
Agent Trajectory Prediction in Urban Traffic Environments via Deep
Reward Learning

Khaled Saleh1, Adriana-Simona Mihaita2 and Stephan Chalup1

1 School of Information and Physical Sciences, University of Newcastle, Australia
2 Faculty of Engineering and IT, University of Technology Sydney, Australia

Email: khaled.saleh@newcastle.edu.au

Abstract— In this paper, we address the problem of learn-
ing and modelling the behaviours of agents in urban traffic
environments such as pedestrians using their trajectories. Ex-
isting state-of-the-art methods primarily rely on data-driven
approaches to predict future trajectories. However, these ap-
proaches often overlook the influence of the physical envi-
ronment on agents’ decisions and struggle to model longer
sequential trajectory data effectively. To overcome these lim-
itations, we propose a novel hybrid framework in this paper
that uses the attributes of the physical environment to predict
the future trajectory that a travel agent might take on the
road. First, we capture agents’ preferences in various urban
traffic environments using a deep reward learning technique.
Next, leveraging the learned reward map and short past motion
trajectories of the agents, we employ a probabilistic data-
driven sequential model based on transformer networks to
provide robust long-term forecasting of agents’ trajectories.
In our experiments, the proposed framework was evaluated
on a large-scale real-world dataset of agents in urban traffic
environments. Compared to state-of-the-art techniques, our
framework achieves a substantial improvement by a significant
margin.

I. INTRODUCTION

Learning and modelling behaviours of goal-based agents
such as pedestrians, cyclists and motorists in urban traffic
environments have been extensively studied over the past few
years. Recently, planning-based approaches, especially those
based on deep reinforcement learning (DRL) techniques [1],
have been achieving state-of-the-art results on a number of
benchmarks. That being said, almost all of these benchmarks
are based on either a controlled, simulated, or gamified envi-
ronment [2], [3] where the state-space is deterministic and/or
there is a clear reward signal that can encourage/penalize
the agent from performing certain actions. On the other
hand, in a real dynamic environment with its uncertain and
stochastic nature such as the urban traffic environment, the
notion of reward is not quite prevalent. Additionally, when it
comes to goal-based agents, their goals are commonly hidden
(latent) and hard to infer. As a result, when DRL techniques
are transferred from such controlled environments to real
dynamic environments they often face challenges when it
comes to modelling/learning agents trajectories.

In the literature, the problem of modelling agents’ be-
haviours in urban traffic environments is commonly achieved
via predicting their future trajectories which acts as a proxy
for inferring their intentions. Planning-based and data-driven

approaches are considered some of the most commonly used
approaches when it comes to the problem of agent trajectory
forecasting. In planning-based approaches, it is assumed that
the agent is rational and is governed by some hidden goal.
Thus, all planning-based approaches [4]–[6] start first with
a goal inference stage that estimates all potential end goals
for the agent. For example, in [4], they utilised particle filter
and Gaussian Mixture Models (GMMs) for goal inference,
and with the help of a map of the surrounding environment,
they forecast a probability distribution over potential paths
to the estimated goals. On the other hand in data-driven
approaches [7]–[10], and unlike planning-based approaches,
the goals of the agents are not required for their operation,
they directly learn complex behaviours of agents using large
datasets. The majority of data-driven approaches rely on deep
recurrent neural network architectures such as long short-
term memory (LSTM). Despite the capability of LSTMs
to implicitly model and capture the inherent dependency
between the consecutive observations of agents’ trajectories,
they are argued to be inefficient when it comes to modelling
longer sequential data [11], [12]. Furthermore, the majority
of data-driven approaches based on LSTMs were only mod-
elling the interactions between agents, neglecting the effect
of the physical environment on the agents’ actions [7], [13].

Given the limitations of the aforementioned approaches, in
this work, we are proposing a framework that combines the
best of the two worlds of planning-based approaches and
data-driven approaches. We first learn the reward function
of the physical traffic environment by just observing the
demonstrated historical trajectories of agents via the deep
inverse reinforcement learning (IRL) technique. Then, using
the learned reward function alongside short past motion
trajectory of agents, we learn a probabilistic data-driven
sequential model based on the transformer networks archi-
tecture [14] that have been achieving state-of-the-art (SOTA)
results on a number of tasks such as natural language
processing and computer vision.

