, the proposed framework predicts the traffic state in two streams 

of recurrent and non-recurrent traffic conditions using the following modules: 

• Incident severity classification: this module includes raw data processing and uses 

machine learning techniques to classify reported incidents into severe and non-severe. 

When an incident is categorised as severe, its data is transferred to the traffic simulation 

model for further impact analysis. For non-severe incidents, the data-driven traffic 

modelling is used to obtain the short traffic prediction; this module is not a focus of this 

study and readers can refer to our previous work published in (Nguyen et al., 2017). 

• Data-driven traffic prediction: this module is based on our previous study (Nguyen et 

al., 2019), which proposed a deep learning methodology for travel speed prediction 

involving feature generation, model development, and model deployment. The 

proposed neural network model is used for recurrent traffic conditions.  

• OD demand estimation: this module aims to adjust a priori demand data by using link 

traffic observations. We estimate the OD flows through a bilevel optimization 

framework in which the a priori demand flow is updated based on the latest measured 

traffic in several links of the network. 
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Figure 1. Data-driven and simulation platform for incident impact analysis. The grey modules 

are beyond the scope of this paper. 
 

• OD demand prediction: the demand prediction model will forecast the OD trip flows 

for short time intervals into the future (up to an hour ahead) by using the OD demand 

flows obtained by the OD demand estimation module. 

• Traffic simulation: this is used to understand the allocation of the predicted OD 

demand flows considering the freshly reported incident information. The 

microsimulation modelling uses various inputs such as OD demand matrices, public 

transit lines and timetables, traffic signal control definition for each controlled 

intersection, incident information on where the disruption has been affecting. The 

traffic microsimulation outputs are numerous, and a summary of this includes network 

or individual link travel times, assigned link traffic volumes, network/link delay or 

speed/density, etc.   

• SCATSIM: this is a simulation plug-in control architecture that responds to the 

simulated traffic state by adjusting: a) the total cycle times inside each SCATS-

controlled intersection, b) the ratio of the cycle time assigned to each phase, and c) the 

offset between adjacent signal controls. As a result, the real-life SCATS control 

architecture is applied to the simulated vehicles in the micro-simulation model, which 

offers a realistic replication of real-world traffic control conditions.  

• Validation: The inputs of the simulation model are regulated by the updated traffic 

measurements observed consistently from the network at each time-interval; this is to 

ensure the predicted results reflect the actual real-life conditions. If the error between 

the predicted and the corresponding observed values is less than an acceptable threshold 
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defined in NSW traffic modelling guidelines (Morgan and Veysey, 2013), then we 

accept the outputs of the platform as the final predicted traffic state. 

2.2  Demand estimation and prediction 

The success of the traffic simulation relies on the quality of this fundamental input and how 

well it captures the travellers’ movement in the city from one time interval to another. Accurate 

demand flow information is difficult to obtain directly and is normally estimated using link 

traffic measurements. The main objective of the OD demand estimation problem is to minimise 

the error between the simulated and the observed traffic measurements. The OD demand 

estimation problem can be expressed as a system of equations in which the unknown 

parameters are the OD flows, and each equation represents the observed link flow. Many 

studies apply a bi-level optimisation formulation where demand flows are estimated at the 

upper-level and the feedback of estimated demand in the network is evaluated by a lower-level 

traffic assignment model (Antoniou et al., 2016). Some relevant research on dynamic OD 

estimation problems include a) using advanced traffic surveillance data to improve the 

accuracy of estimated OD flows (Kim et al., 2018; Rao et al., 2018), b) proposing 

methodological enhancements to deal with non-linearity problems in congested networks 

(Frederix et al., 2011; Shafiei et al., 2017), and c) applying simultaneous adjustment of network 

and demand parameters to consider the complex interactions of demand and network 

components (Liu et al., 2020). Work on the OD estimation problem has been ongoing for 

decades, and interested readers can refer to the comprehensive survey studies by (Antoniou et 

al., 2016; Ziliaskopoulos, 2001). 

Dynamic OD demand estimation based on traffic measurements is performed for offline and 

online applications. The offline demand flow estimation problem relies on historical measured 

traffic data, while in the online applications, the model should be able to update OD flows 

based on real-time data and predict the traffic data actively for the near future. Therefore, 

offline dynamic OD estimation can be considered a complementary module in which a reliable 

initial OD demand is estimated for online models. Kalman-filter and least-squares estimators 

are two common approaches used in generating real-time OD flows with a reasonable 

computational burden (Ashok, and Ben-Akiva, 2000; Zhou and Mahmassani, 2007). Wen et 

al. (2006) present an overview of the online OD estimation model and other functional 

requirements, which need to be considered when planning for the online deployment of traffic 

model-based systems. 
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In this study, we used the traditional bi-level optimization problem in which the OD demand 

flows are estimated by solving the system of equations at the upper level and then evaluated at 

the lower level. The OD demand estimation problem is mathematically expressed as follows: 

min  F(X) =ω.�� f(x�it, xit)
T

t=0

I

i=1

+ (1 −ω).�� f(y�at , yat)
T

t=0

A

a=1

 

y�at = ��pa,i
τ,t(X)x�iτ

I

i=1

t

τ=1

 

