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Abstract: In this paper we present a method for constructing an approximative stationary
energy model of a stochastic switching system while applying event-based control. The main
model used is a multi-state integrator with random switching behavior, upon event occurrence,
which has been described using a continuous Markov chain. Applying event-based control has
been done in the purpose of maintaining the continuous system state variable between extreme
boundaries. The sojourn times and the probabilities to hit the limits have also been used for the
computation of the average energy consumed during the stationary mode of the Markov chain.
Mean times between intermediary stopping points and extreme limits are also provided as well
as a quadratic criterion for square deviations from imposed target limits.
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1. INTRODUCTION

Automatic control for stochastic switching systems has
come to play an important role in significant branches of
science and industry, especially in the production planning
for manufacturing systems. Stochastic switching systems
have been used to model a lot of practical dynamical
systems, as they are described by the interaction between
continuous and discrete dynamics (Liberzon [2003]). Many
examples can be found in transportation systems (Pola
et al. [2003], Varaiya [1993]), robotics (Egerstedt [2000]),
communication networks (Hespanha [2005]), automotive
systems and even in biological system modeling (Khare
et al. [2005]). Many viewpoints have been developed, and
although researchers focused on the study of the system
discrete behavior, simulation problems have appeared. On
the other hand, the automatic control researchers focus
on the continuous aspect of the systems with discrete
switching, but still debate problems such as stability
analysis and control synthesis. The continuous dynamic
of a stochastic switching system can be modeled using
differential equations (Branicky [1998]):

ẋ(t) = ξ(t), t ≥ 0.
where x(t) is the continuous state component taking real
values, ξ(t) is a vector field that depends in general on
x(t) and on the discrete behavior of the system. Stochastic
switching systems or jump systems have been frequently
used for modeling practical systems with abrupt changes
in their behavior which may experience breakdown of
components, repair or abrupt environmental disturbances,
and their continuous behavior can be often associated with
a Markov process.

On the other hand, the discrete behavior of a jump
system can also be influenced by random events which will
change the system evolution. A special control is needed
upon event arrival, which is called event-based control.

This requirement is wide spread in many technological
areas, such as transportation networks, health care, energy
efficient operation of vehicles and manufacturing. Event-
based control has become an attractive approach to solve
control problems for systems with certain rate limitations
as in process industry (Pettersson et al. [2006], Guzzella
and Onder [2006]) or with expensive control actions like
in communication networks (Cogill et al. [2007], Jacobson
[1988], Kelley [1985]). The control action is only applied
when is needed, reducing the rate when the system must
be actuated; it has also been the standard form of control
used in biological systems as well (Wilson [1999]). There is
little theory which offers details about designing an event-
based controller and estimation strategies (Kofman and
Braslavsky [2006], Rabi and Baras [2007], Tabuada [2007],
Åström [2002]), therefore the control problem can be often
seen as a Markov decision process. But the optimal control
function for such a process can become very complicate,
especially when the state number increases.

In this paper we develop a preliminary approximative
model for the stationary energy consumed when event-
based control is applied to a stochastic switching system.
The control will be applied over a multi-state integrator
system bounded by upper and lower limits. The uncon-
trolled and controlled system definitions will be provided
in Section 2. Section 3 presents the stationary energy
model which have been built using the mean hitting times
to reach the limits, as well as the probabilities to hit the
upper or the lower limit. Section 4 provides a quadratic
criterion which is used for computing the total cost asso-
ciated to the square deviation from the target level of the
continuous state variable.

2. BASE MODEL

The base model we have considered for our study is a
particular type of a stochastic switching system, in which
the switching between the states does not depend on the



evolution of the continuous state component. Section 2.1
presents the definition of the system while in section 2.2
we present the control model of the system.

2.1 Integrator definition

We will first consider a simple multi-variable integrator
system which can be described by the following equation:{

ẋ(t) = rZ(t)

x(0) = x0
(1)

where Z(t) is the continuous-time Markov chain describing
the system mode at time t and taking values in the
finite state space S = {1, 2, .., N}, x(t) ∈ < is the state
variable, x0 ∈ < is the initial state of the system and
ri, i ∈ {1, 2, ..N} are constants (which can be seen as state
rewards) so that:{

ri > 0, ∀i ∈ {1, 2, .., k}
rj < 0, ∀j ∈ {k + 1, ..N} (2)

For simplicity we assume that all ri are non-zero.

