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Abstract This paper presents a continuous time simulation method for stochas-
tic switching systems while applying the event-based control. The main system
we have used is a multi-state integrator having a switching behavior, being de-
scribed by a continuous-time Markov Chain. The objective of the event-based
control method is to maintain the continuous system state variable between
extreme limits. Control stopping limits have also been taken into considera-
tion. Finally we present the results we have obtained in order to minimize the
quadratic energy cost while applying event-based control.

Keywords stochastic switching systems · event-based control

1 Introduction

Lately, stochastic switching systems have been used as a special modeling
method for dynamical systems, due to their both continuous-time and dis-
crete switching behavior. These stochastic switching systems or jump systems
have been widely used in transportation systems [1] - [2], automated highway
systems [3], communication networks [4], robotics [5], automotive systems [6]
and biological systems [7]. The switching between the states is represented by
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continuous-time Markov chains taking values in a finite state space; we can
model the stochastic switching systems by using differential equations [8]:

ẋ(t) = fσ(t)(t, x(t), u(t)), t ≥ 0 (1)

where σ : [0,∞) → {1, 2, .., N} is the switching signal (a piecewise con-
stant function with a countable number of discontinuities), x(t) ∈ ℜn is the
continuous component of the state taking real values, and u(t) ∈ ℜn is the
control command applied over the system. The switching signal σ completes
the role of changing the dynamic of the system at each time instant t.

Despite their modeling flexibility, the stochastic switching systems are more
challenging: analytical solutions are difficult to obtain and few algorithms for
numerical simulation exist. Numerical simulation is a powerful analysis tech-
nique but the simulation method must be carefully chosen in order to obtain
accurate results. For the stochastic switching systems the numerical simulation
has to take into consideration both the continuous state aspect of the system
as well as the discrete one. Different approaches have considered either the
time discretisation which leads to high computing times if a good precision is
desired, or applying restrictions to the continuous variables. We have to state
that the continuous time evolution of the system has to be sampled in order to
obtain precise results. But this procedure can introduce additional transitions
at each step which will burden the simulation of the system. Some simulation
techniques have also been developed for manufacturing systems [9], chemical
systems [10], genetic networks [12], biochemical systems [13]; as well, numeri-
cal algorithms for the reachability analysis of stochastic hybrid systems have
been provided in [11].

A numerical approach for the optimal stopping control problem of a class
of deterministic Markov process with jumps has been presented in ([28], [26])
where a quantization approximation method is used; the quantization method
has been recently used in the numerical probability of optimal stochastic con-
trol with applications in finance ([29], [30]) and consists in approximating the
Markov chain by a quantized process. Although it’s a flexible method based on
the discretization of the process at certain steps with nice convergence proper-
ties, the Markov property is not maintained by the quantization algorithm and
the quantized process is generally not markovian. Monte Carlo simulations or
linear programming techniques would also seem appropriate to be used but
they require assumptions related to the generator of the process which is gen-
erally not fulfilled by a Continuous-time Markov chains with jumps.

Our objective is to propose a continuous-time simulation algorithm of a
class of stochastic switching systems which takes into consideration the random
events that may change the evolution of the system as well as the random
transitions between states at uncontrolled time intervals in the simulation. This
algorithm would be applied in the scope of minimizing the energy consumed
when applying control and offering appropriate performability results. The
starting point of our work is an efficient simulation algorithm implemented
for the evaluation of the performance level of production lines [14]; it has
also been applied for the continuous-time simulation of the packet traffic in
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communication networks by [15]. We have therefore derived our simulation
algorithm for the continuous-time simulation of a stochastic switching system,
when applying event-based control.

We consider the event-based control as an appropriate control method for
the random switching system that we use. Applying the control only when is
needed and until certain conditions are met, gives the opportunity of simpli-
fying the sensor system which equip the processus (only a detection threshold
is needed instead of a continuous sampling). In [19] it has been proved that
for certain types of systems the event-based control command allows to reduce
the total energy that the system consumes by comparison to the control com-
mand based on periodical sampling (although a general formula hasn’t been
provided yet).