The remaining sections of this paper are structured as
follows: Section II outlines the problem formulation and
introduces the proposed solution. The datasets employed and
the validation method are elaborated in Section III. Lastly,
Section IV concludes the paper.

II. PROPOSED METHOD

In this section, we first start with our formulation for the
trajectory prediction problem. Then, we present the different
contextual information we took into account as input to
our proposed framework (shown in Figure 1). Then, we
describe the architecture of our proposed context-augmented
transformer model and its implementation details.

A. Problem Formulation

In the formulation for the agent behaviour modelling prob-
lem via trajectory prediction in a traffic environment, we cast
the problem as a probabilistic sequence prediction problem.
Given a sequence of past trajectory observations x as well as
a reward map r that represents the agent’s preference in an
urban traffic environment. In return, we will anticipate the
probability density P(y|x,r) of the agent’s future trajectory y.
In order to achieve a probabilistic sequence prediction model,
we are proposing a novel architecture that is consisting of the
famous transformer networks model with a mixture density
network on top of it [15]. For recovering a reward map that
can accurately capture the agents’ preferences and actions,
we will rely on a deep IRL technique, also known as deep
reward learning [16].

B. Preliminaries

Before we get into the details of the deep IRL technique,
we will be relying on in our proposed methodology. We
start with a brief summary about some of the preliminaries
associated with IRL. The setup for any IRL technique is
mainly governed by some type of Markov Decision Process
(MDP). MDP is a commonly employed framework for
modelling the dynamics of decision-making processes [17].
It provides a structured approach to understanding and opti-
mizing complex systems. At its core, an MDP can be defined
as M = {S,A,T,r}, encompassing the elements necessary
for analysis and decision-making. Here, S represents the
state space of the system, A denotes the possible actions,
T captures the transition model which defines the system
dynamics, and finally r represents the reward function. Op-
erating within an MDP involves navigating through a series
of interconnected states and actions. As the process unfolds,
a sequence of state-action pairs {s0, a0, s1, a1, . . .} emerges.
To guide decision-making, a policy π , is employed, mapping
these sequences as (µ0,µ1, . . .). At any given time t, the
mapping µt(·) specifies the action at = µt(st) to undertake
while in state st . Within an MDP, the ultimate objective is to
discover an optimal policy π∗ that maximizes the expected
sum of rewards accumulated over time. This entails finding
the most effective strategy for achieving long-term goals and
optimizing the decision-making process within the system.

In a real-world setting, we have access to the spec-
ifications of Markov Decision Processes (MDP), ex-
cept for the unknown reward function r. Instead, we
are provided with a collection of demonstrations D =
{ζ0,ζ1, . . . ,ζN} by a demonstrator. Each demonstration tra-
jectory ζi in D consists of state-action pairs, denoted as
ζi = {(s0,a0),(s1,a1), . . . ,(sT ,aT)}. The main objective of

IRL is to recover the reward function r from the given
demonstrations D, which effectively captures the agent’s
preferences. In practical applications, obtaining a reward
function for every action-state pair in D can be challenging,
especially when the state space is extensive. Therefore, a
common approach in IRL methods is to extract a feature
vector f that provides the most relevant characterization for
each possible action based on the available demonstrations
D.

The advantage of the proposed deep MaxEnt over
the traditional MaxEnt technique is that the feature
representation f can be easily learned directly without being
hand-crafted based on prepossessing such as segmentation
and manually defined distance metrics. Additionally, the
weighted linear combination of feature values for reward
approximation in the traditional MaxEnt technique makes
it sub-optimal if the true reward can not be accurately
approximated by a linear model.

C. Deep Reward Learning via IRL

In our work, we will be utilising one of the recent
successful IRL techniques that rely on deep neural networks,
the deep MaxEnt technique proposed in [16], [18] to approx-
imate and characterise each possible action from the set of
demonstrations D. In the traditional MaxEnt IRL technique,
the reward function is determined by combining the feature
values vector f using a weighted linear calculation according
to Eq. 1.

r = h(f ,θ)

= θ
T f

(1)

where θ is the weights of the features vector. On the other
hand, in our proposed deep MaxEnt IRL approach, a deep
neural network takes as an input the state features x and
maps them to state reward r using the proposed deep neural
network (Deep MaxEnt IRL) which is governed by the
network parameters θ1,2,..n according to Eq. 2.