The continuous behavior of the system is described by x(t),
while the discrete aspect is characterized by the system
random transitions between the states. The associated
continuous-time Markov chain is characterized by the
following transition rate matrix:

Q =



−
∑
j 6=1

λ1j λ12 .. λ1N

λ21 −
∑
j 6=2

λ2j .. λ2N

.. .. .. ..

λN1 λN2 .. −
∑
j 6=N

λNj


where λij is the transition rate from state i to state j. The
stationary state probability vector of the Markov chain is:

π = [π0, π1, ...]
which satisfies the stationary condition: πQ = 0. As the
system switches randomly between the states, an adapted
event-based control will be applied each time certain
conditions are met.

2.2 Controlled Integrator

We adopt a simple event-driven controller. Previous works
(mainly Åström [2002]) showed that in some cases event-
based control can provide better performances than sam-
pled data control. On the other hand event-based control
arise quite naturally in switched systems while “switching”
is an event occurrence. It has to be proved but we suspect
that the event-driven control is better adapted to switching
systems than the sampled data control. An event-based
controller may switch control policy on plant dynamics
switching and then be more reactive.

The main objective for the considered integrator system
(1) while being in the stationary mode is to maintain
the system state variable between extreme limits: x(t) ∈
(Xmin, Xmax). Each time one limit is reached, event-
based control will be applied until x(t) reaches one of

the stopping control boundaries (XL, XH); between these
stopping boundaries no control is needed. When the upper
limit has been reached (x(t) = Xmax), a high control will
be applied until x(t) reaches the upper stopping control
limit (x(t) = XH). Similarly, a low event-based control
will be applied from the lower limit (x(t) = Xmin) to the
lower stopping control limit(x(t) = XL). The stochastic
equation for the controlled system becomes:

{
ẋ(t) = rZ(t) + uZ(t)(x(t))
x(0) = x0

(3)

where

uZ(t)(x(t)) =

{ 0 ,if C1

−QHi ,if C2, ∀i ∈ {1, 2, ..k]
+QLj ,if C3, ∀j ∈ {k + 1, ..N ]

C1 : (x(t) ∈ [XL, XH ])∨
(x(t) ∈ (XH , Xmax) ∧ u(Z(t−∆t)) = 0)∨
(x(t) ∈ (Xmin, XL) ∧ u(Z(t−∆t)) = 0)

C2 : (state = i) ∧ [(x(t) = Xmax)∨
(x(t) ∈ (XH , Xmax) ∧ u(Z(t−∆t)) 6= 0)]

C3 : (state = j) ∧ [(x(t) = Xmin)∨
(x(t) ∈ (Xmin, XL) ∧ u(Z(t−∆t)) 6= 0)]

(4)

We use QHi to denote the high control applied in the
state i, ∀i ∈ {1, 2, ..k} and QLj for low control in the
state j, ∀j ∈ {k + 1, ..N}. The ∆t notation represents
an infinitesimal time interval. Recalling (2), in order to
achieve the control objective, (QHi, QLj) will be applied
so that:

{
ri −QHi < 0 ,∀QHi > ri > 0
rj +QLj > 0 ,∀QLj > 0 (5)

Equation (4) contains the control law to be applied which
depends on the Markov system states (S = {1, 2, ..N})
and on the system state x(t).

Fig. 1. Sample paths with or without control.

A graphical representation can be seen in Figure 1 which
corresponds to the control law evolution described in the
following:

• no control is applied if:
· the state variable (x(t)) is in the no control area:

(XL, XH) or
· the state variable is in the upper control interval
(XH , Xmax) and no control was needed before the
current time t or



· the state variable is in the lower control interval
(Xmin, XL) and no control was needed before the
current time t ;

• high control is applied if the system is in state Li

with ri > 0 and the maximal limit has been reached
(x(t) = Xmax) or if the state vector is still in the
upper control interval although upper control has
been applied before t ; this means we have to continue
applying the control until x(t) ≤ XH ;
• low control is applied if the system is in state Lj

with rj < 0 and the minimal limit has been reached
(x(t) = Xmin) or if the state vector is still in the
lower control interval although lower control has been
applied before t ; the control has to be reapplied until
x(t) ≥ XL.

