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ABSTRACT1
Estimation of the large-scale demand estimation for public transport in different cities can vary2
depending on the public transport network, public transport modes, and traffic data. To overcome3
the issue of traffic data shortage and effectively estimate the Origin-Destination (OD) matrix, we4
use the most accessible data: total boarding and alighting and public transport timetable, to capture5
the public transport dynamic patronage, and from this perspective, we establish a dynamic and6
microscopic OD matrix for public transport. In this paper, we propose a new method to model7
the dynamic large-scale stop-by-stop OD demand for public transport by developing a boosting8
of the gravity model via graph theory and Shannon’s entropy. First, we propose a novel cost9
matrix estimation method that considers various sources of travel cost features extracted from10
both the traffic flow information in the traffic network and topological information in the graph11
network. Secondly, we proposed an “Ensemble Cost Matrix Weighted by Entropy” method to12
estimate the best weights of importance for each feature using Shannon’s Entropy to maximise13
the performance of the cost matrix in OD matrix estimation. Third, we validate the proposed14
approach using real smart-card data. Last, by comparing the effectiveness of our proposed method15
with the traditional deterrence function-oriented methods, we prove that our proposed cost matrix16
estimation method cooperated OD matrix modelling method is superior in accurately OD matrix17
estimation to traditional methods by almost 54.46% according to RMSE, 84.44% according to18
MAPE, and 85.09% according to MAE.19

20
21

Keywords: Public transport, Dynamic origin-destination estimation, Entropy, Cost matrix estima-22
tion, Gravity model23
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INTRODUCTION1
Background2
Demand estimation aims to understand the current and future usage of transport modes so that the3
designed transport management and operation schemes can be leveraged well to fit the realistic4
traveller’s demand in the network. Therefore, techniques for the demand estimation modelling5
have become a critical task that has been attracting attention since the last century (1). One of6
the essential parts of the travel demand estimation is the origin and destination (OD) estimation7
or the travel pattern estimation, which demonstrates the trip distribution and the travel pattern by8
OD pairs in the network. Among the biggest research contributions regarding the OD estimation9
method, the gravity model, derived from the gravity law, was introduced in 1931 by (2) to capture10
the relationship between the trip distribution and the microscopic zonal demand (1). The model11
follows the rule that the number of trips between an OD pair is direct proportional to the total num-12
ber of trips at an origin or destination, and negative correlated to the travel costs between groups13
(detailed modelling method is presented in the Section of Methodology). Since its appearance in14
the scientific community, the gravity model has maintained its attractiveness to researchers due to15
its ease of computing and converging.16

Challenges for public transport OD estimation: Most related applications to the OD17
estimation have focused on private vehicles rather than on public transport (3–6). This is due18
to the large share of car travelling, as it is commonly believed that driving a personal car can19
offer a flexible, comfortable and efficient travelling experience. In addition, driving also matches20
the major personal, cultural and psychological significance (7). The benefits of driving individual-21
owned cars and the negative experiences related to public transport utilisation, such as long waiting22
times, transfer distances, delays or crowding, have the travellers give up on using public transport23
across multiple countries.24

In addition, the data source for estimating car OD is more accessible than that for public25
transport. Data such as traffic counts (3, 4, 8) has been applied in demand modelling; nevertheless,26
the data for estimating the public transport demand, such as the number of boarding and alight-27
ing or loading (9), has only been collected and released since the recent introduction and use of28
smart-cards for tapping on and off from public transport modes. In the field of demand estimation29
for public transport, it is more reliable to estimate at an individual trip level, though there is a30
common alternative which is to estimate using the average number of in-vehicle travellers based31
on vehicles(1, 10).32

Another problem that discourage work around an accurate estimation for the public trans-33
port OD estimation is the network complexity. Unlike travelling by car, public transport trips are34
limited by pre-defined routes and timetables, where the network graph is dynamically changing in35
time and location. When considering the public transport OD matrix for a mesoscopic or micro-36
scopic transport modelling, the stop-based OD matrix is required. However, the use of stops at37
the OD matrix is usually translated into a large OD matrix (reaching millions of OD pairs) which38
inherently drags a significant increase in computing.39

The other complexity is that each public transport mode in a city (trains, buses, ferries40
light-rails) might have different operators or different ticketing systems: for example, people need41
to tap-on and tap-off on train trips but they need to only tap-on for bus trips or ferries which can42
lead to missing the last part of travel segment when people get off without tapping off. Integrating43
together multiple data sets of various public transport modes represents a great challenge across44
multiple cities around the world, and often transport agencies need to make estimations using45
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missing and incomplete information; this severely affects the future planning of public transport1
services, as it leads to a wrong demand across the city. Having an integrated approach for multiple2
modes is one of our major expectations, however, due to the data availability issue, we only include3
the bus network in this paper. The dynamic OD matrix estimation method has the potential to be4
extended to include more transport networks. Details will be explained in Section of Conclusion.5