r ≈ h(f ,θ1,θ2, . . . ,θn)

= h1 (h2 (. . .(hn (f ,θn) , . . .) ,θ2) ,θ1) .
(2)

In our use-case, the state features x of our urban-traffic
environment is a bird’s eye view representation image I of
the static scene around our agents. Using the proposed deep
MaxEnt IRL technique, the exponentiated sum of rewards
along the trajectory ζi proportionally determines the proba-
bility distribution of the trajectory ζi, which encapsulates the
preference of our agent of interest. The calculation of ζi can
be easily accomplished using Eq 3 after the substitution in
Eq 2.

P(ζi) ∝ exp ∑
(s,a)∈ζi

rs,a (3)

Hence, our deep reward learning MaxEnt IRL approach
aims to learn a reward function where the log-likelihood
of the observed expert demonstrations D in the training
dataset is maximised. In order to solve this, the log-likelihood

Demonstrated Trajectories

Scene Static Image

Deep Reward Learning via
Deep MaxEnt IRL

Learned Reward Map

𝑆!"#

𝑆$

𝑆%

𝑆#

𝑆&

𝑆!

Trajectory Prediction via
Transformer Networks

Input Birds Eye View Image
and Trajectories

Probability Density
Of Predicted Future

Trajectory

+

Fig. 1. The proposed framework for long-term trajectory prediction of agents in urban traffic environment.

Algorithm 1: Deep Maximum Entropy IRL
input : S,A,T, f ,φζi

output: Optimal set of weights θ̂

θ 1 = IRL initWeights()
for n=1:N do

rn =ConvNet f orward(f ,θ n)
πn = IRL valIter(S,A,T,rn)
φθ = IRL stVisitFreq(S,A,T,πn)
dL n

θ

drn = φζi −φθ

dL n
θ

dθ n =ConvNet backprop(f ,θ n,
dL n

θ

drn)

θ n+1 = IRL weightsU pdate(θ n,
dL n

θ

dθ n)
end

Algorithm 2: IRL valIter
V (s) =−∞

for n=N:1 do
V (sgoal) = 0
Qn(s,a) = r(s,a)+T(s,a,s′) [V n(s′)]
V n−1(s) = soft max

a
Qn(s,a)

end
π(a,s) = expQ(s,a)−V (s)

Algorithm 3: IRL stVisitFreq
φ(sstart) = 1
for n=1:N do

φsgoal = 0
φ n+1

s = ∑s′,aT(s,a,s′)π(a,s′)φ n(s′)
end
φθ = ∑n φ n

s

gradient Lθ can be approximated via the stochastic gradient
descent algorithm as follows:

dLθ/dθ = ∑
ζi∈D

(
φζi −φθ

)
drθ/dθ (4)

where φζi represents the actual frequency of the state visi-
tations (SVF) according to the trajectory ζi demonstrated by
the expert agent and φθ is the expected SVF required by the
MaxEnt policy given the parameters for the current reward
θ . φθ and drθ dθ can be calculated according to Algorithm 1,
2 and 3. From Algorithm 1, the reward rn is obtained
using a deep convolutional neural network (ConvNet) model.
In our implementation, the ConvNet model consists mainly
of convolutional and pooling layers, allowing the learned
reward function to apply to novel unseen urban traffic
environments with different configuration of scene elements.
The backbone of the ConvNet model is the first two residual
blocks of a pre-trained ResNet34 model on ImageNet [19]
which acts as an automatic spatial feature extractor of the
input bird’s eye view representation image I of the static
scene around our agents of interest. The extracted spatial
features are 2D representations corresponding to our state
space S. Since the reward function that captures the agents’
preference in an urban traffic environment does not rely
only on the spatial features. Thus, the history of the agent’s
trajectory needs to be taken into account as input to the deep
ConvNet model. Similar to [20], the scene spatial features
are concatenated with the agents’ motion trajectory, and the
locations of the grid cells which constitute the input feature
maps f to the ConvNet reward model. Internally, within the
ConvNet model and following the first two residual blocks,
the concatenated feature maps f are passed through three
additional convolution layers. The first convolution layer has
a 2×2 kernel size and the last two convolution layers have
a kernel size of 1×1