This event-based control method of actuating a system only when certain
events appear has become an attractive approach to solve control problems
in health care, transportation networks, process industry [16], satellite control
[17], or biological systems [18]. Unfortunately there is little theory on the
design of an event-based controller [19], [20], [21] and often the problem can
be treated as a Markov decision process.

The system model that we use will be provided in the next section, fol-
lowed by the continuous-time simulation algorithm in Section 3 when event-
based control is applied. The main steps are discussed and intermediate results
presented. A study case will be also described in Section 4.

2 Base Model

The main model we consider for our study is a particular type of stochastic
switching system with piecewise constant variation rates of the continuous-
time variable. We call this system a switching integrator with both continuous
and discrete behavior for which the event-based control will be applied.

2.1 Uncontrolled Switching Integrator

We can describe the uncontrolled stochastic switching integrator by using the
following differential equations:

{

ẋ(t) = rZ(t)

x(0) = x0
(2)

where x(t) is the state variable, x0 ∈ ℜ is the initial state of the sys-
tem, Z(t) denotes the continuous Markov chain associated to the system and
taking values in the finite state space S = {1, 2, .., N}, and rZ(t) represents
the constant variation rate of the continuous variable x(t) so that ri > 0,
∀i ∈ {1, ..,M}, and rj < 0, ∀j ∈ {M + 1, .., N}. The continuous-time Markov
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chain is represented by the following transition rate matrix Q :

Q =









−
∑

j 6=1 λ1,j λ1,2 .. λ1,N

λ21 −
∑

j 6=2 λ2,j .. λ2,N

.. .. .. ..
λN,1 λN,2 .. −

∑

j 6=N λN,j









where λi,j is the transition rate between the state i and j ; also the transition
probability between i and j is pi,j = λi,j/

∑

j 6=i λi,j .
A graphical representation for a two-state switching integrator with associ-

ated state rates (r1 > 0, r2 < 0), can be seen in Fig. 1. Following the notations
used in [24], we denote by σ1 the event by which the system switches from
state 1 to state 2 after a random time depending on the transition rate λ,
and σ2 the event by which the system switches from state 2 to state 1 after a
random time depending on the transition rate µ.

Fig. 1 Hybrid stochastic representation for the uncontrolled two-state switching integrator.

For the above system, when certain conditions are met, a particular type
of control is considered, which is the event-based control.

2.2 Event-based Controlled Switching Integrator

Event-based control is often seen as a natural approach to many switching
systems as it reacts quickly to disturbances, giving good performance. In [19],
Åström showed for some examples that the event-based control can deal with
multi-rate, asynchronism and latency which give great difficulties for classical
sampled data systems. Few analytical results on the event-based control have
been published. Recently, a similar problem has been presented by [26] and
[27] based on numerical methods. Our objective is to propose a simulator for
discrete event jump systems which can be used as a benchmark and refer-
ence for different analytical and numerical stochastic methods. We adopt an
event-based controller which we believe it appropriately explores the command
objectives for the considered stochastic jump systems.

The main objective is to maintain the system state variable between ex-
treme boundaries: x(t) ∈ [Xmin, Xmax] while using a minimal energy. In order
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to define the main objective for energy minimisation, we define the following
quadratic cost criterion which will be discussed at the end of this section:

J = lim
T→∞

(

1

T

∫ T

0

[q · x2(t) + r · u2(t)]dt

)

, q ≥ 0, r > 0 (3)

Every time one of the limits has been reached, control will be applied until
x(t) reaches one of the optimal levelsXH , orXL. Fig. 2 represents some sample
paths of the switching integrator, with or without event-based control, which
correspond to the following description of the system evolution:

– no control is applied if:
– the state variable x(t) is in the no control area: [XL, XH ] or
– the state variable is in the upper control interval (XH , Xmax) and no

control was needed before the current time t or
– the state variable is in the lower control interval (Xmin, XL) and no

control was needed before the current time t ;
– high control is applied if the maximal limit has been reached (x(t) = Xmax)

or if the state vector is still in the upper control interval although high
control has been applied before t ; this means we have to continue applying
the control until x(t) = XH ;

– low control is applied if the minimal limit has been reached (x(t) = Xmin)
or if the state vector is still in the lower control interval although low
control has been applied before t ; the control has to be reapplied until
x(t) = XL.