(1) 

where each parameter is explained here below: 

f Euclidean distance function, 
a Link index, a ϵ [1, A], A is the total number of observed links in 

the network 
t,τ Time index t, τ ϵ [1, T], T is the total number of modelling 

discrete times, 
i OD pair index i ϵ [1, I], I is the total number of OD pairs in the 

network, 
𝑥𝑥�𝑖𝑖𝑡𝑡 Estimated demand flow for an OD pair i ϵ I at time t, 
𝑥𝑥𝑖𝑖𝑡𝑡 Initial demand flow for an OD pair i ϵ I at time t, 
X Current estimated demand vector,  𝑋𝑋 = [𝑥𝑥1𝑇𝑇, 𝑥𝑥2𝑇𝑇, 𝑥𝑥3𝑇𝑇, … , 𝑥𝑥�𝐼𝐼−1𝑇𝑇 , 𝑥𝑥�𝐼𝐼𝑇𝑇] 
𝑦𝑦�𝑎𝑎𝑡𝑡 Estimated link flow in link a at time t ϵ T, 
𝑦𝑦𝑎𝑎𝑡𝑡 Observed link flow in link a at time t ϵ T, 
𝑝𝑝𝑎𝑎,𝑖𝑖
𝜏𝜏,𝑡𝑡 Assignment proportion of 𝑥𝑥𝑖𝑖𝑡𝑡 that passes through a link a during 

period τ, 
𝜔𝜔 Reliability weight for the demand deviation. 

 

The lower level of Eq.1 assumes the link flows are linearly related to OD flows by defining the 

assignment proportion (𝑝𝑝𝑎𝑎,𝑖𝑖
𝜏𝜏,𝑡𝑡). This assumption simplifies the OD demand estimation problem 

and makes it practical for offline and online large-scale applications. The assignment 

proportion includes useful information on the link between network and demand components 

of the traffic models. However, link flows (𝑦𝑦𝑎𝑎𝑡𝑡) are indicative of demand (𝑥𝑥�𝑖𝑖𝑡𝑡) only if there is 

no saturated bottleneck between the origin and this link flow location. In the case of the 

existence of congestion, the linear models may respond to forming congestion by decreasing 

the corresponding OD demand among the congested links (Frederix et al., 2011). In other 

words, the estimated demand results in the link flow which either indicates congestion or free-

flowing traffic link condition. Therefore, minimizing the only difference between measured 

and simulated link flow can significantly affect the reliability of the solution found (Shafiei et 

al., 2015). To alleviate this issue, in addition to reducing the Euclidean distance between 
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simulated and observed flow rates, the second term of the objective function seeks to keep the 

estimated demand as close as possible to the initial demand. In this way, the solution does not 

explore the local optima, which presents different link condition with the initial one.  Moreover, 

the result must be evaluated by other road characteristics such as speeds and travel times to 

ensure how well the simulation itself mimics traffic dynamics. 

To solve the problem in Eq.1, the partial derivative of function F with respect to the demand 

flow for the OD pair 𝜂𝜂 at time h (𝑥𝑥𝜂𝜂ℎ; ℎ ∈ [0,𝑇𝑇], 𝜂𝜂 ∈ 𝐼𝐼) is determined as follows: 

 

∂F
∂𝑥𝑥𝜂𝜂ℎ

=
∂
∂𝑥𝑥𝜂𝜂ℎ

 �𝜔𝜔��(𝑥𝑥𝑖𝑖𝑡𝑡 −  𝑥𝑥�𝑖𝑖𝑡𝑡)2
i∈I

T

t=1

+ (1 −𝜔𝜔)��(𝑦𝑦𝑎𝑎𝑡𝑡 −  𝑦𝑦�𝑎𝑎𝑡𝑡)2
T

t=1

A

a=1

� 

= 2ω�𝑥𝑥𝜂𝜂ℎ − 𝑥𝑥�𝜂𝜂ℎ� + 2(1 −𝜔𝜔) 

  � ��  𝑝𝑝𝑎𝑎,𝜂𝜂
𝜏𝜏,ℎ(𝑋𝑋)���  𝑝𝑝𝑎𝑎,𝑖𝑖

𝜏𝜏,𝑡𝑡(𝑋𝑋)𝑥𝑥𝑖𝑖𝑡𝑡
i∈I

τ

t=1

− 𝑦𝑦𝑎𝑎𝜏𝜏� 
T

τ=h

M

a=1

� 

 

(2) 

In addition to determining the gradient, we also need to calculate the step size (𝜆𝜆). To do so, 

the sub-optimization problem in Eq.3 is solved in each iteration: 

 
min
λ  F(X + ∂F

∂x
 λ)  (3) 

 

We use the golden section algorithm as a line search minimization solution for solving the sub-

optimization problem defined in Eq.3. The algorithm includes the following steps:  

 