D. Probabilistic Trajectory Prediction via Transformer Net-
works

Given the learned reward map from the previous section,
we fed it into a novel probabilistic transformer networks
model for the task of agents’ trajectory prediction. Tradi-
tional transformer networks provide deterministic real target
values predictions, however in real-life applications, there

Add & Normalize

Feed Forward

Add & Normalize

Self-Attention

Linear

⊕

Input Embedding

⊕

Past Trajectory

Positional
Encoding

Positional
Encoding

Add & Normalize

Feed Forward

Add & Normalize

Self-Attention

⊕

Input Embedding

⊕

Future Trajectory

Positional
Encoding

Positional
Encoding

Add & Normalize

Encode-Decoder Attention

De
co
de

r

En
co
de

r
MDN

Reward Map ⊕

Fig. 2. The building blocks of our probabilistic transformer networks model.

is an inherent uncertainty in agents’ actions, especially in
urban traffic environments. Thus, in our proposed model,
we combine the traditional transformer network architec-
ture with the mixture density network (MDN) [15] which
provides probabilistic forecasting about agents’ positions
rather than deterministic ones. MDN do so by generating a
weighted sum of multiple probability distributions that take
into consideration the uncertainty associated with agents’
movement in urban traffic environments. Additionally, unlike
the traditional transformer networks model introduced by
Guliari et al. [21] which only considers positional informa-
tion as input information for their model, our probabilistic
transformer networks model exploits the learned reward map
in Section II-C. The rationale behind including the learned
reward map beside the past trajectory information is to model
the preference of agents in different physical parts of an
urban traffic environment that is encoded within the learned
reward map.

The proposed probabilistic transformer networks model
(shown in Figure 2) exhibits the overall architecture, fol-
lowing the same encoder/decoder paradigm commonly found
in LSTM-based approaches. However, it achieves greater
efficiency by eliminating the recurrence loops present in
LSTM networks. The model comprises several main build-
ing blocks, including embedding layers, positional encoding
layers, a self-attention mechanism, fully-connected feed-
forward layers, and an MDN layer. In both the encoder
and decoder stages, the embedding layers, serve the purpose
of embedding the observed past trajectory (along with the
concatenated learned reward map) and the future trajectory

of the agents (only utilized during training) into a higher
dimensional space dmodel .

The embedding layer function acts as learnable linear
transformations facilitated by weight matrices. Similarly,
positional encoding layers, located at the start of the en-
coder/decoder stages, also play a crucial role. Given the
absence of recurrence in the transformer network model,
positional encoding layers introduce the concept of order
in the input/output trajectory data, essentially providing a
time-stamping mechanism. Our model’s encoder and decoder
units consist of a total of 6 blocks, with each block inter-
nally comprising a self-attention head and feed-forward fully
connected sub-layers. Additionally, two residual connections
and a normalization operation follow each sub-layer. The
mapping between the so-called ‘query’ vectors and the (key,
value) vectors is the basis for the functioning of multi-
head self-attention, also known as multi-scaled dot-product
attention. The dimensions of the query and key vectors are
denoted as dk, while the value vector dimension is denoted
as dv. The attention operation itself involves computing the
dot product between the query and key vectors, divided by
the square root of dk, and then passing the result through
the softmax function to obtain the weights. Given that
the scaled dot-product attention operation is performed a
number of times, the query, key, and value vectors are scaled
into matrices Q,K,V respectively. The following formula
describes how the scaled dot-product attention operation is
calculated:

Attention (Q,K,V) = softmax
(

QKT/
√

dk

)
V (5)

Fig. 3. Sample reference images of the bird’s eye view representation of two different scenes from SDD [22].

The encoder stage encodes the embedding input and pro-
duces the matrices of queries, keys, and values as the output,
which are calculated in Equation 5. These matrices are
subsequently transferred to the decoder stage, where, at each
prediction step, the decoder compares its own newly gener-
ated queries matrix with the keys and values matrices from
the encoder, along with the previously decoded prediction.
The decoder then iteratively repeats this procedure until it
achieves all the required predicted positions of the trajectory.
Thanks to the MDN output layer that exists on top of the
decoder block, the final output of the model is the probability
distribution over the future trajectory of the agents. In order
to achieve so, we followed [13], [23], and used the mixture
of Gaussian as our probability density function (PDF) for the
MDN, which is calculated as follows:

P(yt | Nt) =
M

∑
m=1

α
m
t N (yt | µ

m
t ,σm

t ,ρm
t) (6)

α
m
t =

exp(α̃m
t)

∑
M
i=1 exp(α̃m

i)
) ,

σ
m
t = exp(σ̃m

t) ,

ρ
m
t = tanh(ρ̃m

t)

(7)

where α̃m
t is the m-th mixture Gaussian weight of the

PDF, σ̃m
t is the m-th mixture Gaussian variance of the PDF

and ρ̃m
t is the m-th mixture Gaussian correlation of the PDF

to be predicted by our model.

