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ABSTRACT: Traffic management problems are very challenging, especially in large and complex intersections
which are under reconstruction. In this paper we evaluate the impact of the traffic reconfiguration for a complex
urban intersection from Nancy France. We begin by constructing a mesoscopic simulation model using a
discrete event simulation tool, FlexSim, followed by an optimization method based on evolutionary algorithms.
The modeling goal is to eliminate traffic congestion caused by the undergoing modifications of the intersection,
and propose an appropriate fire plan, which would adapt to a future reconfiguration. Our modeling and
optimization methods which were tested in 2013 over four different configurations of the input data flow, are
now being compared to recent results, in terms of blocking and average stay-times inside the modified intersection.
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1 INTRODUCTION

With the rapid growth of urban agglomerations, some
of the most significant problems in transportation sys-
tems arise: congestion, pollution, rapidity to reach
central locations (train stations, hospitals), fluidity
during rush hours, etc. This modifications require
new infrastructure, a rigorous urban reconfiguration
and rethinking of the transportation systems, which
may imply higher costs, mainly caused by the lack
of space or other urban constraints (access facility,
position, noise). Often, studies show that an exten-
sion of the city’s infrastructure doesn’t actually solve
the congestion problem, but simply induces a bigger
demand for traveling.

These problems have lead to the development of op-
timization methods to improve mobility and safety,
and most of all, to decrease the average time spent
in traffic. Efforts have been concentrated on the
implementation of Intelligent Traffic Systems (ITS),
meant to provide the users with the latest traffic
information by using panels, radios, internet appli-
cations (Hafstein et al., 2004). As well, studies are
also concerned by the impact of the travel time feed-
back strategies: in (Wahle et al., 2000) the new en-
tering vehicles in the intersection have the possibility
of choosing the route with less passing time. Other
examples are the vacancy length feedback strategies
(the traffic control displays as each time step the dis-
tance from the last vehicle to the entrance of each
road, leading the drivers to choose the road with
longer vacant distance). Some recent simulation re-

sults and comparison of the above methods can be
found in (Chen et al., 2012).

For this wide variety of problems which appear in
transportation system, the simulation of the traffic
flow represents a flexible and powerful tool to analyze
and test different traffic scenarios. Together with the
simulation tools, a challenging aspect are the opti-
mization methods one applies in order to choose an
appropriate traffic light plan (Brockfeld et al., 2001).
As this problem is usually difficult to solve by deter-
ministic methods, we turn to bio-inspired optimiza-
tion methods, such as evolutionary algorithms, to-
gether with a new traffic simulation tool, FlexSim.
This method has been tested on a complex road in-
tersection from downtown Nancy France, containing
three main junctions, some of them connecting the
train station to the city center, which implies a high
number of buses crossing the intersection every day.
The studied intersection is a part of the new ecolog-
ical quarter Nancy Grand Cœur, which is currently
under reconfiguration. The work presented in this
paper, continues our previous studies (Mihăiţă et al.,
2014), by simulating and analyzing the impact of the
previous chosen optimal fire plan to the actual con-
figuration of the intersection.

The paper is organized as follows. In section 2 we
present the state of the art concerning different traf-
fic simulation tools, followed by the introduction of
a new simulation tool, FlexSim. Section 3 discusses
different optimization approaches in traffic control,
followed by the presentation of our evolutionary al-
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gorithm. In section 4 we present the comparison
study between the C129 intersection from 2013 and
the actual configuration, in terms of simulation re-
quirements (subsection 4.1), statistics and tested sce-
narios (subsection 4.2), optimization results (subsec-
tion 4.2.2), and comparing analysis in terms of mean
blocking times and average stay-times (subsection
4.2.3). Last section presents the conclusions and fu-
ture perspectives of this work.