Related works: When estimating the OD matrix for public transport, the travel cost which6
influences the number of trips is also vital (1). Such travel cost is also known as the friction factor7
(11) or the friction and travel matrix cost matrix if we consider the independent friction by OD pairs8
(12). The travel cost has then been found to perform better by fitting it to a deterrence function -9
the most popular being the exponential, the power and the Tanner functions (1, 12, 13). However,10
the parameter estimation for the deterrence function appears challenging as such estimation also11
relies on an iterative updating in the same way as the OD estimation method (13, 14). In terms12
of features, the most popular features in the literature are the travel cost, the travel distance (3–6)13
followed by the travel time (15). The cost matrix derived from a single travel cost feature is known14
as a single feature cost matrix.15

In practice, the number of trips by public transport also depends on the features such as16
the fare cost, the waiting time to catch the service, the transfer time in between stops or the level17
of occupancy in the public transport service (7). The cost matrix used in an OD estimation then18
becomes a fusion cost matrix that includes multiple cost features (7, 14, 16, 17). The above cost19
features are all related to the traffic states; in our work presented in this paper, we consider in20
addition to these traffic states, the trip distribution is also associated with the network topology21
because the geometric properties affect the node and the link capacity as well as the passenger22
accessibility in the network, which can influence the link travel capacity and travel efficiency.23
Especially when considering a dynamic cost matrix, the pre-defined timetable can interfere with24
a timely access for travellers in specific locations. Therefore, this intuition raises our initiative25
to employ the topological features as well for the cost matrix estimation, as this will reflect the26
network accessibility and the inter-modality between all modes inside an interconnected public27
transport graph. The graph theory-oriented features have not been explored extensively in the28
past, exceptions being some recent studies regarding the analysis of the network vulnerability (18–29
20); only one recent study has explored their potential by separately using the betweenness and the30
travel time as travel costs (15). However, in this work, we present an integrated modelling approach31
based on the graph theory and traffic state features to capture all structural and behavioural aspects32
of public transport utilisation.33

Originality of this work: Following the integration of multiple cost features, estimating34
their weights becomes another challenge. To address this challenge, different methods have been35
used in previous works, as summarised below:36

• Weighted by a friction factor: this was derived by directly weighting the travel cost by37
pre-defined factors, such as early or late arriving time (16), or wight by a ratio of the38
distance between origin to the centre of the zone over the distance between zonal centre39
to destination (21).40

• Weighted by deterrence function fitting: this method was triggered by converting the41
travel cost into the form of a deterrence function and iteratively finding the suitable pa-42
rameter for each feature’s deterrence function (13).43

• Weighted by data-driven methods: have originated from historical data processing by us-44
ing further optimisation functions, regressions, machine learning models or deep learning45
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algorithms (9, 22–27).1
In line with the method of weighting by the friction factor, the entropy measurement has2

the potential to estimate accurately the friction factor (28). Entropy was initially proposed in the3
information theory in order to quantify a system’s uncertainty. It measures the average amount4
of information required to draw an outcome from a probability distribution. In the cost matrix5
estimation, the entropy measures the average level of the travel cost feature (information) required6
to possibly indicate that such a feature can actually discourage trips. However, the entropy measure7
has only been used in ranking or for evaluation purposes in the current literature (18, 28–30); to8
the best of our knowledge, no publication indicates the feasibility of using the entropy to rank the9
travel cost features and the advantage of using the entropy weighted cost matrix in OD estimation.10

Contributions summary:11
In this paper, we propose an approach to dynamically estimate the OD matrix for public transport12
based on the gravity model boosted by an entropy-weighting of the feature cost matrix. The pro-13
posed model is established at a microscopic level, and the OD trip matrix is constructed at a public14
transport stop-by-stop level. The required inputs of our model are represented by the Generation15
and Attraction (GA) vectors and the cost matrix, where the GA vectors are acquired from histor-16
ical smart-card data, and the cost matrix is captured from the General Transit Feed Specification17
(GTFS) data. The calibration of the cost matrix requires a selection of methods that are able to ease18
the computing time and consider multiple key travel cost features. We propose an entropy-based19
ensemble cost matrix estimation algorithm that incorporates multiple travel cost features (derived20
from the traffic state and graph theory modelling), and weights them by their importance in the21
network; such importance is measured by the entropy calculation of each feature. Another two22
cost matrix estimation methods, namely the single feature cost matrix and the deterrence function-23
based cost matrix, are also provided in this paper in order to display the impact of the cost matrix24
on the accuracy of our proposed new OD estimation approach.25

To summarise, the main theoretical and methodological contributions of this paper are the26
following:27

• we propose a new framework for the dynamic stop-by-stop OD estimation for large-scale28
public transport by using the boosted gravity model,29

• we construct a new entropy-based ensemble cost matrix by considering the impact of30
multiple features from the public transport network, including traffic features and graph31
topological features (such as connections, closeness, straightness and efficiency),32

• we validate and evaluate the performance of the new cost matrix and the cost matrix33
calibration method by using large-scale smart-card data,34

• we showcase the significant improvement in terms of RMSE, MAPE and MAE of our35
approach which outperforms classical methods.36