Consequently, the log-likelihood of the normal Gaussian
distribution against the input real-valued training data can be
minimised to achieve the training of the proposed probabilis-
tic transformer networks mode as follows:

L(X) =
T

∑
t=1

− log

(
M

∑
m=1

α
m
t N (yt | µ

m
t ,σm

t ,ρm
t)

)
(8)

where T is the length of the input past trajectory.

III. EXPERIMENTS AND RESULTS

In this section, we will first present the datasets we utilised
for training and evaluating the performance of our proposed
approach. Then, the details of the setup of our experiment
will be outlined. Finally, the quantitative and qualitative
results of our proposed approach on real-life datasets will
be evaluated and discussed.

A. Dataset

The Stanford drone dataset (SDD) [22] (shown in Fig-
ure 3), which is one of the largest datasets used for modelling
agent behaviour, has recently been made publicly accessi-
ble. SDD was created by capturing video footage using a
bird’s eye view camera mounted on a drone, flying over
the vicinity of the Stanford University campus. The dataset
includes annotated bounding boxes for moving targets such
as pedestrians, cyclists, and cars in each frame of the video,
captured at an approximate frame rate of 28 frames per
second. It consists of 60 different scenes, with multiple
targets annotated in the videos.

For our experiments, we focused on scenes that had a
diverse range of agents and also included other static or dy-
namic objects commonly found in urban traffic environments.
These objects include sidewalks, roads/roundabouts, cars,
grass, and buildings. To train, validate, and test our proposed
framework, we used the dataset split defined in the TrajNet
benchmark [24]. Each split, namely training, validation, and
testing, contains different scenes selected from the total 60
scenes available in the dataset. This approach allows us
to objectively assess the performance of our framework,
particularly in unfamiliar scenes that were not seen during
the training phase.

B. Experimental Setup

Similar to the standard approach followed by the previous
techniques introduced in the literature, the past trajectory T
of 3.2 seconds of each agent’s full trajectory in SDD was

TABLE I
PERFORMANCE OF THE PROPOSED FRAMEWORK IN COMPARISON TO

OTHER BASELINE APPROACHES ON THE TEST SPLIT OF SDD [22]. THE

LOWER IS THE BETTER.

Model MinADE 5 MinADE 20 MinFDE 5 MinFDE 20
S-GAN [7] − 27.25 − 41.44
Desire [8] 19.25 − 34.05 −
MATF [9] − 22.59 − 33.53
SoPhie [10] − 16.27 − 29.38
TFDIRL (ours) 18.36 12.85 34.57 21.75

used as an input to our model and a prediction horizon of 4.8
seconds to be forecasted from our model. Following [25], the
adopted frame of reference is from the agent’s perspective
where the x-axis is aligned along the agents’ direction of
motion. For the hyper-parameters of the deep reward learning
ConvNet model, the input bird’s eye view image’s resolution
is 200×200. On the other hand, for the hyper-parameters of
the proposed probabilistic transformer networks model, we
chose dmodel to be 512 and we utilised 8 self-attention heads
in both the encoder and decoder stages. We trained both the
deep reward learning model and the probabilistic transformer
networks model for 250 epochs using Adam optimiser with
a learning rate of 0.001.

C. Experimental Results

To quantitatively evaluate the performance of our proposed
probabilistic framework, we require a metric to measure the
deviation of predictions from the actual future trajectory. Our
model, with the assistance of the MDN layer, can generate
M mixtures from a Gaussian distribution. Therefore, we
need a metric that does not penalize reasonable trajectories
generated by the model, even if they do not precisely match
the ground truth. Thus, we utilise two metrics, namely, the
minimum of M average displacement error (MinADEM) and
the final displacement error (MinFDEM), which are similar
to metrics used in previous studies on trajectory forecast-
ing [7]–[10]. MinADEM (Equation 9) calculates the average
prediction error, considering the L2 norm between the ground
truth future trajectory and the closest forecasted trajectory.
Conversely, MinFDEM only focuses on the prediction error
for the final predicted location.