3. STATIONARY ENERGY MODEL

In this section we built the stationary energy model for
the considered stochastic switching system. Section 3.1
presents the initial conditions and problem definition, fol-
lowed by Section 3.2 in which we present the approxima-
tions we have applied over the model. Section 3.3 contains
the computation of the energy probabilities, while Section
3.4 presents the final energy formulas we have obtained.

3.1 Description

We are interested in the long-run model of the control
energy consumption. In other words we build a model for
the average energy consumed in the stationary regime of
the Markov chain Z(t).

Applying low and high control is an energy consuming
process depending on the current state of the system and
on the extreme boundaries. We have considered that the
system randomly passes from no control area to low or
high control, but will not switch directly from low control
to high control or viceversa. By taking into account the
control boundaries imposed in section 2.2 and the random
switching between the states, the following four cases can
be analyzed, as shown in Figure 2:

(1) from XH the system evolves either to Xmax (∆1 =
Xmax − XH) during T1, where it needs high control
to be applied until it reaches XH (during T2) or

(2) it can also evolve from XH to Xmin (∆2 = XH −
Xmin) during T3, where it needs low control to be
applied until XL is being reached (during T4);

(3) from XL the system can either reach Xmin (∆3 =
XL − Xmin) during T5, where low control is needed
until XL is reached (during T6) or

(4) it can hit the Xmax limit (∆4 = Xmax −XL) during
T7, where high control is needed until XH is being
reached (during T8).

As it can be seen from Figure 2 the returning of the
system to the control boundaries after applying the control
indicates a random but “cyclic” behavior of the system in
stationary mode. As we are also interested in applying the
control over the system with a minimal cost, a quadratic
criterion is needed in order to minimize undesired devi-
ations from the control targets. Section (4) presents the
method to obtain total cost associated to the square devi-
ations from the target limit.

Fig. 2. Possible sample paths from control stopping limits.

In each of the possible cases presented above, specific
amounts of energy are being consumed with certain prob-
abilities (pj , j = 1..4) therefore the total possible energy
consumed by the system in state i while passing between
the above paths can be written as:

Entoti = p1E1,i + p2E2,i + p3E3,i + p4E4,i. (6)

where Ej,i, j = 1..4, i = 1..N is the mean energy consumed
in state i when being in the one of the above cases.

An exact energy model needs knowledge of the process
probabilities to hit Xmax or Xmin while starting in XH ,
respectively XL – the probabilities pi – and the associated
mean times to hit the respective boundaries. As it is well
know in stochastic models the time to hit a boundary (exit
time) cannot be computed except the case of diffusion
processes. Therefore we will compute an approximation
of the energy model.

3.2 Approximations

The first approximation we made was to consider only
two values for the integrator constant (this an aggregation
based approximation). Let the homogeneous Markov chain
Z(t) be in the stationary regime. Then the probability of
the states equals the stationary probability vector π. Let
the states of the Markov chain be ordered as in (2). We
can therefore define the mean positive integrator constant
and the mean negative integrator constant as :

v1 =

(
k∑

i=1

πiri

)
/

(
k∑

i=1

πi

)
> 0, (7)

v2 =

 N∑
j=k+1

πjrj

 /

 N∑
j=k+1

πj

 < 0. (8)

Taking into consideration that the partition of the rewards
defines a partition of the states in the Markov chain,
we are interested in the sojourn time in these partition.
The probability distribution of these sojourn times are
easily computed using the formulas in Rubino and Sericola
[1989]. Let T+ and T− be the random variables charac-
terizing the sojourn time in the positive reward states,
respectively the sojourn time in the negative reward state.
Then the associated probability densities are given by (see
Rubino and Sericola [1989])

fT+(t) = αT
1 e

G1t(−G11)

fT−(t) = αT
2 e

G2t(−G21), (9)



where G1 and G2 are the corresponding sub-generators
(sub-matrices of Q) characterizing the transitions inside
the respective subsets of states, α1 and α2 are probability
vectors given by (Rubino and Sericola [1989]):