Paper Structure37
The rest of this paper is organised as follows: in the Section of Methodology we present the frame-38
work of the large-scale stop-by-stop OD estimation for public transport. The details of the boosted39
gravity model-based are further highlighted in Section of Public transport OD Estimation using40
the Gravity Model, followed by the methods of the cost matrix estimation, including the tradi-41
tional methods of Single Feature Cost Matrix and Deterrence function-based Fusion Cost Matrix42
from multiple features against the proposed method of Entropy-based Ensemble Cost Matrix from43
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multiple features. The application of the proposed Entropy-based Ensemble Cost Matrix from mul-1
tiple features algorithm to a real network is presented in Section of Case Study with the Results of2
the case study to demonstrate the performances of different cost matrix estimations. Finally, the3
research Conclusion is provided to clarify the research limitations and offer future directions in4
this field.5

METHODOLOGY6
Modelling framework7

Stage 1: Trip genera�on and a�rac�on vector es�ma�on Stage 3: OD matrix es�ma�on

Stage 2: Cost matrix es�ma�on

Stage 0: Data layer

Step 5: 
Evalua�on

Step 2: Data processing for 
dynamic travel cost features

Step 3: Dynamic cost matrix
ensemble analysis by various

analy�cal methods

Step 4: Gravity model -
based OD es�ma�onSmart card data

Public transport GTFS 
data

Internal storage 1: 
Dynamic stop-based

trip GA vectors

Internal storage 2: 
Topological features

• Connec�ons
• Closeness
• Straightness
• Efficiency

Internal storage 3: Traffic 
features

• Fare cost
• Distance
• Travel �me

Internal storage 4: Dynamic weighted ensemble 
cost matrix by various analy�c methods

Output 2: MAE, RMSE and
MAPE for OD es�ma�on

based on various cost
matrix modelling

Output 1: Dynamic stop-by-
stop OD matrix for public

transport

Method 1: Single 
Feature Cost

Matrix modelling

Method 2: 
Deterrence

Func�on-based
Fusion modelling

Method 3 
(proposed):

Entropy-based
Ensemble
modelling

Method 1: 
MAE

Method 2: 
RMSE

Method 3: 
MAPE

Step 6: Choosing the best cost 
matrix modelling method

according to errors valua�on

Step 1: Data aggrega�on

Dynamic total
boarding and

alighting

FIGURE 1 The framework of our proposed dynamic stop-by-stop OD estimation for large-
scale public transport.

Figure 1 showcases our new proposed modelling framework for dynamically estimating8
the stop-by-stop OD matrix. The framework consists of three stages: at Stage 0 we collect, filter9
and clean all the input data-sets (such as the smart-card data and the public transport GTFS data -10
Global Transit Feed Systems data). At this stage, we include not only the smart-card data but also11
the integrated total number of boarding and alighting, which indicates the data of the total number12
of tap-on and tap-off at each stop. The boarding and alighting data is an ideal alternative to smart-13
card data that can be available for all situations because the total loading data can be collected either14
by automatic ticket collection systems or on-site counting. With the total boarding and alighting15
data, it is also able to establish a microscopic stop-by-stop OD estimation for public transport by16
using our proposed modelling method. Therefore, a solid arrow is used in the figure to indicate17
the processing sequence of using the smart-card data, while a dashed arrow from total boarding18
and alighting data indicates that this is an alternative; at Stage 1 we aggregate the smart-card data19
into trip generation and attraction vectors, which is the total loading information at all stops; at20
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Stage 2 we propose a cost estimation by the entropy algorithm (method 3) to combine and evaluate1
the impacts of various travel cost features, where three ensemble analysing methods are contained,2
namely: the Single Feature Cost Matrix, the Deterrence function-based Fusion Cost Matrix from3
multiple features and the Entropy-based Ensemble Cost Matrix from multiple features; at the final4
Stage 3 we employ the gravity model for the OD estimation and further validate the feasibility5
of the proposed cost matrix calibration method inside the section Entropy-based Ensemble Cost6
Matrix from multiple features.7

Public transport OD Estimation using the Gravity Model8
For public transport such as buses or trains, the unit of its OD matrix is defined as the number of9
passengers, and the content of the OD matrix is the total number of passenger trips. Unlike the10
OD matrix for cars, the origins and destinations for the public transport network are the public11
transport stops.12

Adjacency Matrix: The existence of trips between each OD pair depends on the available
paths that are predefined for routing the public transport in the network. Therefore, the public
transport network is defined as a Space L’ graph, where the nodes are represented by the public
transport stops and the links between nodes are the routes between any public transport stops. In a
graph of Space L’, different edges represent different links used in different networks with different
directions (31). To capture the nature of dynamic timetables, such information is recorded in a
time-dependent adjacency matrix:
H(t) = [hmi,n j(t)], i, j = {1 . . .J},m,n = {1 . . .N}, (1)
where J is the total number of statistical areas inside the sub-network; N represents the total number
of public transport stops in the network; and

hi, j(t) =

{
1, if (i, j) is an accessible link at t,
0, otherwise

(2)

