The 23rd IEEE International Conference on Intelligent Transportation Systems

Dynamic Train Demand Estimation and Passenger Assignment

Yuming Ou, Adriana-Simona Mihaita, Fang Chen

University of Technology Sydney

Agenda

- Background
- Research Problem
- Data
- Challenges
- Methodology
- Case Study
- Conclusion

Background

- Rapidly increasing public transport travel demand due to population explosion
 - London has suffered a 70% increase in public transport patronage over the last 20 years
 - Sydney train network has reached 377.1 M patronage in 2019, 17.7% increase since 2013
- Understanding passenger flow in the train network is significant
 - Situation awareness
 - Response to service disruptions
 - Transport planning

Research Problem

- Our research problem is to estimate passenger flow in the train network
- It can be divided into two sub-problems
 - Estimate time-dependent Origin Destination (OD) matrix
 - Where are the passengers from?
 - Where are the passengers to?
 - When?
 - Passenger assignment assign passengers to specific trains
 - What are the paths that the passengers travel from origins to destinations?

Data

Network layout data

Train stations Connections between stations Station platforms

Timetable data

Departure times Arrival times Stations

Station Patronage data

Number of passengers tapping-on Number of passengers tapping-off

Challenges

- Patronage data is aggregated for every 15-minute time interval
- It is unknown which tap-on and which tap-off belong to a same passenger
- It is unknown which train a specific passenger boarded once he/she entered a station
- In-station transfer: passengers could take various transfer options from a same origin to a same destination

Method to Estimate Time-Dependent OD Matrix

Initial OD Matrix Estimation

OD Matrix Calibration

	S ₁	S ₂	S ₃	S ₄	S ₅	S ₆
S ₁	0	$T_{\scriptscriptstyle 12}$	T ₁₃	T ₁₄	T_{15}	$T_{\scriptscriptstyle 16}$
S ₂	T ₂₁	0	T ₂₃	T ₂₄	T ₂₅	$T_{_{26}}$
S ₃	T ₃₁	T ₃₂	0	T ₃₄	T ₃₅	T ₃₆
S ₄	T ₄₁	T ₄₂	T ₄₃	0	T ₄₅	$T_{_{46}}$
S ₅	T ₅₁	T ₅₂	T ₅₃	T ₅₄	0	T ₅₆
S ₆	T ₆₁	T ₆₂	T ₆₃	T ₆₄	T ₆₅	0

 $T_{ij} = (t_{ij}, ((p_{ij}^1, w_{ij}^1), (p_{ij}^2, w_{ij}^2), ..., (p_{ij}^k, w_{ij}^k))$

t_{ij}: total number of trips from S_i to S_j

- p_{ij}^k : path k from S_i to S_j
- w_{ij}^k : weight of path k from S_i to S_j

Passenger Assignment

Number of passengers remaining in the same train at a platform

$$Np_{a_{m}}^{remain}(T_{r}) = \sum_{t_{a_{m}}^{i} \in T_{r}} (Np_{a_{m}}(t_{a_{m}}^{i}) \times Pr_{t_{a_{m}}^{i}t_{d_{m}}^{i}}(d_{m}|a_{m}))$$

Number of passengers exiting from a platform $Np_{a_m}^{exit}(T_r) = \sum_{t_{a_m}^i \in T_r} (Np_{a_m}(t_{a_m}^i) \times Pr_{t_{a_m}^i}(S|a_m))$

Number of passengers transferring from a platform

$$Np_{a_m}^{transfer}(T_r) = \sum_{t_{a_m}^i \in T_r, t_{a_m}^i < t_{d_n}^j} (Np_{a_m}(t_{a_m}^i) \times \sum_{n=1, n \neq m}^M Pr_{t_{a_m}^i t_{d_n}^j}(d_n|a_m))$$

Number of passengers entering to a platform $Np_{d_m}^{enter}(T_r) = \sum_{\substack{t_{d_m}^i \in T_r, t_{d_m}^i > t_{a_n}^j}} (Np_{d_m}(t_{d_m}^i) - \sum_{\substack{t_{a_n}^j \in T_r}} (Np_{a_n}(t_{a_n}^j) \times Pr_{t_{a_n}^j}t_{d_m}^i(d_m|a_n)))$

Number of passengers transferring to a platform

$$Np_{d_{m}}^{transfer}(T_{r}) = \sum_{t_{d_{m}}^{j} \in T_{r}, t_{d_{m}}^{j} > t_{a_{n}}^{i}} \sum_{n=1, n \neq m}^{M} (Np_{a_{n}}(t_{a_{n}}^{i}) \times Pr_{t_{a_{n}}^{i}t_{d_{m}}^{j}}(d_{m}|a_{n}))$$

Number of passengers in a station $Np^{total}(T_r) = Np^{total}(T_{r-1}) + \sum_{\substack{t_{a_m}^i \in T_r }} \sum_{m=1}^M Np_{a_m}(t_{a_m}^i) + Np_{T_{on}}(T_r) - \sum_{\substack{t_{d_m}^i \in T_r }} \sum_{m=1}^M Np_{d_m}(t_{d_m}^i) - Np_{T_{off}}(T_r)$

Case Study

Sydney train network in metropolitan region

- 175 train stations ٠
- 506 platforms .
- 2.9 million time-dependent OD pairs need to be estimated ٠

Blacktown

Annangrove

Dural

Castle-Hill

Baulkham Hills

Constitution Hill

Akuna Bay

Belrose

Frenchs Forest

Allambie Heights

Seaforth

Duffys Forest

St Ives Chase

Gordon

St lves

Chatswood

Mount-Colah

Hornsby

Normanhurst

Beecroft

Epping

Denistone West

Newport

Mona Vale

Collaroy

Manly

Vaucluse

Bronte

Coogee

Elanora Heights

Results: Time-Dependent OD Matrixes

OD matrix heat maps for 11 selected stations

- 3 major stations in CBD (Central, Town Hall, Wynyard)
- 8 interchange stations outside CBD (Redfern, Strathfield, Parramatta, Liverpool, Chatswood, Epping, Bondi Junction, Wolli Creek)

Observations

- More passengers are travelling to the 3 CBD stations in the morning peak hours
- More passengers are travelling from the 3 CBD stations in the afternoon peak hours

Results: Passenger Assignment

An example of passenger flow in Town Hall Station on 8:00AM, 12:00PM and 17:00PM

Observations

- In morning peak hours:
 - Large number of passengers alighting trains and exiting station
 - Large number of passengers transferring from platform 5
 - Large number of passengers transferring to platform 3
- In afternoon peak hours: ٠
 - Large number of passengers entering station and boarding trains
 - Large number of passengers transferring from platform 2
 - Large number of passengers transferring to platform 4

board train from station entry

transfer to other platforms

Conclusion

Main contributions of this work

- A method for estimating time-dependent OD matrix consisting of two steps:
 - Initial OD matrix generation
 - OD matrix calibration
- A method for passenger assignment which can quantify passenger flow at platform level of granularity
- A case study on Sydney train network
 - 175 train stations and 506 platforms
 - 2.9 million time-dependent OD pairs generated

Thank you!