αT
1 =πT

+G1/(πT
+G11)

αT
2 =πT

−G2/(πT
−G21), (10)

with π+ and π− being the subvectors of π corresponding to
the state partition (π = [π+,π−]). Finally, 1 is a vector of
adequate dimension whose entries equal 1. According with
the definitions of the random variables T+ and T− one can
define the random variables X+ = v1T+ and X− = −v2T−
modeling the increase, respectively the decrease of x(t)
during the sojourn in the positive, respectively negative,
rate states. Then, the respective probability densities are:

fX+(t) =αT
1 e

G′1t(−G′11), where G′1 = G1/v1

fX−(t) =αT
2 e

G′2t(−G′21), where G′2 = −G2/v2 (11)
The X+ and X− notations denote the changes of the
x(t) value in the two state sets, therefore the second
approximation we made was to construct the probabilities
of hitting one of the boundaries using only the difference
between these changes. This is an approximation while
we replace, for example, the event: “the process hits the
upper boundary before hitting the lower boundary” with
the event: “the process hits the upper boundary”.

The third approximation regards the mean time that the
system needs to pass from the high control to the no
control area and which depends on the difference between
the upper imposed limit (Xmax) and the upper stopping
point (XH), as well as on the control measures applied
over the states of the system. The analogous applies to
the mean time that the system need to pass from the low
control area to the no control one. The definition and usage
are provided in Section 3.4.

3.3 Mean hitting times and probabilities

Using the probability densities computed in (11) we cal-
culate the probability of hitting either the lower or the
upper bound starting from XH or XL. These will be the
probabilities of the Markov chain to spend a sufficient
time in the state-sets "+" or "-" in order to hit the
respective boundaries. The first step is to compute the
probability density of the net change in the value of x(t),
i.e. the probability densities of the difference of random
variablesX+−X− andX−−X+. According to the classical
probability theory these densities are given by the cross-
correlation products of the individual densities. Therefore:

fX+−X−(x) =
∫ ∞

0

fX−(y)fX+(x+ y)dy

fX−−X+(x) =
∫ ∞

0

fX+(y)fX−(x+ y)dy. (12)

Using (10-11) in (12) we obtain after some calculus:

fX+−X−(x) =αT
1 e

G′1x(−G′1K1),

fX−−X+(x) =αT
2 e

G′2x(−G′2K2), (13)
where

K1 =
∫ ∞

0

eG′1y1αT
2 e

G′2y(−G′21)dy

K2 =
∫ ∞

0

eG′2y1αT
1 e

G′1y(−G′11)dy.

It follows that the probabilities to hit either Xmax or Xmin

conditional that the initial state is XH are:

pXHXmax
= P{X+ −X− ≥

∆1

v1
} = KHα

T
1 e

G′1∆1K1,

pXHXmin
= P{X− −X+ ≥

∆2

v2
} = KHα

T
2 e

G′2∆2K2,

withKH being a normalizing constant such that pXHXmax
+

pXHXmin
= 1. In a similar way the probabilities to hit

Xmax or Xmin starting from XL are:

pXLXmax
= P{X+ −X− ≥

∆4

v1
} = KLα

T
1 e

G′1∆4K1,

pXLXmin
= P{X− −X+ ≥

∆3

v2
} = KLα

T
2 e

G′2∆3K2.

One needs to evaluate the probabilities p1 to p4 used in
(6). Let us consider, for example, p1. This probability
corresponds to the event: “system starts in state XH and
will hit Xmax”. Let pH , respectively pL be the probabilities
of the events “system starts in stateXH (respectivelyXL)”.
Then p1 = pHpXHXmax

. But the event: “system starts in
state XH ” is the same (given the control policy) with
the event “last time the system has started in XH or
XL and hit Xmax”. The probability of the later event is
pHpXHXmax + pLpXLXmax . Together with pH + pL = 1 we
can easily obtain:

pH =
pXLXmax

pXLXmax + pXHXmin

pL =
pXHXmin

pXLXmax
+ pXHXmin

.