2 TRAFFIC SIMULATION TOOLS

Nowadays traffic flow and congestion are widespread
time-consuming problems in urban areas, especially
in industrialized countries. Hence, managing traf-
fic with congestion problems needs an understand-
ing of the flow operations, needing dedicated simu-
lation tools for testing various scenarios and modi-
fications inside a transportation system. In the lit-
erature there is a large variety of traffic simulation
tools and modeling approaches, which have been con-
ceived to respond either to the scale of the application
(networks, highways, intersections), to the nature of
the process (deterministic, stochastic) or to the level
of details (microscopic, macroscopic), according to
(Hoogendoorn and Bovy, 2001). In this section we
give a brief summary of some of the existing simula-
tion tools, according to the level of details.

2.1 Classification

The microscopic traffic models have been con-
ceived to simulate at a high level of precision the be-
havior of the traffic entities inside the transportation
system, such as drivers or vehicles. They are most
suited for small urban areas as they calculate at each
time step the speed, the position and acceleration of
each entity, needing powerful computing resources.

Some of the most popular microsimulation tools
nowadays are: Corsim (Fellendorf and Vortisch,
2010), Vissim (Hidas, 2005), DynaSim
(Nishimoto et al., 2002). If Corsim and Vissim
are widely used in China, DynaSim is more popular
in Europe. However this great diversity of microsim-
ulation models raises difficulty when choosing an
appropriate simulation platform. A more recent and
technical comparative analysis between some of the
above mentioned microsimulators can be found in
(Sun et al., 2013).

In comparison to the above simulation tools, the need
to represent the traffic at a higher level of aggre-
gation, as a flow, has generated the apparition of
macroscopic simulation tools, such as the META-
COR (Salem and Papageorgiou, 1998), which repre-
sents the traffic network as a graph. The nodes of
the graph are the entrances (or the exits) in the net-
work, while the flow of the vehicles is characterized

by various properties such as: density, velocity or
flow-rate. For other macroscopic simulation tools,
the reader is redirected to the works of (Zegeye et al.,
2013; Li et al., 2011).

At an intermediate level between the microscopic and
the macroscopic level of simulation, a special interest
is given to the mesoscopic flow simulators. At
the mesoscopic level, the individual behavior of each
entity inside the simulation is less important than the
behavior of small groups of entities moving together
in a probabilistic manner. The average passage time
in a specific segment of the transportation model is
influenced by the flow, the occupation of the segment
or by its capacity. We remind some of the mesoscopic
simulators such as: Metropolis (Palma and Marchal,
2002), TransModeler1 or DynaSmart2. Recently, an-
other efficient and flexible discrete event simulator
has gained in popularity, FlexSim, which we use for
the mesoscopic simulation of the modifications inside
the C129 intersection.

2.2 FlexSim Simulation Tool

FlexSim is a powerful analysis and 3D simulation tool
which allows to model, visualize and optimize real-life
process, from manufacturing to supply chains3. In
FlexSim the user can interact with external imported
data, build 3D simulation models using predefined or
imported objects, construct model charts and graphs
which display dynamical results during the simula-
tion, as well as computing statistic measures once the
simulation has finished. Other important assets are:
the integrated built-in experimenter which allows the
user to test various scenarios over a chosen number
of replications per scenario, the integrated optimiza-
tion tool (OptQuest) for single or multi-objective op-
timization, or the possibility to export the simulated
results into global tables or external files for late use.

Due to its improved 3D visualization and testing pos-
sibilities, FlexSim is currently being used for solving
optimization problems in distribution centers (Hou,
2013), and for simulating roll-on/roll-off terminals,
offshore windmills production, logistics warehouses
and maritime transportation4. A detailed compari-
son between FlexSim and other popular discrete event
simulation tools such as Arena, Witness, Promodel,
can be found in (Cimino et al., 2010). In addition to
the presented simulation software, FlexSim allows to
create its own libraries and classes of objects, graph-
ical user interfaces or various test applications.