Fig. 2 Some sample paths of the event-based controlled switching integrator.

With the above specifications the differential equation for the controlled
system [2] becomes:

{

ẋ(t) = rZ(t) + uZ(t)(x(t))
x(0) = x0

(4)



6 Simona Mihăiţă, Stéphane Mocanu

where

uZ(t)(x(t)) =







0 ,if C1

−QHl ,if C2, ∀l ∈ {1, 2..N ]
+QLm ,if C3, ∀m ∈ {1, 2..N ]







































C1 : (x(t) ∈ [XL, XH ])∨
(x(t) ∈ (XH , Xmax) ∧ u(Z(t−∆t)) = 0)∨
(x(t) ∈ (Xmin, XL) ∧ u(Z(t−∆t)) = 0)

C2 : (state = l) ∧ [(x(t) = Xmax)∨
(x(t) ∈ (XH , Xmax) ∧ u(Z(t−∆t)) 6= 0)]

C3 : (state = m) ∧ [(x(t) = Xmin)∨
(x(t) ∈ (Xmin, XL) ∧ u(Z(t−∆t)) 6= 0)]

(5)

The QHl notation denotes the high control applied when the Markov chain
is in state l, QLm is the low control applied when being in state m, while ∆t
represents an infinitesimal time interval. It is important to specify that for the
control to take place, QHl and QLm will be chosen such that:

{

rl −QHl < 0 , ∀QHl > 0, l ∈ {1, ..N}
rm +QLm > 0 , ∀QLm > 0, m ∈ {1, ..N}

In the view of the above discussion, the system described by [4] can also
be modeled through the simple automaton of Figure 3. As well, in order to
specify the way in which transitions from one state to another occur in [4],
we need to define the events that can take place. We will denote by “uncon-
trollable Markov chain events” the events that are independent of the extreme
boundaries or stopping control limits and cause the system to switch between
states having the same control type (no control, high or low control); these
events are represented by {σ1, σ2}. We denote by “event-based control events”
the events that can change the type of control being applied to the system.
We use the notation x ↑ Xmax and x ↓ Xmin to indicate an event that causes
x(t) to reach the maximal or minimal limit respectively; x ↓ XH and x ↑ XL

when high or low control needs to be stopped. These transitions have also been
discontinuously marked in Figure 3.

2.3 Quadratic minimisation criterion

The behavior of the controlled system described for example by Fig. 2 can be
seen as an alternance between two renewal processus having two renewal points
XH and XL (periodically the system will start either in XH or in XL). The
analytical analysis of such a system is difficult but this perspective allows us
to define the quadratic minimisation criterion: the global energy minimisation
of the system resides on the energy minimisation on each renewal period (a
renewal period it is defined for example by the free evolution of the system
between XH and Xmax, followed by the event-based control evolution between
Xmax and XH ; all the possible combinations - four in the above case - need
to be taken into consideration).
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Fig. 3 Hybrid stochastic representation for a two-state switching integrator with event-
based control.

As the renewal period is unknown due to a lack of analytical treatment
of the problem (numerical approaches have been discussed in Section 1), we
choose by the simulation method to minimise the mean statistical energy on
time unit which can be expressed by the formula 3. On the other hand this
formula can be computed directly during the simulation. The analytical treat-
ment of the optimal control command is difficult even for a small system.