By similar calculations, we obtain :

p1 = pHpXHXmax =
pXLXmax

pXHXmax

pXLXmax + pXHXmin

p2 = pHpXHXmin
=

pXLXmax
pXHXmin

pXLXmax
+ pXHXmin

p3 = pLpXLXmin =
pXHXmin

pXLXmin

pXLXmax + pXHXmin

p4 = pLpXLXmax
=

pXHXmin
pXLXmax

pXLXmax
+ pXHXmin

.

The next step in order to model the behavior of the system
is to compute the mean time to hit the boundaries starting
from either XH or XL. Starting, for example, from XH

the average behavior of the system going to Xmax is the
following: during a period corresponding to the sum of
the mean sojourn times in positive reward states and
negative reward states, an average reward E[X+ − X−]
is accumulated (we assumed that the system will hit the
Xmax limit). Then the average hitting time of Xmax while
starting from XH is:

T1 =
∆1

E[X+ −X−]
(E[T+] + E[T−]). (14)

From (9) and (13) we obtain:



E[X+ −X−] =−αT
1 G
′−1
1 K1.

E[T+] =−αT
1 G
−1
1 1.

E[T−] =−αT
2 G
−1
2 1.

Inserting in (14) we obtain:

T1 =
∆1(αT

1 G
−1
1 +αT

2 G
−1
2 )1

αT
1 G
′−1
1 K1

.

In a similar way, the mean times to hit the high or the low
boundary starting either XH or XL can be expressed as:

T3 =
∆2(αT

1 G
−1
1 +αT

2 G
−1
2 )1

αT
2 G
′−1
2 K2

.

T5 =
∆3(αT

1 G
−1
1 +αT

2 G
−1
2 )1

αT
2 G
′−1
2 K2

.

T7 =
∆4(αT

1 G
−1
1 +αT

2 G
−1
2 )1

αT
1 G
′−1
1 K1

.

Obviously, these approximations are underestimating the
real hitting times while (due to the reward rates aggrega-
tions but also because we ignore the dependence between
certain events). However the formulas are very simple and
our numerical experiments show that quite often the nu-
merical approximation is good. These mean hitting times
will be used for the energy formulas in the next section.

3.4 Energy formulas

In this section we develop formulas for the consumed
control energy. Considering the case represented in Fig. 2,
one can write the conditional expectations over the control
time intervals (∆1,∆3) control as:

e1,i = e4,i =
∫ T2

0

QH2
i dt = QH2

i · T2 (15)

e2,i = e3,i =
∫ T4

0

QL2
i dt = QL2

i · T4 (16)

which can be used in computing the total high or low
control energies (6) as:

EHtot,i = p1 ·
e1,i

T1 + T2
+ p4 ·

e4,i

T7 + T8
(17)

ELtot,i = p2 ·
e2,i

T3 + T4
+ p3 ·

e3,i

T5 + T6
(18)

T2, T4 stand for the mean times that the system needs to
pass from the high or low control area to the no control
area, and which can be expressed as:

T2 = T8 =
∆1∑N

i=1 πi(QHi − ri)
(19)

T4 = T6 =
∆3∑N

j=1 πj(QLj + rj)
(20)

As we have initially considered , the system has multiple
states, therefore we can express the total consumed energy
while switching between the N states as:

Entot =
N∑

i=1

πi(EHtot,i + ELtot,i). (21)

4. QUADRATIC COST CRITERION

One can finally define the stochastic equivalent of a
quadratic cost criterion. Let XT be a target level for
x(t), XT ∈ (XL, XH) (one can assume, more generally
that XT ∈ (Xmin, Xmax), but this will just add some
calculus complexity). One would also like to minimize the
average quadratic deviation of x(t) from XT . Let Y denote
the random variable representing this deviation. Then a
quadratic cost criterion could be stated as:

J = qE[Y 2] + rEntot, (22)
for some positive q and r, where E[Y 2] is the second mo-
ment of Y . In the following we construct an approximation
of the above second moment of Y by a similar analysis as
in the previous section.