All the above features have led us to test and use
FlexSim for the mesoscopic traffic simulation models

1www.caliper.com/transmodeler/
2www.its.uci.edu/ paramics/Models.html
3www.flexsim.com/
4tinyurl.com/FlexSim-maritime
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Figure 1: Block diagram of the traffic simulation and optimization

that we use in this paper. Although Arena can be as
well used for the traffic flow simulation as shown in
(Wen, 2008), the flowchart for a simple crossroads be-
comes complex and difficult to follow, especially when
congestion problems occur. A 3D graphical represen-
tation of the crossroads increases the problem detec-
tion and resolution. As well, an important aspect for
the transportation system simulation in FlexSim, is
the flexibility of controlling and implementing various
triggers associated to each object inside the model,
upon the specific behavior we want to induce to the
simulation: lane switching probabilities, random vari-
ation of the speed of vehicles within the intersection.
The results of the simulation helped us to conclude
upon certain aspects of the current reconfigurations
of C129, which we will present in section 4.2.3.

3 TRAFFIC OPTIMIZATION ANALYSIS

The simulation of a real-life transportation systems
offers a good representation of the system’s behav-
ior, and allows testing various scenarios in order
to take the best decision when it comes to ad-
justing certain traffic parameters such as the traffic
light plans. Traffic optimization has therefore be-
come a necessity, especially in transportation systems
which are under reconfiguration for congestion prob-
lems. When the complexity of the system grows,
a decentralization of the traffic control becomes in-
herent. In the literature there exists several opti-
mization methods which are based, for example, on
multi-agent systems, Fuzzy logic, artificial neural net-
works or Petri nets (Voinescu et al., 2009). A recent
comparative analysis can be found in the works of
(Qureshi and Abdullah, 2013; Liu, 2007).

The optimization of traffic light remains a very im-
portant problem in traffic control, and although this
can be seen as a non-convex nonlinear programming
problem, global optimal solutions are hard to find by
traditional mathematical methods. The evolutionary

algorithms (EA) have become popular for traffic op-
timization problems, as they can be applied to solve
single or multi-objective optimization problems, using
stochastic operators without gradient information in
the search process. The EAs can yield a whole set of
potential solutions, unlike most classical optimization
algorithms which update one solution at each itera-
tion (Deb and Kalyanmoy, 2001). In the literature
we can find interesting combinations of evolutionary
or genetic algorithms with traffic simulations, such
as the works of (Anfilets and Shuts, 2012; Zhiyong,
2006), and Sanchez Medina et al. (2008) which ap-
plies a genetic algorithm optimization in the micro-
simulation of traffic junctions from Santa Cruz de
Tenerife. All these results encouraged us to apply
an evolutionary algorithm in the analysis of the traf-
fic model from 2013, for the optimization of various
traffic light plans as explained in the following section.

3.1 Optimization schema

In Figure 1 we present the logical schema of the traffic
simulation models we analyze in this paper, together
with the optimization method using evolutionary al-
gorithms. Based on the information we have received
in 2013 for the real-world traffic intersection C129:
the available fire plans for testing (which will be de-
tailed in Section 4), and the number of cars entering
the intersection during rush hours (morning and af-
ternoon), we have built the traffic simulation model
in Flexsim, which we note STM2013 and which is pre-
sented in (Mihăiţă et al., 2014). The FlexSim simu-
lation model offers the possibility to determine the
mean number of cars, the mean average stay-time in-
side the intersection, as well as the mean blocking
times in which the vehicles could not advance due to
congestion (when switching lanes for example). The
statistics we obtained at the end of the simulation
gave us the optimization criteria for the evolutionary
algorithm, which is based on the general approach
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Figure 2: Aerial view of the C129 intersection (Google Maps), in 2013 (left) and 2014 (right).

presented in (Perrin et al., 1997). The complete out-
line of the algorithm is given in Annexe A. The pro-
posed EA allowed us to determine the optimal fire
plan which was best adapted for the STM2013 model,
and which was chosen from the available fire plans
we have received from the local community of Grand
Nancy: CUGN5 (P55, P70, P90, P80).