The gravity model: The number of time-dependent trips made by a public transit mode PT
is obtained based on the placement and existing routing between public transport stops. Therefore,
the total number of trips departing from an origin stop m ∈ {1 . . .N} to a destination stop n ∈
{1 . . .N} can be calculated based on the Gravity Model with a given total number of trips departing
from the origin stop m by a mode pt, denoted by opt

mi , and that of trips arriving at a destination stop
n by mode pt, denoted by dpt

n j . The public transport trip matrix can be represented by ODpt(t) =
[odpt

mi,n j
(t)], i, j = {1 . . .J},m,n = {1 . . .N}. The total number of trips departing is also known as

the trip generation, while the total number of trips arriving is known as the trip attraction in the
traditional four-step OD estimation. The most common form of the Gravity model is expressed as:

odpt
mi,n j

(t) = Apt
mi
(t) opt

mi
(t)Bpt

n j
(t)dpt

n j
(t) f

(
cpt

mi,n j
(t)
)
, (3)

where Apt
mi and Bpt

n j represent the time-dependent weights towards the total number of origins (opt
mi)13

by public transport and the total destinations (dpt
n j ), respectively; f

(
cpt

mi,n j

)
is the deterrence function14

that represents the time-dependent travel cost between two zones by a mode pt; the origin stop m15
belongs to the origin zone i while the destination stop n belongs to the arrival zone j.16

The constraints: To enable the estimated trips to match the real number of trips, there are
two constraints employed in the Gravity model. Firstly, the total number of departures by a public
transport mode from a public stop m should be equal to the sum of trips that originate from that
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particular stop to each possible destination stop n:

opt
mi
(t) =

N

∑
j=1

odpt
mi,n j

(t), (4)

and secondly, the total number of trips taken by public transport arriving at a stop n at the time
interval t equals the sum of trips that terminate at that particular destination from all possible
origin stops m:

dpt
n j
(t) =

N

∑
i=1

odpt
mi,n j

(t) (5)

The parameters: The time-dependent weights (Apt
mi and Bpt

n j) are the parameters of the Grav-
ity model that are estimated iterativly. The estimation equations can be transformed from Equa-
tion 3 and Equation 4 to:

Apt
mi
(t) =

1

∑
N
j=1 Bpt

n j(t)d
pt
n j (t) f

(
cpt

mi,n j(t)
) (6)

and from Equation 3 and Equation 5 to:

Bpt
n j
(t) =

1

∑
N
i=1 Apt

mi(t)A
pt
mi(t) f

(
cpt

mi,n j(t)
) (7)

The criterion: The criterion of the convergence follows either the maximum number of
iterations which have been reached:
r ∈ {1, ...,rmax}, (8)
or the functions of acceptable distance between iterative count r and r+1:

ccpt ≥ max
i, j

(
max

i

(
Apt,r+1

m,i −Apt,r
m,i

Apt,r+1
m,i

)
, max

i

(
Bpt,r+1

n, j −Bpt,r
n, j

Bpt,r+1
n, j

) )
(9)

where ccpt is the criteria of convergence that defines the acceptable distance of the last two time-1
dependent weights, and r is the count of iterative calculations. The rmax used in this research is2
defined as shown in Iterative OD estimation configuration of Section 4.3.3

GA vector estimation4
The trip generation and attraction (GA) estimation is known as the first step in the traditional
four-step demand estimation. This step aims to produce a GA vector that can be used as the
total number of departing trips (dpt

n j ) and total arriving trips (opt
mi) in the gravity model-based OD

matrix estimation. As introduced in (1), in practice, the GA vector is initially obtained from the
demographic data through a regression analysis. For our research study, the total generation from
a stop is the total number of departing trips; thus, the vector of generation is the total number of
tap-ons at each stop. While the total attraction of a stop is the total arriving trips; thus the vector
of attraction is the total number of tap-offs at each stop. Therefore, the GA vector can be captured
from historical smart-card tap-on/tap-off data, as following:

opt
mi
(t) =

N

∑
j=1

odpt,historical
mi,n j

(t), (10)

dpt
n j
(t) =

N

∑
i=1

odpt,historical
mi,n j

(t) (11)

and the GA vector can be represented as GApt
mi,n j = [opt

mi,d
pt
n j ].5
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Single Feature Cost Matrix1
In the OD estimation method via the Gravity model, the friction factors for each OD pairs are
required. Such factors work as the negative function that limits the number of trips generated from
origins to destinations in a network. Since the factors’ values vary at each OD pair, it often appears
as a matrix form and is normally known as the friction matrix. In practice, the friction matrix can
be derived from travel costs such as trip length (ctl,pt

mi,n j) or travel time (ctt,pt
mi,n j):

Cpt(t) =
[
cpt

mi,n j
(t)
]

(12)
where i, j = {1 . . .J},m,n = {1 . . .N}. When calibrating the friction matrix that is subjected to2
the trip length, the common method is to iteratively adjust the parameters until the observed, and3
estimated travel cost distribution match each other (11). However, since the availability of General4
Transit Feed Specification (GTFS) (32) data, the public transport routing physical features such5
as travel time and travel distance is known and can be used to define a single feature cost matrix6
directly.7