Step 1: if 𝜆𝜆∗ ∈ [0,1],𝜁𝜁 = 0, 𝜚𝜚 = 1,  𝜆𝜆1 = 𝜓𝜓,  𝜆𝜆2 = 1 − 𝜓𝜓 where 𝜓𝜓 = √5−1
2

 

Step 2: if 𝐹𝐹(𝑋𝑋 + ∂𝐹𝐹
𝜕𝜕𝜕𝜕

 𝜆𝜆1)>𝐹𝐹(𝑋𝑋 + ∂𝐹𝐹
𝜕𝜕𝜕𝜕

 𝜆𝜆2) 

𝜁𝜁 = 𝜆𝜆2 , 𝜆𝜆2 = 𝜆𝜆1, 𝜚𝜚 = 𝜚𝜚, 𝜆𝜆1 = 𝜓𝜓 

if 𝐹𝐹(𝑋𝑋 + ∂𝐹𝐹
𝜕𝜕𝜕𝜕

 𝜆𝜆1)<𝐹𝐹(𝑋𝑋 + ∂𝐹𝐹
𝜕𝜕𝜕𝜕

 𝜆𝜆2) 

𝜁𝜁 = 𝜁𝜁 , 𝜚𝜚 = 𝜆𝜆1, 𝜆𝜆1 = 𝜆𝜆2,   𝜆𝜆2 = 𝜚𝜚 − 𝜓𝜓 

Step 3: if 𝜁𝜁 − 𝜚𝜚 < 𝜀𝜀 then: 𝜆𝜆∗ =  𝜁𝜁+𝜚𝜚
2

 ; otherwise, go to step 2. 
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With the knowledge of the gradient � ∂𝐹𝐹
𝜕𝜕𝜕𝜕𝜂𝜂𝜏𝜏

� and the step size (𝜆𝜆), the demand flow (𝑥𝑥�𝜂𝜂𝜏𝜏) is then 

updated as: 

 

𝑥𝑥�𝜂𝜂𝜏𝜏 = 𝑥𝑥𝜂𝜂𝜏𝜏 +  𝜆𝜆 
∂F
∂𝑥𝑥𝜂𝜂ℎ

 𝑥𝑥𝜂𝜂𝜏𝜏 (4) 

 

The proposed OD demand estimation model is performed in two stages. First, we execute the 

procedure offline to estimate OD demands for a typical weekday. In this stage, an initial static 

OD demand obtained from the strategic model is used to estimate sixteen 15-minute OD 

demand matrices for a 4-hour simulation during peak hours. Second, the time-dependent OD 

demand matrices estimated from the first stage are adjusted in a rolling-horizon estimation 

procedure based on the most recent observed traffic counts. As a result, the simulation model 

is kept updated in real-time using the newly observed data. Moreover, the estimated OD 

demand flows are archived for different days of the week.  

The archived demand is considered as a reliable training demand set for any demand prediction 

module. Let the current time be ‘t’. Then, the demand prediction model has to predict demand 

flow for the next time intervals (𝑥𝑥�𝑖𝑖𝑡𝑡+1) given the value of the ‘m+1’ previous demand flow 

values (𝑥𝑥�𝑖𝑖𝑡𝑡−𝑚𝑚, …, 𝑥𝑥�𝑖𝑖𝑡𝑡−1, 𝑥𝑥�𝑖𝑖𝑡𝑡). Thus, the prediction model is expressed as: 

 

x�it= P (x�it, x�it−1, …, x�it−m, t) (5) 

 

We use different predictors for building this OD demand prediction module, which are 

presented in the following sections.  

2.3  Data-driven models 

In this section, we provide a brief description of various algorithms that we used for demand 

flow prediction, among which we cite: support vector regression (SVR), decision trees (DT), 

extreme gradient boosting and autoregressive moving average (ARMA).  

2.3.1 Support Vector Regression 

Support vector regression (SVR) in statistical learning theory has been widely applied for 

solving classification and regression problems (Geron, 2015). In general, SVR is a well-

established prediction method in complex systems that can deal with noisy databases (Wu et 
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al., 2003). The SVR model is formulated as a constrained optimization problem specified in 

Eq.6. The problem consists of two conflicting objectives: minimizing the Euclidean distance 

of ω to increase the margin and reducing the instance margin violations (𝜉𝜉𝑖𝑖). Constant C makes 

a balance between the two objective terms. A small value for hyper-parameter C allows a 

higher generalization ability while a big C value enforces serious penalty to limit instances (in 

our application demand flow 𝑥𝑥𝑖𝑖𝑡𝑡) that violate the determined margin.   

 

minimize
ϖ, b   0.5 ϖT.ϖ + C �ξi

i=1

 

so that: 

ξi = �
|ϖ. Γ(xit) + b − xit| − ε |ϖ. Γ(xit) + b − xit| ≥ ε

0 |ϖ. Γ(xit) + b − xit| < ε
   ,∀i 

(6) 

 

where Γ is a transformation function that can be replaced with a kernel function. Different 

kernel functions such as linear, polynomial, Gaussian radial basis function (RBF), and Sigmoid 

are commonly used in SVR modelling (Geron, 2015). Regardless of the kernel functions used, 

the main goal is to estimate the value of coefficients of 𝜛𝜛 and b in the Eq.6. To do this, the 

parameters C, 𝜀𝜀, and 𝜉𝜉 should first be defined. Once they are determined, there will be a global 

optimal solution found for the convex problem to obtain 𝜛𝜛 and b values. In Section 3.2, we 

explore different values to find the best combination for our application. 