As the C129 intersection is currently under reconfig-
uration, our main objective in this paper is to an-
alyze the impact of the current modifications inside
the intersection, while using the optimal fire plan,
previously proposed for STM2013. Based on the real-
data we receive from CUGN in 2014, and by consider-
ing the undergoing modifications (new bus line, lanes
changing) in this article we built a new traffic simula-
tion model which we denote STM2014. The optimal
fire plan is applied to the current simulation model,
and gives us the possibility to conduct a comparing
analysis using the mean blocking times and mean av-
erage stay-times, according to certain lane crossings
which we will discuss in detail in section 4.2.3.

4 CASE STUDY

As stated in the introduction, the center of our studies
is a real-life complex intersection (C129) from down-
town Nancy France, for which we build the simulation
models according to the data received from CUGN.
This intersection is a part of a reorganization plan,
aiming at re-configuring the traffic inside the city cen-
ter, in order to avoid congestion and improve mobility.
The main interest is to know which area of the inter-
section is more crowded, and which traffic plan can
reduce the mean waiting time during the rush hours.

An aerial view of the intersection from 2013 is shown
in Figure 2 (left), when the vehicles could enter the

5www.grand-nancy.org/

intersection: (a) either from the bridge Pont des
Fusillés (PF) which is the main artery (passing over
the railway tracks), (b) the Joffre Boulevard coming
from the train station, which also receives the vehi-
cles from Boulevard Ghetto Varsovie (passing under
the bridge), (c) the Grand Rabin Haguenaeur (GRH)
street or from (d) the Cyfflé road. The main roads to
exit the C129 junction were Abbé Didelot, Cyfflé and
Joffre Boulevard as well.

In 2014, the bus line passing on the Pont des Fusillés
has been removed, and a new bus line has been at-
tached to the intersection, as seen in Figure 2 (right).
The buses can now enter the intersection near the
Pont des Fusillés, and exit towards the train station
(Joffre Boulevard). The new line receives as well the
buses returning from the train station, cross the Jof-
fre Boulevard and exit the C129 near the Pont des
Fusillés. If the STM2013 had 4 vehicle entrances and
3 exits, the STM2014 model has 5 entrances and 4
exits.

4.1 Simulation Models

In order to build the 3D FlexSim simulation models,
various elements need to be considered, such as: the
fixed structure and configuration of the intersection
received from the urban planners at CUGN (AutoCad
sources), the numbers of cars entering the intersection
during rush hours (07:30 - 08:30) and (16:30 - 18:00),
as well as the traffic light plans currently in use in
the intersection. The snapshots of the two FlexSim
models we have conceived can be seen in Figure 3.

In order to build the mesoscopic simulation models,
we consider that once the vehicles randomly enter the
C129 intersection, they switch lanes based on proba-
bilistic measures that we build by using the metered
data we have received. For example, in Figure 4, from
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Figure 3: Simulation of the C129 intersection in FlexSim, in 2013 (left) and 2014 (right).

the 755 vehicles entering the Pont des Fusillés in the
morning, 18.68% will take left (Q direction), but the
rest of the vehicles (81.32%) will turn right and exit
the intersection through the Abbé Didelot street (P
direction).

Figure 4: Switching probabilities for STM2014.

The first simulation model (STM2013) has been built
in order to choose a suited fire plan which would
adapt to a higher number of vehicles entering the
intersection. By fire plan we denote the red-yellow-
green cycles of all the traffic lights of the C129 inter-
section. Four fire plans have been tested (Np = 4),
which we denote: (P55, P70, P80, P90), each lasting
respectively 55, 70, 80 and 90 seconds.

Due to the stochastic behavior of the system, we are
also interested in the adaptability of the simulation
model in FlexSim in terms of computing time, de-
termined by the variations of three of the most im-
portant parameters: the number of replications (Nr),
the number of fire plans tested (Np), and the number
of scenarios to be tested (Ns). More specifically, we
fix two of the above parameters, and observe how the
computing time of the model will vary over the third
parameter. Table 1 shows the computing time when
we vary the number of fire plans we want to test (as
we have four fire plans, we test until Np = 4), for a
fixed number of replications (Np = 15, as explained

in the following) and fixed number of vehicles enter-
ing the simulation (real data provided by CUGN). We
can observe that Tc is proportional to Np, as shown in
Figure 5 (due to different scales, the graphics are nor-
malized : each data point is divided by the maximum
term of each parameter that has been tested).