Deterrence function-based Fusion Cost Matrix from multiple features8
In line with the travel cost-affected OD estimation, the deterrence function is proposed to better9
estimate the disincentives of travelling between any OD pair. We first employ a deterrence function10
with the Tanner form in this section: f

(
cpt

mi,n j

)
, where the disincentives are related to: the public11

transport cost regarding the traffic features containing a) the fare cost (c f ,pt
mi,n j), b) the travel speed12

(cts,pt
mi,n j), c) the travel distance (ctd,pt

mi,n j) as well as the topological features including d) connection13

(ccn,pt
mi,n j), e) closeness (ccl,pt

mi,n j), f) straightness (cst,pt
mi,n j) and g) efficiency (ce f ,pt

mi,n j ) in this research study.14
Therefore, the deterrence function taking a Tanner function form that combines the impact

of multiple types of travel costs can be represented by:

f
(

cpt
mi,n j

)
=

R

∑
i=1

(cr,pt
mi,n j

)α e−βcr,pt
mi,n j (13)

where r ∈ {1 . . .R} represents different travel costs.15

Entropy-based Ensemble Cost Matrix from multiple features16
In a cost matrix estimation by using the deterrence function, the function parameters are optimised17
iteratively, which costs a lot of computing time. Our proposed method is a first initiative to consider18
both the topological features (the degree which is the connection between nodes, the closeness19
between nodes, the straightness of links and the travel efficiency in the network) and the traditional20
traffic features (fare cost, travel speed and travel distance) for effectively estimating the cost matrix.21
Such a feature fusion method is derived from the principles of Shannon’s entropy (33, 34) which22
has been used for feature ranking (see (28–30, 35)). In this way our current research study makes23
a further step and applies the entropy when weighting various travel costs and evaluating their true24
importance for the final trip demand estimation process.25
In the following, we detail our proposed boosted estimation method via Shannon’s entropy:26

Network representation: The transport network is captured by an unweighted non-directed27
graph which we denote G = (V,E), and which follows the Space L’ representation. The set of28
vertices is represented by V (G) = {v1,v2, . . . ,vm}, while the elements of E are the edges following29
E(G) = {e1,e2, . . . ,el}. For a public transport mode pt, let Gpt be the graph where V pt is the set30
of vertices, and E pt is the set of edges.31
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Travel cost feature representation: Each network has its unique topological feature re-1
flected by centrality and global characteristics (see (36)). Currently, the most used centrality mea-2
sures in the literature are the degree of each node, also known as the connection between each OD3
pair, closeness between each OD pair, straightness of each OD pair and network efficiency in re-4
lation to the shortest travel distance between each OD pair. The details of the topological features5
are described in Section 3.2.5. In this research, the travel cost feature representations also include6
the traffic features such as the fare costs, the travel distance and time. Therefore, the travel cost7
features of the graph G includes both topological and traffic features, which are further represented8
by C(G) = {c1,c2, . . . ,cq}.9

According to the graph features, the matrix following travel cost features (c j) by nodes (vi)
can be expressed as:

S =

s(v1,c1) s(v1,c2) . . . s(v1,cq)
. . . . . . . . . . . .

s(vm,c1) s(vm,c2) . . . s(vm,cq)

 (14)

where for each value of the cell, s is the travel cost value defined by the location, which is the10
public transport stop v (ordered as 1 . . .m), and the travel cost feature c, either topological or traffic11
features (represented by 1 . . .q). In this way, for each row in this matrix, the row number represents12
the stop name; for each column, the column name represents either topological or traffic features.13
Therefore, the s(v1,c1) means the value of the first travel cost feature for the first stop, and s(v1,c2)14
is the value of the second type of travel cost feature for the first stop.15

Standardised topological feature-based matrix: To standardised a feature r for each node
(public transport stop), the ratio is estimated by using the mathematical formula below:

ui,r =
si,r −min(si,r)

max(si,r)−min(si,r)
(15)

Thus, the standardised topological feature matrix is denoted as:

U =

 s(v1,c1)u1,1 s(v1,c2)u1,2 . . . s(v1,cq)u1,q
. . . . . . . . . . . .

s(vm,c1)um,1 s(vm,c2)um,2 . . . s(vm,cq)um,q

 (16)

Entropy weighted topological measure: According to Shannon’s entropy (see (28, 33, 34)),
the ratio of each standardised topological feature s(vm,cq)um,q is denoted by pi,q, where:

pi,q =
s(vm,cq)um,q

∑
Q
q=1 s(vm,cq)um,q

(17)

which helps us to further estimate the entropy of each topological measure is denoted by:

Iq =−K
N

∑
i=1

pi,q log(pi,q) (18)

Therefore, by updating Equation 16, the weight of each topological feature can be ex-
pressed as:

wq =
1− Iq

∑
n
q=1 (1− Ii,q)

(19)

and the weighted standardized topological feature matrix now becomes:

V =

 s(v1,c1)u1,1w1 s(v1,c2)u1,2w2 . . . s(v1,cq)u1,qwq
. . . . . . . . . . . .