2.3.2 Decision Trees 

Decision Trees (DT) are versatile non-parametric supervised ML algorithms that are capable 

of fitting complex datasets. Decision Trees are considered as white-box models because their 

decisions are intuitive and easy to interpret. This algorithm is also widely used in both 

classification and regression (Geron, 2015). The following cost function is minimized to 

determine the subsets and their thresholds: 

 J = mleft
m

 Gleft +  
mright

m
 Gright 

G = 1 −� pk2
n

k=1

 

Gleft/right: the impurity measurement of the left/right subset, 

mleft/right: the number of examples in the left/right subset. 

(7) 
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where 𝑝𝑝𝑘𝑘 is the ratio of subset k among the training data. If all training instances belong to the 

same subset, then the impurity measurement would equal to zero (G=0). In this study, the 

Classification and Regression Tree (CART) algorithm is employed (Pedregosa et al., 2011). 

The algorithm splits various instances into several subsets and defines a threshold. The CART 

algorithm investigates greedily for the optimum split thresholds from the top level and 

continues the process to lower levels. The algorithm stops splitting once it reaches the 

maximum depth for the decision (regression) tree, or the impurity measurements are not 

reduced by splitting the instances.  

2.3.3 Extreme Gradient Boosting (XGBoost) 

Extreme gradient boosting is the specific implementation of gradient boosting methods (GBM) 

for classification and regression problems. The concept and formulation of XGBoost and GBM 

are similar, while the main feature of the XGBoost is the robust calculation of the gradient to 

minimise the loss function. The XGBoost (and GBM in general) works based on the ensemble 

learner principle and iteratively combines a set of weak learners ℎ𝑚𝑚(𝑥𝑥) into a single learner as 

follows: 

F(x) = � 𝛾𝛾𝑚𝑚ℎ𝑚𝑚(𝑥𝑥)
M

m=1

 (8) 

 

The aim of the approach is to weight model’s outcome at the iteration of m based on previous 

iterations m-1. The predictions generated by this base learner are weighted by a constant 𝛾𝛾𝛾𝛾 

and minimises the average value of the loss function L (y, F(x)) on the training set (𝑖𝑖 ∈ (1,𝑛𝑛)). 

 

𝛾𝛾𝑚𝑚 = argmax�𝐿𝐿(𝑦𝑦𝑖𝑖,𝐹𝐹𝑚𝑚−1(𝑥𝑥𝑖𝑖) + 𝛾𝛾ℎ𝑚𝑚(𝑥𝑥𝑖𝑖))
n

i=1

 (9) 

 

The XGBoost model needs parameter tuning to enhance and fully leverage its power. We use 

and compare the performance of two commonly used boosters, tree and linear models.  

2.3.4 ARMA 

We used the ARMA model as a traditional time series model only for the demand prediction 

(not for the incident classification). The ARMA-family models include an autoregressive (AR) 

and a moving average (MA) part. The models predict the main variable for one or more discrete 
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time intervals by using the time-lagged values. Therefore, the historical variation of the 

variable along with subtle time-series dynamics is handled. The ARMA model with “𝑝𝑝 

autoregressive terms” and “𝑞𝑞 moving-average terms” takes the following form: 

 

ϕ(L)xit = θ(L)ϵt + δ (10) 

 

where 𝜙𝜙(L)  and 𝜃𝜃(L)  are respectively the autoregressive operator on variables and the 

autoregressive operator on residuals, L is the backshift (lag) operator ( L𝑥𝑥𝑖𝑖𝑡𝑡 = 𝑥𝑥𝑖𝑖𝑡𝑡−1) , 𝜖𝜖𝑡𝑡 

represents the residuals between the real and the estimated variable at time t, and 𝛿𝛿  is a 

constant. θ(L) and ϕ(L) can be presented as a polynomial relationship in the lag operator, 

defined as: 

 

θ(L) = 1 − θ1L −⋯− θqLq, 

ϕ(L) = 1 − ϕ1L −⋯− ϕpLp 
(11) 

 

Consequently, if Eq.11 is replaced in Eq.10, we have: 

 

�1 − ϕ1L −⋯−ϕpLp�xit = (1 − θ1L −⋯− θqLq)ϵt + δ (12) 

 

Producing an ARMA model requires defining parameters p and q in order to specify θ(L) and 

ϕ(L). Identification of p and q terms involves investigating a tentative formulation for the 

model as a starting point. After the general model is specified, the θ(L) and ϕ(L) are estimated 

using the least-squares method.  