Np 1 Plan 2 Plan 3 Plans 4 Plans
Tc[sec] 89 185 298 397

Table 1: Tc versus Np.

Ns D1 D2 D3 D4

Tc[sec] 172 353 375 575

Table 2: Tc versus Ns.

Nr 1 5 10 15 20
Tc[sec] 25 126 271 397 544

Table 3: Tc versus Nr.

As the intersection will be prone to a bigger inflow of
vehicles during rush hours, we tested the resistance of
the simulation to certain flow variations. We denote
by D2 the total number of vehicles entering C129 as
received from CUGN. We will then test all the fire
plans (P55, P70, P90, P80) within the D2 scenario, but
as well within the following scenarios: D1 = D2/2,
D3 = D2 ∗ 2, D4 = D2 ∗ 3. The results in terms of
computing times for all the above scenarios are shown
in Table 2. We notice that the Flexsim simulation
model is capable of simulating bigger traffic inflows
without over increasing the computing time.

The last test is meant to determine the number of
replications needed to obtain accurate statistic re-
sults, when we run all the traffic light plans inside
the D2 scenario, as shown in Table 3. Following the
method suggested by (Archer and Högskolan, 2005),
we run successive simulations until the average mean
and standard variation of the average stay-time (or
the mean number of cars) fall within an acceptable
confidence interval calculated in relation to the stan-
dard t-distribution. Using this procedure in accor-
dance with a confidence interval of 95%, the number
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Figure 5: Computing time Tc compared to Nr,Np,Ns.

of runs indicated approximately 10-12 runs per sce-
nario. Given the importance of the accuracy in the
results, for the rest of the results we decided to con-
duct 15 replications for each time-period scenario.

All the above tests are represented in Figure 5 and
show the adaptability of the FlexSim model to higher
variations of the model’s parameters. An important
aspect of FlexSim is that it can run parallel replica-
tions of the simulation model according to the number
of available processors. The simulations have been
made using an Intel Quad Core i7 (2.4 GHz) com-
puter having 8 GB DDR3 SDRAM memory.

4.2 Statistics and analysis

4.2.1 Average stay-times

The first step in analyzing the impact of the cur-
rent reconfiguration inside C129 is to extract statis-
tics from the reference simulation model which we
denoted STM2013. For this model, we compare and
analyze the mean number of cars (Nrcars) and the
average stay-time (Tavg), needed to pass C129.

Figure 6: The total number of cars inside C129.
In Figure 6 we represent the variation of the number
of cars inside C129, during the morning rush hours
for the D2 scenario. We notice that the P90 plan
seems to allow a bigger number of cars to pass the
intersection and thus to be the one suitable for big-
ger inflow. In Figure 7 we verify if this plan is also

suitable in terms of average stay-time. Although the
P90 gives the smallest stay-time on the Pont des Fusil-
lés street (Figure 7 a), we can observe that it would
dramatically increase the waiting time on the Joffre
Boulevard (Figure 7 b).

Figure 7: Tavg on the a) Pont des Fusillés street and
b) the Joffre Boulevard.
This aspect lead us to analyze the variation of the
Tavg versus the Nrcars, for all the fire plans (P55,
P70, P90, P80), when a considerably bigger inflow of
vehicles will occur (during the above mentioned sce-
narios: D1, D2, D3, D4).
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Figure 8: Data variations on a) C129 b) Abbé Didelot
Street
Based on the results we present in Figure 8 a), we
would tend to make the following remarks: a) the av-
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erage stay-time inside C129 will grow as the number
of vehicles entering grows, b) the best adapted plan
even when a bigger number of vehicles enter the in-
tersection, seems to be the P55, which is in a total
contradiction with the previous observations. For ex-
ample, when representing the same variations on the
Abbé Didelot street (Figure 8 b), we can notice that
there is a mix of possible plans which would better
be adapted to a bigger number of vehicles (see the
set D3).