s(vm,c1)um,1w1 s(vm,c2)um,2w2 . . . s(vm,cq)um,qwq

 (20)
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Topological Features1
As mentioned in the Sections 3.2.3 and 3.2.4, with the exception of the connection derived from2
the adjacency matrix, other topological cost features that are normally used in the graph theory are3
further selected to boost the accuracy of the cost matrix. These topological cost features are typical4
network characteristics such as the connection, closeness, straightness and efficiency are used in5
this research study. Such features reflect the travel distance-related characteristics that influence the6
route choice of passengers. The definition of each feature is expressed via the following equations,7
as discussed in (36):8

Closeness: is the characteristic defining the total travel distance from a given node to all
other accessible nodes in the network and is expressed as:

ccl,pt
mi,n j

=
1

∑
J
m j=1 dmi,n j

(21)

where dmi,n j indicates the travel distance on predefined bus routes, which is the shortest path trav-9
elled by bus.10

Straightness: is the feature displaying the ratio of the Euclidean distance (dEucl
mi,n j

) over the
shortest travel distance following the bus routes.

cst,pt
mi,n j

=
J

∑
m j=1

dEucl
mi,n j

dmi,n j

(22)

Efficiency: is the property calculated by using the shortest travel length between each node
pairs.

cst,pt
mi,n j

=
1

N(N −1)

J

∑
m j=1

1
dmi,n j

(23)

OD Matrix Evaluation11

Assuming that the estimated OD matrix using our proposed approach is denoted as [ ˆODt ], while
the observed one is [ODt ], then the OD estimation accuracy in this research is measured by using
the following three performance metrics:
Mean Absolute Error (MAE):

MAE =
1
N

N

∑
n=1

∣∣[ ˆODt ]− [ODt ]
∣∣ (24)

where n represents the public transport stop and N is the total number of stops in the network.
Root Mean Square Error (RMSE):

RMSE =

√
1
N

N

∑
n=1

(
[ODt ]− [ ˆODt ]

)2 (25)

Mean Absolute Percentage Error (MAPE):

MAPE =
1
T

T

∑
t=1

∣∣∣∣ [ODt ]− [ ˆODt ]

[ ˆODt ]

∣∣∣∣ (26)

where t is the iteration number and T represents the total number of iterative times.12
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CASE STUDY1
Geography and Data Information2
The zones covered in the study are located to the North-West of the city of Sydney, along the M23
motorway which includes several major residential and business areas, as shown in Figure 2. This4
area is defined following the digital mapping according to the Statistical Area Level 2 (SA2) (37),5
which is denoted as Z j, j ∈ {1 . . .J}. As of 2017, there are 89 bus routes that spread between 37996
stops. To simplify notations we will further refer to our case study as the M2 area in the following7
sections.8

FIGURE 2 The 2017 Sydney M2 area bus network.

The trip distribution is captured from the local smart-card data. The raw smart-card data has9
been processed and filtered in advance for eliminating outliers and anomalies. The trip distribution10
in Figure 3 is drawn by using as an example one-month of smart-card data (June of 2017) for the11
M2 area in Sydney. As shown in the Figure 3, the morning peak hour starts from 7:00 and lasts12
until around 11:00, while the afternoon peak hour spreads from 16:00 to 20:00. In our case study13
exemplified in this paper, we focus mainly on the morning peak hour (as the afternoon can follow14
a similar approach); therefore the data for 7:00 to 11:00 is collected and used for the estimation15
method.16

The topological feature data for the cost matrix estimation is captured from historical bus17
General Transit Feed Specification (GTFS) data provided by the OpenData (32) and another open18
source TransitFeeds (38). The data include the information of the bus agency, its calendar, the19
routes information, the bus stop times and stop location, as well as all the information regarding20
the bus trips and stops. The data for June 2017 is collected and used in this section as an exempli-21
fication.22
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FIGURE 3 Ground Truth Bus Trip Distribution By Time.

Assumptions:1
External Node: In this research study, an external node is inserted in the OD estimation approach2
by using the gravity model detailed in Stage 3 in order to balance the total generation and attraction3
trips. Since the M2 area is only a small part of the Great Sydney area, apart from the trips completed4
within the study area, there are still trips that solely start in the M2 area, which requires a match of5
an external node to attract those trips; while for those trips that simply end in M2 area, an external6
node is also required to generate these trips. In this way, we can reach a balanced GA vector that7
matches the constraints of Equation 4 and Equation 5.8

Scenario and Experiments Configuration:9
When estimating the cost matrix, we set up three scenarios that match the proposed three dynamic10
cost matrix estimation methods presented in Stage 2. In the first scenario, the Single Feature Cost11
Matrix is applied, where we select the top two commonly used features, namely the travel distance12
and the travel time, as our study matrix. For each cost feature, the experiments are split by either13
fitting to a deterrence function or not. Therefore, the settings of the experiment in the first scenario14
are:15