The quadratic energy criterion we have provided can be seen as a dynamic
programming problem where the cost is evaluated over time due to the fact
that the present choice of the control command uZ(t) influences the future
system evolution and the switching between the states (which is an energy
consuming act as well). When analyzing the quadratic cost in 3, u2(t) repre-
sents the energy consumed to apply the control while the x2(t) member can be
associated to the second order performability moment (M2) which, in the per-
formability analysis, it represents the variance of the state variable. Analytical
studies for the evaluation of the system performance like the one presented in
[22]-[23] compute the first performability moment (M1) which actually repre-
sents the mean accumulated transition rate (or the mean accumulated reward)
during the simulation; the second order moment is given by recursive differen-
tial equations using the first order moment. Our goal here is not to present the
analytical method for computing these moments but to simply calculate them
during the simulation in order to appreciate the system performability and the
efficiency of our simulation method; comparisons between the simulated and
the theoretical moments will be given in the following section.

Due to the stochastic aspect of the problem, the infinite horizon and the
fact that the evolution rates (ri) have not the same sign, a direct dynamical
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programming approach of solving a Hamilton-Jacobi-Bellman equation for our
system is difficult. A solution based on an approximation model and a non-
linear optimisation have been proposed in [25]. On the other hand, in this
article our goal is to solve and analyse the model using the continuous-time
simulation adapted to the discrete-events that change the evolution of the
system.

3 Continuous-time Simulation

The simulation of the stochastic switching systems is an important technique
to understand and analyze the system behavior. Compared to the discrete
simulations, the continuous-time simulation helps reducing the execution time
and memory space. As stated in the Introduction, we have adapted the sim-
ulation algorithm for continuous tandem production lines provided by [14] to
the control conditions described in the previous section.

In the following we present the adapted event-based control algorithm for
the multi-state system integrator [2]. Due to the random occurrence of the
system transitions between the states, statistics have been also computed at
certain regular times. A statistics period is chosen upon which the statistics
on the state variable and on the time moment will be computed. This method
will be helpful in the validation step afterwards.

Let us define the main parameters that we are going to use for the simu-
lation. Let t denote the time and Z(t) the system state at time t, where:

Z(t) =







iNC ,for x(t) ∈ [XL, XH ] and uZ(t) = 0, i ∈ {1, .., N}
iHC ,for x(t) ∈ (XH , Xmax] and uZ(t) = −QHi

iLC ,for x(t) ∈ [Xmin, XL) and uZ(t) = +QLi

(6)

LetN be the number of states of the system,X be the continuous state vari-
able, Xst the statistics on the state variable and ri > 0, rj < 0 the positive and
respectively the negative variation rates associated to the states i ∈ {1, ..,M},
j ∈ {M + 1, .., N}. When the control is needed, corresponding control mea-
sures will be applied so that: rk − QHk < 0 respectively rk + QLk > 0,
∀k ∈ {1, .., N}. We shall also define the set of all possible events for a state s:
E = {σs, {NHss}, {HNss}, {NLss}, {LNss}}, where each of these events are
defined in Table 1.

Symbol Events represented
{σs} Exit from state s to another state having the same control type
{NHss} Switch from no control state s to high control state s

{HNss} Switch from high control state s to no control state s

{NLss} Switch from no control state s to low control state s

{LNss} Switch from low control state s to no control state s

Table 1 List of all possible events
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We will also consider λs to be the transition rate from the source state
s ∈ {1, .., N} to the next state determined by the next-event which has been
chosen, Tf to be the simulation length and State the discrete state history
during the simulation taking values into the following set {iNC, iHC, iLC}, i ∈
{1, 2, .., N}. The random behavior of the system gives different results for each
simulation. Therefore many simulations are needed on longer simulation time
intervals, using the same data set; let Nr be the number of simulations that
will be applied over one data set. We also have to state the fact that the {σs}
events are characteristic only to the Markov chain with random switching
between the states, while {NHss}, {HNss}, {NLss}, {LNss} are triggered
only by the changes of the state variable x(t) (when the extreme boundaries
or the control stopping points are reached).