Assume that the process starts in the point XH and there
is no control. Then the random variable Y can be expressed
as :

Y =
{
XH −XT + (X+ −X−); Y > XH −XT

XH −XT − (X− −X+); Y < XH −XT

While XH and XT are constants it follows that the prob-
ability density of Y may be constructed from fX+−X−(x)
or fX+−X−(x) by simple translations. The continuous part
of the density function of Y is :

f1Y (y) ={
fX−−X+((XH −XT )− y); y ∈ (Xmin −XT , XH −XT )
fX+−X−(y − (XH −XT )); y ∈ (XH −XT , Xmax −XT )

Then the conditional second moment of Y starting in XH

is :

E1[Y 2] =
∫ XH−XT

Xmin−XT

y2fX−−X+((XH −XT )− y)dy +

+
∫ Xmax−XT

XH−XT

y2fX+−X−(y − (XH −XT ))dy

In a similar way, if the process starts in XL the density
function of Y is :

f2Y (y) ={
fX−−X+((XL −XT )− y); y ∈ (Xmin −XT , XL −XT )
fX+−X−(y − (XL −XT )); y ∈ (XL −XT , Xmax −XT )

and the conditional second moment of Y starting in XL:

E2[Y 2] =
∫ XL−XT

Xmin−XT

y2fX−−X+((XL −XT )− y)dy +

+
∫ Xmax−XT

XL−XT

y2fX+−X−(y − (XL −XT ))dy

Once the system has hit the upper limit Xmax the random
variable Y will take values in (XH − XT , Xmax − XT )
and can approximately be expressed using the determinist
expression (based on the (19) approximation):

y3(t) = Xmax −XT −

(
NH∑
i=1

πi(QHi − ri)

)
t.

Then the associated quadratic cost is

E3 =
∫ T2

0

y2
3(t)dt.



In a similar way if the system hits the lower limit Xmin

the approximate evolution of Y is

y4(t) = Xmin −XT +

NL∑
j=1

πj(QLj + rj)

 t.

In a similar way, the associated quadratic cost is

E4 =
∫ T4

0

y2
4(t)dt.

NH and NL denote the number of times we apply high or
low control. Finally the total cost associated to the square
deviation of the trajectory from the target XT is:

E[Y 2] = (p1 + p2)E1[Y 2] + (p3 + p4)E2[Y 2] +

+ (p1 + p4)E3 + (p2 + p3)E4.

Along with the total energy formula (21) it can be used to
apply the quadratic criterion. This total cost of the square
deviation can be minimized by using nonlinear optimal
control applied over the stochastic switching system.

5. CONCLUSIONS

In this paper we have studied the energy modeling of a
multi-state integrator system characterized by stochastic
switching between the states. The goal was to maintain the
system state variable between imposed boundaries while
applying event-based control. Due to the little theory in
computing the exit time for stochastic models, an aggre-
gated approximation energy model has been constructed.
We have determined the probabilities to hit the limits
depending on the sojourn times between the two state sets,
the probabilities to hit the limits starting intermediary
points, as well as the mean times spent by the system
when passing from no control to low or high control and
viceversa.

A possible direction for future work is to investigate the
application of an optimal event-based control over the
system in order to obtain a control energy minimization
as well as the computation of optimal stopping points of
the system.

5.1 Note on the numerical results

We compared our analytical model with the discrete
event simulation results obtained for a large number of
replications. The numerical accuracy is very variable. The
approximation of the sojourn time in controlled states is
always accurate and even very precise for larger values.
The accuracy of the probabilities to hit a boundary is less
good but seems to be more accurate in the cases with
balanced rewards (i.e. if the absolute values of the positive
and negative aggregated rewards v1 and v2 are close).
The less accurate approximation is the hitting time value.
Again, when the rewards are balanced the approximation
is good but we experienced errors up to 50% in some
unbalanced cases. Our further research points also to the
improvement of the approximation error.
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