MinADEM = min
i∈{1,...,M}

1
Tf

Tf

∑
t=1

∥∥∥yGT
t − y(i)t

∥∥∥
2

(9)

In the literature, the majority of the works [7], [9], [10]
have reported MinADEM and MinFDEM on SDD for M=20,
the only exception was the approach introduced in [8], which
only reported results for M=5. Thus, we report our results
in Table I for both M values of 5 and 20. Additionally, we
have compared our framework (TFDIRL) with prior developed
models that represent the state-of-the-art (SOTA) for the
SDD. It is worth noting that the error values reported are
in pixels.

The first baseline model is the Social-GAN (S-GAN) [7],
which was one of the SOTA techniques for pedestrians’

TABLE II
ABLATION STUDY ON THE EFFECT OF LEARNED REWARD ON THE

PERFORMANCE OF OUR PROBABILISTIC TRANSFORMER NETWORK

FRAMEWORK USING THE TEST SPLIT OF SDD [22]. THE LOWER IS THE

BETTER.

Model MinADE 5 MinADE 20 MinFDE 5 MinFDE 20
TFVanilla 19.61 13.32 36.97 22.19
TFDIRL (ours) 18.36 12.85 34.57 21.75

trajectory prediction in crowded spaces. S-GAN model, as
the name implies, relies on Generative Adversarial Networks
(GANs) to capture and generate socially-acceptable trajecto-
ries exploiting the interactions between pedestrians on side-
walks. The second baseline model is the Desire framework
introduced in [8], which is a conditional generative model.
In Desire, it tries to map the input context and a sample from
a simple latent distribution to a trajectory output. The third
baseline is the SoPhie [10] approach which is another con-
ditional generative model similar to the Desire framework.
The last baseline is the MATF [9] approach, which encodes
multiple agents’ past trajectory and the scene context into
a so-called ‘Multi-agent Tensor’, then applies convolutional
fusion to capture the social interactions between agents.

D. Performance Evaluation

As it can be shown from Table I, our proposed TFDIRL
framework has achieved resilient results in terms of MinADE
5 and MinADE 20 and it has outperformed almost all of
the baseline models. The only exception was only for the
MinFDE 5 of the Desire approach which was slightly better
than our proposed TFDIRL framework. In order to further
evaluate the performance of our proposed framework, In
Table II, we are performing an ablation study to validate
whether the learned reward map has actually made a differ-
ence in the overall performance of our proposed probabilis-
tic transformer network framework. Thus, we have trained
another version of our probabilistic transformer network
framework, but without taking into account the learned
reward map as an input. We refer to this version of the
model as TFVanilla. As it can be shown in Table II, our
TFDIRL framework continued to achieve better results than
the TFVanilla which proves the importance of the learned
reward map on the overall performance of our proposed
probabilistic transformer network framework

IV. CONCLUSION

In this work, we have proposed a modular framework for
the problem of agents’ behaviour modelling via trajectory
prediction in urban traffic environments using deep reward
learning. We cast the problem as a sequence probabilis-
tic prediction problem, where we first start by learning a
reward map that encapsulates the preference of agents in
urban traffic environments. The reward map was learned
using a deep convolution neural network and an inverse
reinforcement learning technique. The learned reward map
along with the past agents’ trajectories was passed as an

input to a novel probabilistic transformer network model
that can provide a multi-modal probability distribution over
the agents’ most probable future trajectories. The proposed
framework was evaluated using two different evaluation
metrics on a large-scale real-world dataset of agents in urban
traffic environments and it has achieved resilient results.
Moreover, the proposed framework was compared against
five different state-of-the-art techniques from the literature
and it outperformed them by a large margin. In our future
work, we will try to explore other sensor modalities other
than RGB images to be the input to our framework such
as thermal images, LiDAR, RADAR and/or hyper-spectral
satellite images.

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[2] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering
the game of go without human knowledge,” nature, vol. 550, no. 7676,
pp. 354–359, 2017.