For our system we have also taken into consideration the fact that each
event is associated with a clock representing the time of the next occur-
rence of that event. When the clock runs down to zero, the event takes
place bringing changes in the system state, according to the above descrip-
tion. The set of all next occurring times associated to the above events is
T = {Tσs

, TNHss
, THNss

, TNLs
, TLNs

}. Tσs
are specific to the Markov chain

transitions and denote the exit times from a source state s ; they are random
samples of the exponential distribution of λs. Each time the system changes
the type of control, the Tσs

will be updated so that Tσs
= Tσs

− Tsw, where
Tsw ∈ {TNHss

, THNss
, TNLss

, TLNss
}.

TNHss
is the notation for the next occurrence time to pass from no control

to high control in state s ; it is the time to reach the maximal limitXmax in state
s and it can be written as (Xmax−X(t))/|ri|. THNss

stands for the time to pass
from high control to no control and can be written as (X(t)−XH)/|rs−QHs|;
it is actually the time to reach XH and stop the high control. TNLss

denotes
the time it takes to switch from no control to low control; it can be written as
(X(t)−Xmin)/|rs| and represents the time to reach the minimal limit Xmin.
Finally, TLNss

represents the time to reach XL and stop the low control; it
can be written as: (XL −X(t))/|rs +QLs|.

The main steps of the simulation are presented in the following:

1. INITIALIZE SYSTEM PARAMETERS
The following parameters will be initialized: N , Tf , Nr, X(1), Xst(1), ri > 0,
rj < 0, i ∈ {1, ..M}, j ∈ {M + 1, ..N}, the statistics period dst, the con-
trol parameters QHl > 0, QLm > 0, l,m ∈ {1, ..N}, the initial history
state State(1), the initial event time instant Tsim; the statistics time in-
stant Tst and its initial index Lst = 1; the low or high energy consumed
in order to apply the event-based control: EnQH = 0, EnQL = 0. We will
also initialise the next event occurrence times starting state s = State(1) :
T = {Tσs

, TNHss
, THNss

, TNLs
, TLNs

}.

2. CHOOSE NEXT EVENT
From all the above event possibilities for one state s = State(j), the next event
that will be applied is the one with the smallest associated occurrence time.
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While Tsim(j) ≤ Tf // choose the next possible event
∆t = min{Tσs

, TNHss
, THNss

, TNLss
, TLNss

}
nextev = next possible event corresponding to∆t
nextev ∈ {{σs}, {NHss}, {HNss}, {NLss}, {LNss}}

(7)

3. ANALYZE NEXT EVENT
Depending on the current state of the system, we analyze the next possible
event of the system which has been chosen, and its associated occurrence
time. When nextev = {σs} the system switches from the current state s to a
destination state d having the same control type. The state d will be randomly
chosen by comparing the transition probabilities between s an the other states
of the system (ps,i, {s, i ∈ Z(t)}) having the same control type (pi,i = 0). The
next occurrence time Tσs

will become a sample of the exponential distribution
of the sojourn time in the next state d. On the other hand, when we change
the control type for the current state s, then Tσs

= Tσs
−∆t.

case nextev = {σs}
X(j) ∈ [XL, XH ]

State(j) = mNC,m ∈ {1, .., N} //No control

State(j + 1) = dNC // Random choice upon pmNC,nNC , n ∈ {1, ..N}
Compute Tσd

, TNHdd
, TNLdd

X(j) ∈ (XH ,Xmax)
State(j) = mNC,m ∈ {1, .., N} //No control

State(j + 1) = dNC // Random choice upon pmNC,nNC , n ∈ {1, ..N}
Compute Tσd

, TNHdd
, TNLdd

State(j) = mHC,m ∈ {1, .., N} //continue the High control

State(j + 1) = dHC // Random choice upon pmNC,nNC , n ∈ {1, ..N}
Compute Tσd

, THNdd

X(j) = Xmax // apply the High control

State(j) = mHC,m ∈ {1, .., N}
State(j + 1) = dHC // Random choice upon pmNC,nNC , n ∈ {1, ..N}
Compute Tσd