3. Numerical results 

3.1  Study Area  

This study evaluates the proposed framework models for one of the major subnetworks in 

Sydney, stretching alongside the Victoria Road corridor from CBD to western city (see Figure 

2). The subnetwork includes 1,310 links and 428 nodes. The General Transit Feed Specification 

(GTFS) data is used to import public transport information such as bus time schedules, lines, 

and bus stop data. There are 81 signalized intersections with the adaptive SCATS control 

system running. The link traffic counts obtained from the SCATS detectors are aggregated in 
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15-min time intervals. Most of the SCATS signals are located throughout the main corridor 

and near the Sydney CBD. The simulation is conducted for 4-h morning peak hours from 6:00 

to 10:00 AM. using AIMSUN microscopic simulation model. AIMSUN is a discrete-event 

simulation tool established based on car-following and lane-changing models (Aimsun, 2013). 

Therefore, detailed traffic phenomena such as congestion propagation and dissipation of 

queues are simulated over time. We used a modified multinomial logit model as an advanced 

stochastic route choice model (Aimsun, 2013). Maximum five shortest paths are calculated 

using Dijkstra’s label-setting algorithm. The probability of choosing a path k is then calculated 

according to a utility function of each path. 

 
Figure 2. Victoria corridor sub-network. Green points show signals equipped with SCATS 
count detectors (measured traffic data). Red line demonstrates the main Victoria corridor. 

 

In Sydney, the signal controls are working with SCATS to reduce delay and make the transport 

system more efficient. Signal configurations such as signal group, phases and detector IDs are 

set in the model based on the SCATS configuration. Since the SCATS signals are adaptive and 

the adjacent signals are synchronized, it is very challenging to model such a complex system. 

To deal with this issue, we integrate our traffic simulation with SCATS using SCATSIM plug-

in architecture as detailed in (Morgan and Veysey, 2013). We observe that our simulation 

model was spreading over 3 main SCATS regions (Ultimo, Rozelle and Ryde). A total of 81 

controlled intersections were configured to replicate SCATS adaptive signal control in either 

isolated or coupled modes (sub-systems made of several intersections can be coupled together 

to optimise traffic signal timings). The entire architecture required several data sources such as 

the graphical layout of each intersection according to each region definition, the strategic 

inputs, signal timings, signal coordination, the action list for a particular time of the day 

routings, the controller information as well as the local time settings. 
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The SCATSIM and microsimulation model work in parallel and exchange information on a 

second by second loop: when cars arrive near the detectors placed for each lane in the 

simulation model, a message is being exchanged with the SCATSIM control architecture to 

communicate the occupancy of each lane. Based on incoming traffic volumes detected at each 

detector, SCATSIM would then adjust and modify the signal phase durations and send back to 

the simulation the new red/green/yellow times that the model should follow. A snapshot of a 

SCATSIM controlled intersection from our model is provided in Figure 3 where the Central 

manager and SCATS region modules are working correctly (green menu blocks on the SCATS 

Access interface are always activated) while detectors are detecting correctly incoming cars 

(see blue-highlighted detectors 1-4, 9, 10, and 7). Several verifications have been undertaken 

to monitor the total phase and cycle duration during the simulation. As a result, the real-life 

adaptive SCATS control logic is continuously applied to the simulated vehicles in our 

AIMSUN microsimulation model, making the results follow similar real-life traffic conditions. 

 

 
Figure 3. Example of SCATSIM controlled intersection inside the microsimulation model. 

3.2  Demand estimation and prediction 

The initial demand used in our study was obtained from the Sydney strategic model received 

from Transport for NSW, Australia. The extracted demand for the subnetwork contains 1,262 

non-zero origin and destination pairs and around 150,000 travellers who are commuting in the 

area during 4-h morning peak hours on regular working days. The total number of travellers 

suffers daily changes and declines to less than 100,000 on weekends. We select October 2017 
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for this study results as the traffic count data and incident data are available almost every day 

of the month. To compare day-to-day traffic changes, we analyse the overall traffic counts 

pattern for all days in October as showcased in Figure 4. We observe that during morning peak 

hours, the traffic flow can reach almost 40,000 vehicles per every 15-min time interval 

compared to the weekend when this number can be counted in the 20,000s. Please note that the 

total count across the network is not a good indicator of the total number of vehicles travelling 

in the network because the same vehicle can be counted multiple times along its route. From 

Figure 4, we selected Thursday 12th October as a typical weekday.  

 

 

 
Figure 4. (a) Total 24-hour link counts obtained from loop detectors in the Victoria area in 

different days within a month, morning peak hours in (b) weekdays, and (c) weekends. 

 

Since the uncertainty around bus frequency obtained from GTFS is low, we consider only 

private vehicles as a part of the OD estimation problem. We conduct our OD estimation process 

in two stages. At the first stage, we estimate time-dependent OD demand matrices based on the 

selected typical weekday link count and a priori demand data. A priori static OD demand 

obtained from the strategic model is time-sliced into sixteen 15-minute OD demand matrices 

for a 4-hour simulation during the peak period. Then, the bilevel optimization problem 
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formulated in Eq.1 is iteratively solved for the whole 4-hour morning peak period. This stage 

is done in an offline manner and demand flows at different time intervals are estimated. The 

only parameter in Eq.1 that must be set before executing the OD estimation problem is the 

demand reliability weight, which influences the accuracy of results. Previous studies proposed 

ranges based on the accuracy of the initial demand, the size of the network, and the simulation 

time window (Verbas et al., 2011). After various tests, we set this parameter to 0.95 for this 

case study.  