[3] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, 2015.

[4] E. Rehder and H. Kloeden, “Goal-directed pedestrian prediction,” in
Proceedings of the IEEE International Conference on Computer Vision
Workshops, 2015, pp. 50–58.

[5] B. D. Ziebart, N. Ratliff, G. Gallagher, C. Mertz, K. Peterson,
J. A. Bagnell, M. Hebert, A. K. Dey, and S. Srinivasa, “Planning-
based prediction for pedestrians,” in 2009 IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, 2009, pp. 3931–
3936.

[6] K. M. Kitani, B. D. Ziebart, J. A. Bagnell, and M. Hebert, “Ac-
tivity forecasting,” in Computer Vision–ECCV 2012: 12th European
Conference on Computer Vision, Florence, Italy, October 7-13, 2012,
Proceedings, Part IV 12. Springer, 2012, pp. 201–214.

[7] A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi, “Social
gan: Socially acceptable trajectories with generative adversarial net-
works,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018, pp. 2255–2264.

[8] N. Lee, W. Choi, P. Vernaza, C. B. Choy, P. H. Torr, and M. Chan-
draker, “Desire: Distant future prediction in dynamic scenes with in-
teracting agents,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2017, pp. 336–345.

[9] T. Zhao, Y. Xu, M. Monfort, W. Choi, C. Baker, Y. Zhao, Y. Wang,
and Y. N. Wu, “Multi-agent tensor fusion for contextual trajectory
prediction,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019, pp. 12 126–12 134.

[10] A. Sadeghian, V. Kosaraju, A. Sadeghian, N. Hirose, H. Rezatofighi,
and S. Savarese, “Sophie: An attentive gan for predicting paths
compliant to social and physical constraints,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2019, pp. 1349–1358.

[11] S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling,” arXiv
preprint arXiv:1803.01271, 2018.

[12] K. Saleh, “Pedestrian trajectory prediction for real-time autonomous
systems via context-augmented transformer networks,” Sensors,
vol. 22, no. 19, p. 7495, 2022.

[13] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and
S. Savarese, “Social lstm: Human trajectory prediction in crowded
spaces,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 961–971.

[14] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in
Advances in neural information processing systems, 2017, pp. 5998–
6008.

[15] C. M. Bishop, “Mixture density networks,” 1994.

[16] B. D. Ziebart, A. L. Maas, J. A. Bagnell, A. K. Dey et al., “Maximum
entropy inverse reinforcement learning.” in Aaai, vol. 8. Chicago, IL,
USA, 2008, pp. 1433–1438.

[17] R. Bellman, “A markovian decision process,” DTIC Document, Tech.
Rep., 1957.

[18] M. Wulfmeier, P. Ondruska, and I. Posner, “Maximum entropy deep
inverse reinforcement learning,” arXiv preprint arXiv:1507.04888,
2015.

[19] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770–778.

[20] Y. Zhang, W. Wang, R. Bonatti, D. Maturana, and S. Scherer,
“Integrating kinematics and environment context into deep inverse
reinforcement learning for predicting off-road vehicle trajectories,”
arXiv preprint arXiv:1810.07225, 2018.

[21] F. Giuliari, I. Hasan, M. Cristani, and F. Galasso, “Transformer
networks for trajectory forecasting,” in 2020 25th International Con-
ference on Pattern Recognition (ICPR). IEEE, 2021, pp. 10 335–
10 342.

[22] A. Robicquet, A. Sadeghian, A. Alahi, and S. Savarese, “Learning
social etiquette: Human trajectory understanding in crowded scenes,”
in European conference on computer vision. Springer, 2016, pp.
549–565.

[23] K. Saleh, M. Hossny, and S. Nahavandi, “Contextual recurrent predic-
tive model for long-term intent prediction of vulnerable road users,”
IEEE Transactions on Intelligent Transportation Systems, vol. 21,
no. 8, pp. 3398–3408, 2019.

[24] A. Sadeghian, V. Kosaraju, A. Gupta, S. Savarese, and A. Alahi,
“Trajnet: Towards a benchmark for human trajectory prediction,” arXiv
preprint, 2018.

[25] N. Deo and M. M. Trivedi, “Trajectory forecasts in unknown
environments conditioned on grid-based plans,” arXiv preprint
arXiv:2001.00735, 2020.