, THNdd

X(j) ∈ (Xmin,XL)
State(j) = mNC,m ∈ {1, .., N} //No control

State(j + 1) = dNC // Random choice upon pmNC,nNC , n ∈ {1, ..N}
Compute Tσd

, TNHdd
, TNLdd

State(j) = mLC,m ∈ {1, ..,N} // continue the Low control

State(j + 1) = dLC // Random choice upon pmNC,nNC , n ∈ {1, ..N}
Compute Tσd

, TLNdd

X(j) = Xmin // apply the Low control

State(j) = mLC,m ∈ {1, ..,N}
State(j + 1) = dLC // Random choice upon pmNC,nNC , n ∈ {1, ..N}
Compute Tσd

, TLNdd

case nextev = {NHss} // switch to High control

X(j) ∈ (Xmin,Xmax)
State(j) = mNC,m ∈ {1, .., N}

State(j + 1) = mHC

Update Tσs = Tσs −∆t, Compute TNHss
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case nextev = {NLss} // switch to Low control

X(j) ∈ (Xmin,Xmax)
State(j) = mNC,m ∈ {1, ..,N}

State(j + 1) = mLC

Update Tσs = Tσs −∆t, Compute TNLss

case nextev = {HNss} // stop the High control

X(j) ∈ (XH , Xmax]
State(j) = mHC,m ∈ {1, ..,N}

State(j + 1) = mNC

Update Tσs = Tσs −∆t, Compute THNss

case nextev = {LNss} // stop the Low control

X(j) ∈ [Xmin,XL)
State(j) = mLC,m ∈ {1, .., N}

State(j + 1) = mNC

Update Tσs = Tσs −∆t, Compute TLNss

4. UPDATE THE SYSTEM
Once the next event has been chosen and analyzed, the next simulation time
and the next state variable will be updated according to the event which has
been chosen. rs is the variation rate associated to the current state s which
can take different values: {rm, (rm −QHm), (rm +QLm)},m ∈ {1, .., N}; (for
example if the high control is applied in state s then the variation rate becomes
rs −QHs). The consumed energies are computed when we apply the high or
low control in state s.

Tsim(j + 1) = Tsim(j) +∆t; //advance the simulation time
X(j + 1) = X(j) + rs ·∆t; //update the state variable
EnQH = EnQH +QH2

s ·∆t; //compute the consumed energies
EnQL = EnQL +QL2

s ·∆t;

5. COMPUTING STATISTICS AT REGULAR TIMES
Random switching in the behavior of the system gives random continuous
state variables which can badly influence the accuracy of the results. A sam-
pling method is needed on the final state variable X at regular time intervals,
given by the statistics period we have considered dst, and not at each event
occurrence.
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If two consecutive events take place during the same statistic period, no
action will be taken. An example of applying the statistics with dst = 1 is
shown in Figure 4 and the steps listed below.

d = floor[(Tsim(j + 1)− Tst(Lst))/dst];
if d ≥ 1 //compute consecutive statistics

k = 1
while k ≤ d

Tst(Lst + k) = Tst(Lst) + k · dst;
Xst(Lst + k) = X(j) + rs ∗ (Tst(Lst + k)− Tsim(j));
k = k + 1;

end while
Lst = Lst + k − 1;

else //no action will be taken ;
end if ;
j = j + 1; //advance the simulation

end while //see [7]

An important aspect of applying the sampling can be noticed when com-
puting the performability moments (M1 and M2) of the considered system.
Due to the state rates associated to the Markov chain, one would use the
sampled state variable in the study of the transient performance analysis of
fault-tolerant systems. When comparing the first and second order moments
of cumulative performability we observe that the sampling improves the data
accuracy. This is rather obvious as the random switching between the states
due to uncontrollable Markov events causes a non uniform evolution of the
state variable x(t) (events can occur either consecutively after small event
times or rather at long time intervals if the sojourn time spent in one state
is unexpectedly long). The sampling would ensure homogeneity and improve
the quality of the data.