4.2.2 Optimization problem

The previous results show the complexity of the C129
intersection, for which a special optimization method
needs to be applied. Choosing the best adapted fire
plan needs to take into consideration the fact that
we search the optimal fire plan which would allow a
maximal number of vehicles to enter the intersection
during a minimal average stay-time. We therefore
search to:

Maximize Nrcars =
∑M

i=1 Nricars
Minimize Tavg =

∑M

i=1 T
i
avg

subject to T i
avg ≥ 0 and Nricars ≥ 0.

where M is the number of streets inside the intersec-
tion, and T i

avg the mean average stay-time that the

Nricars vehicles spend on a street i of C129 .

This represents the objective criteria we optimized us-
ing the evolutionary algorithm from Annexe A. Each
individual is represented by the pair (mean number of
cars, average stay-time inside the intersection). The
number of individuals are the total number of points
resulted from each simulation, following the experi-
mental plan as in Figure 8 (nind = 4 scenarios ∗4 fire
plans ∗15 replications per scenario). The number of
survivors and mutants have been set according to the
input data (nsurv = 5%nind, nmut = 20%nsurv).
The number of generations we have used for the data
we have received is 10, but the algorithm provides
good results even after 7 generations.

The optimal result we obtain in Figure 9 shows us
that the best fire plan which would better manage a
big number of input vehicles for the STM2013, is the
P90 (given by the closest point to the horizontal axis
of the optimum), which is nowadays used in the C129
crossroads.

4.2.3 Congestion analysis and comparison

Based on the new reconfiguration of the C129 inter-
section, and using the optimal fire plan we previously
detected, we build the new FlexSim simulation model
(STM2014), by implementing the new bus line, as
well as the new switching lane probabilities accord-
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Figure 9: EA1 applied to STM2013

ing to the recent data received from CUGN.

The comparison with the previous simulation model
is done in terms of mean blocking times inside the
intersection, as well as average stay-times, which give
us a realistic representation of the congestion inside
the intersection. Figure 10 shows the mean blocking
times in the morning, on all the possible connections
inside the C129: entrance either from the train sta-
tion or the Grand Rabin Haguenaeur and exit towards
Abbé Didelot or Rue Cyfflé, etc. Although we would
have expected the P90 plan to assure less blocking
times on all the main streets, we observe that the
new bus line induces higher blocking times on all the
vehicles entering the intersection from the Pont des
Fusillés: 14 minutes of blocked traffic when wanting
to exit towards Abbé Didelot. The exit towards the
train station is more crowded than before, as 10 out
of the 17 possible transitions inside the intersection
have deteriorated in terms of blocking times, but we
observe that 7 transitions present an amelioration es-
pecially for all the vehicles wanting to enter the C129
from the Ghetto Varsovie street. As well, we notice
that the new bus line towards the train station, has
an average of 8 minutes of congestion in the morning.

By observing as well the average stay-time on the
main arteries in Figure 11, we notice that all the
streets intersected by the new bus line are affected
both in terms of congestion and waiting times : Pont
des Fusillés, Joffre Boulevard and Rue Cyfflé. The
Abbé Didelot street has gained in average stay-time
due to the suppression of the bus line from PF.

This study shows the complexity of the system, which
needs a deeper analysis over the current state of inter-
section and a rethinking of traffic fire plans, in order
to choose the one adapted to the current inflow of
vehicles.
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Figure 10: Comparison between blocking times inside C129 in 2013 and 2014.

Figure 11: Comparison between average stay-times
inside C129 in 2013 and 2014.

5 CONCLUSIONS

In this paper we have presented an evaluation method
for analyzing the impact of undergoing reconfigura-
tion of the traffic flow of a complex road intersection
from Nancy, France (C129). We begin by implement-
ing the FlexSim simulation models using real-traffic
data, which gives us the statistics measures to use in
the optimization method. Based on the optimization
criteria, we choose which fire plan is the most adapted
to the the actual configuration of the system, and
which responds to a higher inflow of vehicles. This
plan has been used in the simulation of the current
reconstructed intersection, allowing us to analyze the
impact of the modifications in terms of blocking times
and average stay-times, and to detect which streets
present a bottleneck behavior.