We next execute our proposed OD estimation in a 15-min rolling-horizon procedure. In other 

words, the time-dependent OD demand matrices estimated from the first stage are adjusted 

every 15-min time interval based on the most recent observed traffic counts. Note that the input 

OD matrices for the second stage are more reliable than the inputs to the previous stage since 

they have already been adjusted. We increase the reliability weight (ω) value from 0.95 to 0.99. 

Adding higher weight for demand deviation also helps us to avoid overfitting the simulation 

model based on possible noisy count data. The microsimulation is executed for four hours of 

morning peak with a 15-min network warm-up (5:45- 6:00 AM). We used the coefficient of 

determination (R2), mean absolute error (MAE) and GEH (TfL, 2010) as the common goodness 

of fit criteria to evaluate the simulation results based on link traffic volumes. Note that GEH is 

tailored to hourly flows, and we aggregate every four 15-min traffic volumes to calculate GEH. 

 

R2 = 1 − ∑ (y�aτ−yaτ)2A
a=1

∑ �y�aτ−(1A∑ yaτA
a=1 ) �

2A
a=1

  

MAE =  1
A
∑ |y�aτ − yaτ|A
a=1   

GEHa = �
2(y�aτ − yaτ)2

(y�aτ + yaτ)  

(13) 

 

Table 1 presents how the accuracy of the simulated traffic volumes increases through the two-

stage OD estimation applications. Results show that MAE improves by about 42% and 27%, 

respectively, after implementing OD demand estimation process at the first and second stages. 

In general, a GEH value under 5 is regarded as a good fit; between 5 and 10 implies the 

measurement site needs further investigation, and a value greater than 10 implies a significant 

error (TfL, 2010). As can be seen, at the end of the OD estimation process, all links among 252 

observed links have GEH<10, and almost 90% of links have GEH<5.  
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Table 1. The goodness of fit before and after the OD estimation. 

OD matrices No. links 
GEH<5 

No. links 
GEH<10 

MAE 
(veh/h) R2 Regression  

line 
Before OD estimation 189 243 97 0.97 Y=0.98X 
After OD estimation 
stage 1 228 251 56 0.99 Y=1.00X 
After OD estimation 
stage 2 231 252 41 0.99 Y=1.00X 

 

Similar work is conducted for other days of October 2017 to archive day-to-day OD demand 

matrices. Figure 5 displays day-to-day variation in the estimated demand, which follow regular 

AM higher peak trends after 8 AM and lower values very early morning at 6 AM. 

The scatter plots in Figure 6 shows the simulated and observed traffic flows after the OD 

estimation applications and we can observe very high R2 values for all hourly demands (lowest 

R2 is 0.98 while highest is almost close to perfection at 0.99 from 7–8 AM – see Figure 6 (a) – 

(d)). Figure 6 showcases that most GEH values that we have obtained are less than 5, which 

confirms the validity and accuracy of the model.  

The estimated OD demand matrices were archived and used for the demand prediction model. 

As mentioned earlier, there are 1,262 OD pairs with various demand profiles in the study 

network. The OD flows vary from few trips between local OD pairs to hundreds of trips 

between two main corridor ends. Therefore, it is necessary to consider an ML model for each 

OD pair trained on previous historical OD pairs. We consider the corresponding OD flow 

values from the 5 previous working days. There is a tradeoff between the size of the database 

and the accuracy of the prediction. More historical data may be useful, but it increases the 

computational time, especially for real-time forecasting.  

 

  
 

Figure 5. Day-to-day total estimated demand flow profiles: (a) in a 3D, (b) in 2D plotting. 
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Figure 6. Simulated versus observed traffic flows after the rolling horizon OD estimation (a) 

6:00-7:00 am, (b)7:00-8:00 am, (c) 8:00-9:00 am and (d) 9:00-10:00 am 

 
Figure 7. Absolute flow errors versus observed flows. 

The features we consider for our models are: three time-lagged demand data (𝑥𝑥𝑖𝑖𝑡𝑡−2, 𝑥𝑥𝑖𝑖𝑡𝑡−1, 𝑥𝑥𝑖𝑖𝑡𝑡), 

the time interval of the prediction (t) and the flow direction (inbound and outbound). We adopt 

DT, SVR, and the traditional ARMA models for predicting the OD flows for the next 15, 30, 

45 and 60 min. The experiments were conducted using the Scikit tool and Stat Python libraries 

(Pedregosa et al., 2011). The results of each approach are presented in Table 2 and evaluated 

against the total error and MAE. 
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Firstly, as a baseline approach, we assume that we do not have any model to predict the demand 

and that previous historical demand will be the same even if disruptions may appear (this is a 

baseline assumption for comparison purposes). Therefore, the latest demand flow is considered 

for the next time intervals. As can be seen, by extending the prediction time intervals (from 15 

min to 60 min), the prediction error grows quickly (from 1.37 to 1.85). 