In Figure 5, graphs in a) and b) show the evolution of the first and respec-
tively second order moment of performability without applying the sampling
procedure (both simulation and analytical results are represented on the same
plot area) for a two state system having the following parameters: r1 = 3,
r2 = −2, λ12 = 0.4, λ21 = 0.6, Xmax = 10, Xmin = 0, XH = 8, XL = 4,
Tf = 1000. On the other hand graphs in c) and d) show the two performa-
bility moments when the sampling procedure is applied over the simulation
(with dst = 1). By comparing for example a) and c) it is obvious to see that
the sampling method improves data accuracy and provides better results.

The numerical comparison between the two types of moments with or with-
out sampling is also given in Table 2. The Error M1 represents the error be-
tween the simulation and analytical results for the first performability moment.
It is obvious to see the high difference and bad accuracy when no sampling is
applied over the state vector of the system due to the random events that can
change the system evolution.
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Fig. 5 a) First moment of performability (M1) - without sampling b) Second moment
of performability (M2) - without sampling c) First moment of performability (M1) - with
sampling d) Second moment of performability (M2) - with sampling.

F igure5 Type ErrorM1[%] ErrorM2[%]
a) and b) No sampling 51.64 66.2
c) and d) With sampling 0.09 0.16

Table 2 Difference between performability moments for a two state switching system

6. SIMULATION END
At the end of the simulation we compute the output measures: the mean
state variable (Xm), the variance of the statistics state variable Xst (VXs

),
the energy consumed in order to apply the event-based control during the
simulation length (Entot).

Xm = mean(X);

VXst
=
∑Tf

i=1 Xst(i)
2/Tf ;

Entot = (EnQH + EnQL)/Tf .

The above simulation algorithm for a two-state switching integrator can be
easily followed using the graphical representation provided in Figure 3. On the
other hand, Figure 6 shows the difference between the random behavior of a
two state system, with and without the event-based control, for the following
data entry: Tf = 300, r1 = 1, r2 = −2, λ = 0.4, µ = 0.6, QH1 = QH2 =
1.5, QL1 = QL2 = 2.5, [Xmin, Xmax] = [−10, 10] and [XL, XH ] = [−5, 5].
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Fig. 6 (a) Uncontrolled Switching Integrator (b) Event-based controlled Switching Inte-
grator over [Xmin,Xmax] = [10,−10] with [XL,XH ] = [5,−5].

The random behavior of the system gives different results each time the
simulation runs. Therefore many replications using the same data set are
needed but on a longer simulation time. Means of the output measures will be
computed over the replications. This will allow a proper analysis and result
interpretation which will be given in Section 4.

4 Results

This section provides a study case example for the simulation method pre-
sented above. We consider a two-state switching integrator, for which the
event-based control algorithm can provide a minimal consumed energy for
applying the control. The simulations have been made in Matlab 7.9.0.529 on
a four quad core machine, having 3GHz and 4GB RAM. We choose the initial
parameters which define the system: the simulation length Tf = 5000(time
units), the number of replications Nr = 50.000, the variation rates associated
to the states (r1 = 5, r2 = −5), the transition rates from one state to another
(λ = 0.4, µ = 0.6) and the control area: Xmin = −100, Xmax = 100.

We variate the control parameters QH1, QH2, QL1, QL2 so that they re-
spect the conditions of the event-based control. Taking into consideration the
fact that the system has many parameters which can vary, we consider for
simplicity that QH1 = QH2 ∈ {5.1, 5.2, ..30}, QL1 = QL2 ∈ {5.1, 5.2, ..30}).
As well, different variations for the stopping control limits have been done
(XH ∈ {0, 10, 20, 30}, XL ∈ {0,−10,−20,−30}). Figure 7 is a graphical rep-
resentation of the total energy cost [3] obtained by applying the event-based
control over the considered system. A minimal energy value is obtained, which
corresponds to the control parameter QH1 = 14.9 and the stopping control
limit XH = 0. A similar energy evolution is obtained for switching integrators
having different variation rates and different stopping control limits.