A further perspective of this work is be to be able to
optimize and choose the best adapted fire plan from
all the possible fire plans we can conceive for this in-

tersection. As well we are interested in testing the
impact of the undergoing modifications on the traffic
flow in the whole Nancy Grand Cœur neighborhood;
an extended simulation model is currently under con-
struction.
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ANNEX A

The algorithm we present here is based on the gen-
eral approach of evolutionary algorithms given in
(Deb and Kalyanmoy (2001)). The complete outline
of the algorithm is given in Algorithm 1, with the
following associated steps:

1. The current EA is an iterative optimization pro-
cess starting from an initial population of nind
individuals which are supplied by the traffic sim-
ulation model, and which are characterized by
two variables: the mean number of cars and
the average stay-time inside the intersection.
The function initialise population is respon-

6Ecole Nationale Supérieure en Génie des Systèmes Indus-
triels

7www.flexsim.com/blog/flexsim-student-tournament-in-
france-and-morocco/
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Algorithm 1 Outline of the evolutionary algorithm.

Require: nind (the number of individuals in a pop-
ulation), ngmax (the number of maximum genera-
tions to be created);

Ensure: P - the optimized population ;
Parameters: nsurv (number of survivors), nmut
(number of mutants), ngen (number of popula-
tions)
//Step 1: construct initial population from simula-
tion
ngen = 0;
P (0) ← initialise population();
while do(ngen ≤ ngmax)

//Step 2: Compute the objective criteria
for all ind ∈ P (ngen) do

calculate objective fct(ind)
end for
//Step 3: select best individuals(survivors)
Psurv ← select best indiv(P (ngen), nsurv)
//Step 4: generate mutants
Pmut ← ∅

for i = 1 : nmut do
mutant← generate mutant();
Pmut ← Pmut

⋃
mutant

end for
//Step 5: generate children
Pchild ← ∅

for i = 1 : (nind− nsurv − nmut) do
(p1, p2)← select parents(Psurv);
child← create child(p1,p2);
Pchild ← Pchild

⋃
child

end for
//Step 6: create the whole new population
Pngen+1 ← Psurv

⋃
Pmut

⋃
Pchild

ngen++; // increase the population counter
end while

sible for the initialization of all the individuals
inside the algorithm. By P (ngen) we denote the
whole population we are creating at each gener-
ation of individuals.

2. The next step is to evaluate the popula-
tion by computing the objective criteria pre-
viously defined, inside the function calcu-
late objective fct.

3. Once the objective criteria have been computed
for all the individuals of the current population,
we sort and select the best individuals which
we call the survivors, using the function se-
lect best indiv. This step is usually known as
the sorting of solutions from best to worst, and
can be also achieved by computing a domination
score (Halsall-Whitney and Thibault (2006),
Perrin et al. (1997)).

4. At this point, we have a selection of best in-
dividuals. We now generate randomly the mu-

tants of the population inside the domain defini-
tion of the population, using the function gen-
erate mutant.

5. The main part of the algorithm is the creation of
new individuals (children), by randomly choosing
two different parents (Ip1 and Ip2) from the pop-
ulation of survivors (function select parents).
The combination of these two individuals inside
the function create child, is made according to
the equation :

Ichild = DpIp1 + (1−Dp)Ip2,

where Dp is a randomly selected real number be-
tween 0 and 1 each time an input Ichild has been
determined.

6. Steps (2) to (5) is repeated until we reach a
predetermined maximal number of generations
(mgmax), where ngmax is chosen based on the
expected precision of the results.

To resume, this evolutionary algorithm is a
population-based stochastic search procedure which
selects the best members of a population and uses
them to recombine and perturb locally, in order to
create new and better populations until the prede-
fined goal was reached. Overall the EA offers the
possibility of having a flexible optimization procedure
for the traffic flow problem we want to solve.
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