 

Table 2. Predicted demand using different predictors. 

Predictor 

Prediction window 
15 min 30 min 45 min 60 min 
Total 
error MAE Total 

error MAE Total 
error MAE Total 

error MAE 

Baseline          
  1283 1.37 2785 1.49 4519 1.61 6953 1.85 
DT          
 Max=2 762 0.81 2785 0.79 2278 0.81 3077 0.82 
 Max=5 606 0.65 1152 0.61 1743 0.62 2533 0.68 
 unconstraint 660 0.70 1216 0.65 1816 0.65 2645 0.70 
SVR          
 RBF (C=0.1) 1381 1.47 2613 1.40 3738 1.33 4797 1.28 
 Sigmoid (C=0.1) 1592 1.71 3017 1.67 4519 1.54 5545 1.48 
 Linear (C=0.1) 832 0.89 1676 0.89 2462 0.87 3327 0.89 
 Linear (C=1.0) 852 0.91 1693 0.90 2490 0.89 3376 0.90 
ARMA          
 (1,0,0) 869 0.93 1652 0.88 2459 0.87 3377 0.90 
 (2,0,0) 883 0.94 1678 0.90 2517 0.89 3509 0.93 
 (0,0,1) 1009 1.08 1876 1.00 2762 0.98 3864 1.03 
XGBoost          
 Tree 556 0.59 1033 0.55 1579 0.56 2237 0.60 
 Linear 1141 1.21 2336 1.24 3471 1.23 4640 1.24 
 

Secondly, we investigate the performance of the decision tree model. The maximum depth of 

the decision tree is one of the most important parameters that affect the prediction accuracy. 

Therefore, we chose three different values for this parameter to investigate the sensitivity of 

the model (maximum depth of 2, 5 or unconstrained). When the constraint is too strict (e.g., 

max depth=2), the predictor is too simplistic to predict traffic demand accurately. In contrast, 

with no constraint (no max depth), the prediction error increases showing the predictor 

overfitting the training data. This result demonstrates that the optimum depth of the tree is a 

critical parameter, which can be optimized.  

Thirdly, the performance of the SVR model is explored by using different kernel functions. We 

tried several combinations (the radial basis function (RBF), the sigmoid function, and the linear 

function) and compared the results through a cross-validation approach. As can be seen, the 

first two models fail to predict the demand flows successfully, and the error is higher than the 
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baseline (e.g. 1.47 and 1.71 to 1.37). The best result for SVR prediction was obtained when 

using the Linear kernel (with the critical parameter of C=0.1) for a 45min prediction in the 

future. This seems to perform similarly to predictions for the next 15 or 60min time-interval. 

However, overall, the accuracy results for SVR are significantly worse than those of DT 

prediction. 

Fourthly, we present the ARMA model results, for which we need to determine the p and q 

parameters. Defining various OD pair parameters requires a vast amount of modelling effort. 

We consider the specifications of a unique model for all OD demands and estimate the factors 

of each OD pair. To identify p and q, we test various combinations of these parameters on all 

OD demand series ((1,0,0,), (2,0,0) and (0,0,1)). Overall, the performance of the traditional AR 

and MA models show a medium level of accuracy compared to the others and the MAE errors 

are similar to those of SVR only for a 45min prediction. 

Lastly, we used the powerful XGBoost predictor and compared its performance based on two 

boosters; tree and linear. Unlike the linear model, the tree-based model can model non-linear 

relations and shows high performance for the predictor from all our data-driven modelling 

approaches. The estimated MAEs for the tree-based GXBoost model in different prediction 

time windows range from 0.55 to 0.60. We conclude that the GXBoost method with tree 

booster is outperforming all other models and represent our final choice for conducting the rest 

of the experiments presented in this paper.  

3.3 Incident impact analysis 

For evaluating the potential of our proposed framework, we consider an actual reported 

incident along Victoria Rd with characteristics showcased in Table 3 (as received from the 

real-life incident stream in the TMC). The incident took place at 7:58 AM on the 11th of October 

2017 and affected both directions. It also took place on the main road and according to the 

reported data, it impacted all lanes in both directions. No further details about how the accident 

affected the area exist in the database. Therefore, different interpretations of affected lanes can 

be considered. For example, the accident may have physically blocked all the lanes or caused 

some speed reduction for crossing vehicles. Since it is unlikely that all lanes are entirely 

blocked for half an hour in two directions, we assume only two lanes were blocked, and 

vehicles could slowly cross the accident area with some lane-changing near the accident. 

Therefore, the corresponding affected link IDs from the traffic simulation are determined based 

on the accident location. Then, an incident scenario containing the number of blocked lanes, 
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start time and incident duration is generated. Next, the Decision-Tree demand prediction 

module is triggered to forecast the travel demand starting from 8:00 AM for the next hour. 

Subsequently, the simulation model is executed with consideration of the developed incident 

scenario.  