Another study case that we present is that of a larger system, having four
states, and different transition rates associated to these states. Our objective is
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Fig. 7 Energy variation for the considered switching integrator.

to validate the method for larger systems in terms of simulating time, minimal
energy obtained and optimal control parameters (although the system has
only four states, varying all the above parameters can considerably increase
the computation time). We have considered different control measures and
different variations on the control stopping limits in order to simulate the
total sets of possible variations on the system. The data we have considered
is represented by the following: r1 = 7, r2 = −4, r3 = 5, r4 = −2, over the
control interval [Xmin, Xmax] = [0, 1] ; the control measures and the stopping
control limits have been varied over the following sets: QH1 ∈ {7.1, 7, 2...., 8},
QH2 = QH3 = QH4, QL1 ∈ {4.1, 4.2, .., 5}, QL2 = QL3 = QL4, XH ∈
{0.9, 0.8, 0.7, .., 0.3}, XL ∈ {0.1, 0.2, ...0.7}. A graphical representation of the
above variations is shown in Figure 8. The number of variations on (XH , XL)
have the following meaning: the variation 1 on (XH , XL) is represented by:
XH = 0.9, XL = 0.1, the variation 2 is : XH = 0.9, XL = 0.2, etc. As well
the number of variations on (QH , QL) is presented by the following pairs:
variation 1 by QH = 7.1, QL = 4.1, variation 2 by QH = 7.1, QL = 4.2, until
variation 100 by QH = 8, QL = 5. Although not seisable on the figure at a
first glance, the minimal energy cost was obtained for the following optimal
values: XH = 0.8, XL = 0.4, QH = 7.2, QL = 4.8.

An important observation is that the computing time for larger systems
is bigger than the one obtained for a simple two state system, and of course
influenced by the number of variations that we apply to the control parameters
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Fig. 8 Variations on the energy cost for a 4 state switching integrator.

and stopping limits. As a consequence, we also evaluate the adaptability of our
event-based control algorithm in terms of computing time, determined by three
main parameters: the simulation length(Tf ), the number of simulations (Nr)
and the number of the system states (N). More explicitly, we fix two of the
three parameters and we evaluate how the computing time evolves with the
third one. The control parameters and the stopping control limits have also
been considered to be fix. Table 3 shows the computing time (Tc) for a two-
state switching integrator over Nr = 100 simulations; the statistical period is
dst = 1. In this case, the computing time is proportional with the simulation
length as represented in Figure 9 (due to different scales, the graphics are
normalized).

For the two state integrator with fixed simulation length (Tf = 1000),
when the number of simulations grows, the computing time has a considerable
augmentation as it’s represented in Table 4. When the number of states of the
Markov chain grows, we are in a special case which is represented in Table 5,
where the length of the simulation and the number of simulations are fixed
(Tf = 1000, Nr = 1000). In this case, although the computation time is highly
related to the number of states of the Markov chain, there is no exponential
augmentation. We can easily observe the quasi-linear evolution in Figure 9,
which confirms the proper scalability of the proposed algorithm to the size of
the system, assuring that it can be properly used for larger Markov chains.
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Fig. 9 Tc over Tf , Nr et N

Tf 10 50 100 1000 5000
Tc 0.45[sec] 0.54[sec] 0.63[sec] 2.57[sec] 15.22[sec]

Table 3 Computing time Tc over the simulation length Tf .

Nr 100 1000 5000 10000 50000
Tc 2.57[sec] 22.18[sec] 1.82[min] 3.61[min] 19.4[min]

Table 4 Computing time Tc over the number of simulations Nr.

N 2 5 10 15 20 30
Tc 22.18[sec] 1.61[min] 2.7[min] 3.66[min] 4.66[min] 6.68[min]

Table 5 Computing time Tc over the number of states N .

5 Conclusions

This article presents a simulation method in continuous time for the stochastic
switching systems. Taking into consideration the random events that change
the behavior of the system, we apply the control only when is needed. The
algorithm can be easily used for stochastic switching integrators having a large
number of states and can be seen as an efficient method to obtain the minimal
energy consumed by these switching systems when applying the event-based
control. As well it can be used as a validation method for analytical results
concerning the stochastic switching systems having the event-based control.
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