• Scenario 1 Experiment 1 (S1E1): travel distance matrix16
• Scenario 1 Experiment 2 (S1E2): travel distance matrix fitted by the deterrence function17
• Scenario 1 Experiment 3 (S1E3): travel time matrix18
• Scenario 1 Experiment 4 (S1E4): travel time matrix fitted by the deterrence function.19

The second scenario considers a Deterrence function-based Fusion Cost Matrix from mul-20
tiple features, and only one experiment is conducted (named as Fusion Cost Matrix Fitted by the21
Deterrence Function - S2). In this S2 scenario, both the traffic and the topological features are in-22
cluded to play a role in the trip estimation. The features are separately fitted to the Tanner function23
and then combined to establish a fusion cost matrix following Equation 13.24

The Entropy-based Ensemble Cost Matrix from multiple features is then utilised in the25
third scenario (which we name as the Ensemble Cost Matrix Weighted by Entropy - S3), where26
instead of using the deterrence function to weigh each cost feature, we employ the entropy ranking27
algorithm following Equation 18, Equation 19 and Equation 20.28

Iterative OD estimation configuration: for each experiment, the maximum iteration time29
is 20, and the convergence criteria are reached when the gap between estimated and ground-truth30
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total generation and attraction is less than 1%. In this research study, we attempt to uncover the1
best method of cost matrix estimation, which is accessible, adaptable and convenient to use and2
fast to converge. Therefore, the rmax should be as large as possible to allow the model to satisfy3
Equation 9 while the processing requirements for the iterative calculation should also be acceptable4
for our computer. Following these, we conduct all our experiments (set up with different methods5
of cost matrix estimation, as introduced in subsection 4.3) until they meet the acceptable distance6
criteria as shown in Equation 9 multiple times, and the maximum number of the iterative counts7
towards convergence for all experiments is 18; therefore, we round the number of iterative counts8
to 20 as the input of the rmax, this is how we choose the rmax for this section.9

Results10
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FIGURE 4 Errors evaluated between the ground truth and various cost matrix estimations
by using: a) Mean Absolute Error (MAE) b) Root Mean Square Error (RMSE) c) Mean Ab-
solute Percentage Error (MAPE), and Time-dependent error distribution by using d) MAE
e) RMSE f) MAPE.

According to the experiments defined previously in Section of Assumptions:, Figure 411
presents the results following the evaluation methods from the Section of OD Matrix Evaluation12
(see Step 5 in Stage 3). By comparing the bar charts in Figure 4a), b) and c), we observe that, after13
the same number of iterative OD estimations, the estimated Ensemble Cost Matrix Weighted by14
Entropy (S3) performs the best among others in an accurate OD estimation. The MAE value of S315
is 0.0040, which means that by using the Ensemble Cost Matrix Weighted by Entropy (S3) method,16
we can obtain an estimated OD matrix that is approximately 85.0949% more accurate than the17
mean MAPE results of other methods.18

According to the MAE, the proposed method is superior to the Fusion Cost Matrix Fitted19
by Deterrence Function (S2) by 86.2129%. The same superiority can be found in Figure 4c) when20
comparing the MAPE results. The MAPE from our proposed method is down to 0.35%, which is21
almost 84.44% less than the MAPE value of all the rest of approaches; for example, the MAPE22
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value of the proposed method is considerably lower than that of the Fusion Cost Matrix Fitted by1
Deterrence Function (S2) by almost 85.65%.2

The RMSE values provide another proof that our Ensemble Cost Matrix Weighted by En-3
tropy (S3) method is about 28.61%, which is 54.45% less than the mean RMSE value estimated in4
other experiments. However, when estimating using RMSE, the worse estimation method is to use5
a single Travel Time Matrix (S1E3) as the cost matrix, where the RMSE for this method is 62.90%,6
which is 54.50% more than that of our proposed method.7

The comparison of results between S3 and S2 shows that the entropy algorithm is also8
superior in performing the impacts of the ensemble cost features; by further comparing the results9
of S1E1, S1E2, S1E3 and S1E4 with S2, we are able to see that the deterrence function weighted10
fusion cost matrix cannot provide a relatively accurate OD estimation. This means that compared11
with using Fusion Cost Matrix Fitted by Deterrence Function (S2), a single feature cost matrix12
could provide a better OD estimation. Nevertheless, when comparing the result for S1E1 and13
S1E3, as well as S1E2 and S1E4, we can observe that the travel distance-based cost matrix works14
better than the travel time in an OD estimation for public transport.15

The above results obtained as average values for the whole modelling period, while the16
results that are shown in Figure 4 d), e) and f) are depicted dynamically by time to picture the17
timely influence of using different cost matrices for an accurate public transport OD estimation.18
The time period for this plotting is the morning peak hour, from 7:00 to 11:00, derived from the19
above Figure 3. From Figure 4 d), e) and f), overall, the errors calculated by all three methods for20
the experiments following Ensemble Cost Matrix Weighted by Entropy (S3) are significantly lower21
than the results of all other estimations (see the green curve of our proposed methodology which is22
significantly lower than the other curves). The standard deviation (SD) of MAE for the proposed23
Ensemble Cost Matrix Weighted by Entropy method is approximately 0.20%, whereas the mean24
SD for the rest of the results is 0.76%. Similarly, the SD of the RMSE for (S3) is almost 12%,25
while the mean SD of the rest of approaches is more than 28%; last the SD of MAPE results for26
(S3) is 0.16%, but the mean SD for the MAPE of other methods is nearly 0.59%.27