 

Table 3. CMCS incident data example 

(X, Y) (9684462, 4425168)  
Date 11/10/2017 
Start Time Plain 7:58:19 AM 
End Time Plain 8:23:00 AM 
Incident Description Accident: Accident 

Location Description 
VICTORIA RD PARK AVE 
DRUMMOYNE 2047 CANADA 
BAY (LGA) NSW 

Direction BOTH DIRECTIONS 
Affected Lanes ALL LANES 
Operator ---- 
ICEMS Suburb DRUMMOYNE 
rowid A6C4B8F8-5617-4E12-B170-97323 

 

We executed the simulation based on the above assumption and the simulated speeds are 

plotted for two different location points along the corridor: point A taken near the accident 

location and point B towards west, at 1,500 meters away from the accident (Fig 8 (a)). We 

explore the impact of the incident duration by analysing the total travel time in the network and 

the extra delay is caused by comparing it to what would have happened in the network if no 

accident would have been reported. Figure 8 (b) shows the severe drop in the speed near the 

incident location (Point A) and, consequently, lags further at Point B. Next, we evaluated the 

simulated travel time obtained for the eastbound direction along the entire Victoria Rd corridor 

against real-life recorded Google travel time in Figure 8 (c). We calculated experienced travel 

time for the entire corridor. The experienced simulated travel time (STT) and Google travel 

time (GTT) calculation accounts for the time required for traversing upstream links (in a 

duration labelled ∆𝑡𝑡), and consider the downstream link l travel time (𝑡𝑡𝑡𝑡𝑙𝑙 ) based on the time 

of entering that downstream link (𝑡𝑡𝑡𝑡𝑙𝑙 (𝜏𝜏 + ∆𝑡𝑡)). Thus, we used Eq.14 to compute the (S/GTT) 

at time 𝜏𝜏 (𝜏𝜏 ∈ (6:00 AM-10:00 AM)): 

 

S/GTT (τ)  =  � ttl (τ + ∆t)
l∈L

 (14) 
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where L is the set of all links in the eastbound direction. Figure 8 (c) shows that the STT 

changes pattern for a typical day is similar to the associated measured GTT (which is another 

confirmation of simulation validation and accuracy). The corridor travel time at peak hour 

8:00–9:00 AM is almost twice greater than the corridor travel time in the early morning. 

Moreover, one can observe that the reported incident at 07:58 AM induces an increase of 

almost 13 min on the eastbound direction travel time (from 31-44 min). The simulated incident 

follows very closely the delay reflected by Google Travel time, which confirms that our 

approach for prediction using data-driven and traffic simulation modelling is capable of 

accurately providing good insights on the impact of future incidents on the overall traffic 

condition in a network.  
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Figure 8. (a) Accident location (b) Speed profiles for Point A and B. (c) Eastbound journey 

times with and without the incident. 

4. Conclusion 

Managing an incident situation effectively is one of the critical challenges that TMCs deal with 

daily. Methodological advances in both data-driven and computer-based simulation modelling 

provide a unique opportunity to predict traffic conditions accurately in real-time. This paper 

presents a framework for incident management by using integrated data-driven and traffic 

simulation models. We first introduced a generic demand estimation and prediction model that 

provides the essential input for the traffic simulation model to forecast the traffic features under 

incident conditions.  

The proposed approach initially keeps the traffic model updated based on the most recent 

observed link traffic count and estimates OD flows through a rolling horizon bi-level 

optimisation. Then the updated flows are used for demand prediction for the next time interval 

once an incident happens. We showcased that the XGBoost method outperformed the baseline 

and the other tested models (SVR, DTs and ARMA) in prediction accuracy. Finally, we 

investigated an incident’s impact by using the proposed framework outputting the predicted 

travel time/delay along the affected corridor.  

Several limitations of this study will be addressed in our future work: 

• We assumed that travellers respond to bad traffic conditions by changing routes in peak 

hours. However, for critical traffic disruptions, we should consider mode shifting and 

trip cancellation in short-term traffic forecasting.  

• While the high efficiency of some well-established machine learning methods was 

presented in this study, recent advances in graph-based machine learning and deep 
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learning models could help to capture the spatial-temporal correlations of road 

networks in future studies. 

• Although the simulation network provides the commuters with some re-routing options, 

the selected area had limited major parallel routes to consider strategic re-route choices 

of travellers under severe incident conditions. We plan to expand our simulation 

modelling to larger sub-network areas. 

• For the real-time incident impact application, incident time duration should be predicted 

based on the incident features. Another AI engine will be added to the incident 

management platform to provide an incident duration estimation for the traffic 

simulation when an incident occurs. This estimation can be updated with more incident 

data.  

• In order for our proposed modelling framework to be used in real-life traffic 

management operations, it requires exact details of the incident location (inside the 

intersection or not and beginning and ending of road link), the length of the affected 

incident area and the exact number of blocked lanes. This can be challenging for 

operational centres to provide in real-time. 

• Increasing the number of incident cases could improve our understanding of the 

approach. However, the quality of the incident data would need to be managed.  

• The traffic model includes private cars and buses, however, other types of traffic modes 

such as taxi, freight and active modes can be exclusively considered. This would help 

us replicate the simulated congestion more accurately.  
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