The phenomenon that the tendency of errors matches the ground truth number of trips28
shows the overcrowding of the network can also be related to the accuracy of the OD estimation,29
which provides the same observation as shown in (25). According to the standard deviations of30
each curve, the timely change of errors for Fusion Cost Matrix Fitted by the Deterrence Function31
(S2) is larger than that of errors estimated based on a single travel cost matrix. This reminds32
us that the method of the cost matrix calibration is vital for the OD estimation, as an inferior33
calibration method could increase data noise and reduce the accuracy of the final public transport34
OD estimation.35

CONCLUSION36
In this paper, we provide a new framework for a dynamic large-scale stop-by-stop OD estimation37
model for public transport. In this model, we emphasise on a microscopic stop-based OD matrix,38
yet in order to simplify the computing workloads, we assume that the time interval is 15 minutes39
and calculate the number of trips between any OD pair for every 15 minutes to mimic the dynamic40
condition. The proposed framework shows the ability of our model to examine the effects of41
the cost matrix, namely the Single Feature Cost Matrix, Deterrence function-based Fusion Cost42
Matrix from multiple features and the Entropy-based Ensemble Cost Matrix from multiple features,43
reflected by various performance metrics (MAE, RMSE and MAPE) between the ground truth44
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matrix and the estimated matrix. The proposed large-scale OD estimation model is established1
based on the gravity model with total generation and attraction (GA vectors) by stops, a network2
physical configuration data and transport services operation data on inputs. In terms of the input3
data, the smart-card data that enables the GA vectors’ estimation is used; and the public transport4
GTFS data is processed for the cost matrix data from topological-level cost features, including the5
connection, closeness, straightness and efficiency, and the traffic-level cost features, such as the6
travel distance or the travel time as well as the travel distance-based fare costs. All the estimations7
in this model are time-dependent, and the time interval of estimations is 15 minutes.8

This research study also proposed a novel cost matrix estimation method, where the Shan-9
non’s entropy is employed for weighting the feature for each node (represented by a public trans-10
port stop). These are due to the fact that the method has pre-weighted the cost features before11
combining the impact of the cost feature together and applying in the process of iterative param-12
eter calibration, and the process of weighting the cost features can be separated from the iterative13
OD matrix estimation, which reduces the load of iterative computing. The performance of the14
entropy weighting method is compared with traditional cost matrix weighting methods, namely15
(Fusion Cost Matrix Fitted by Deterrence Function (S2), Travel Distance Matrix (S1E1), Travel16
Distance Matrix Fitted by Deterrence Function (S1E2), Travel Time Matrix (S1E3) and Travel17
Time Matrix Fitted by Deterrence Function (S1E4)). According to the result reflected by errors,18
the performance of such weights fusion by deterrence function method (S2) is even inferior to19
using a single cost feature in an OD estimation. The results also show that the mean errors for20
experiments of S1E1, S1E2, S1E3 and S1E4 are similar in their performance. Additionally, after21
illustrating the mean errors by time for each experiments, the time-dependent tendency of error22
fluctuation matches the timely number of trips in the network: the peak errors occurs when the23
maximum number of trips occurs in the network (at about 8:45-9:00). This indicates that the net-24
work over-crowding is associated with the accuracy of the OD estimation by using the proposed25
model.26

Limitations and Future Directions In our research study, a framework for a dynamic27
stop-by-stop OD estimation for large-scale public transport is provided. However, the model does28
not directly include the impact of general traffic on the trip distribution. The travel time as the29
cost feature is obtained from public transport timetable data, where we assume that the timetable30
design considers the impact on the general traffic. But from the result of errors from experiments,31
the travel time method and the travel distance method do not lead to any clear differences. Thus,32
the impact of the general traffic states is unclear. As a next step we would like to combine the cost33
features such as the travel delay time or the level of congestion in order to uncover such impacts34
directly.35

The proposed public transport OD estimation model has the potential to be integrated into36
other transport networks, such as car networks or other public transport networks, to form a large-37
scale OD estimation model. In this research, due to the data availability issue, we only establish38
the model for bus networks. The same modelling process can be applied to estimate OD matrix39
for trains, light-rails or on-demand solutions. In the proposed model, the public transport OD40
matrix is defined at the stops level, and by using an aggregation processing, the matrix can easily41
be converted into a zonal or centroid-based matrix that matches the configuration of the matrix for42
cars or other public transport networks. The OD matrix estimation demonstrates the travel pattern,43
and such matrix can be used as a test-bed to examine the network accessibility or the vulnerability44
analysis. For example, by degrading the node or the link capacity, the impacted trip distribution can45
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be simulated, and a further direction from here could be an impacted journey recovery or further1
network optimisation.2
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