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ABSTRACT1
Traffic accidents are often miss-reported with regards to either the exact location or the start and2
end time of the disruption due to several external factors - communication delays or misreporting,3
delays in accident clearance and non reporting of exact number of lanes, etc. Misleading informa-4
tion can lead to wrong decisions being made and can also affect the accuracy of any data-driven5
model that is responsible to predict either the severity or the disruption length. Several studies so6
far are using the reported incident data logs as truth ground which may wrongly affect any model7
build on top of this. To address these issues, our paper presents a novel machine learning frame-8
work that can be used for the early detection and prediction of incident durations. Firstly, we start9
by mapping and fusing several data sets related to reported traffic incidents (flows, speed, incident10
locations and incident details). Secondly, we propose several mathematical metrics (among which11
the Wasserstein and the Chebyshev metrics) are fed into an early detection and disruption segmen-12
tation algorithm which allows us to choose the best performing metric for future model training.13
Thirdly, we proposed a modelling interpretation of the traffic speed distributions based on the win-14
ning metric to correctly identify between single versus cascade incidents. Last we train and predict15
using various machine learning models and show that by using our enhanced modelling approach16
we can reduce the RMSE by almost 41% - 45.6% to as compared to the traditional case of using17
only historical incident logs.18

19
Keywords: traffic accident, incident duration prediction, machine learning, traffic management20
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INTRODUCTION1
The number of vehicles has been substantially increasing during the past decades, which currently2
leads to an increase in the number of traffic accidents (1). The National Highway Traffic Safety3
Administration (NHTSA) reported more than 5 million traffic accidents happening in the United4
States during year 2013 (2). Traffic Managements Agencies usually rely on Traffic Incident Man-5
agement Systems (TIMS) to collect data on traffic accidents, including information on various6
accident, traffic state and environmental conditions. Accurately predicting the total duration of7
an incident shortly after it is being finished, will help in improving the effectiveness of accident8
response by providing important information to decide the required resources to be allocated (re-9
sponse team size, equipment, traffic control measures) (3). Traffic accident is a rare event with10
stochastic nature. The effect of the accident can be observed as an anomalous state in the time11
series of traffic flow (4).12

Challenges: The traffic accident analysis may be a challenging task due to incorrect or13
incomplete accident reports, including the set and the quality of the accident characteristics that14
have been reported. Accident reports can contain user-input errors related to the accident duration15
such as: 1) an approximate reporting of accident’s start and end time 2) reporting of the accident16
start time could have been done after the incident finished in reality 3) a ’placeholder’ accident17
duration reporting. In our previous research (5, 6) we found that timeline-related errors are present18
in accident reports across three different data sets from both Australia and the United States of19
America, which could be also the case with other data sets from around the world, due to multiple20
human and technical factors that can arise. To forecast the accident impact it is crucial to have21
an accurate and correct data regarding the observed disruption timeline. We emphasise that dis-22
ruptions observed in a recorded traffic state can be automatically segmented and associated with23
a reported accident at the same time and location as when the accident occurred, which allows24
to eliminate user-input errors from reports and improve the accident duration prediction perfor-25
mance in many traffic management centres around the world. To help address this issue, in our26
paper we propose various methods for a correct traffic disruption segmentation, the method for an27
association between vehicle detector stations and accident reports.28

Another important challenge is that many incident data sets around the world are private and29
not shared for public investigation; for those open data sets, there are several missing information30
fields, or even worse, incomplete information regarding the traffic conditions in the vicinity of31
the accidents. Even often publish crash data sets are limited in size as well and contain a very32
small number of records. This represents a tight constraint when testing one framework over33
multiple countries with different traffic rules and regulations. For our studies we have oriented our34
attention towards two big open data sets - CTADS (Countrywise traffic accident data set) which35
contains 1.5 million accident reports and the Caltrans Performance Measurement System (PeMS)36
which provides data on traffic flow, traffic occupancy and traffic speed across California. Despite37
both being extensive data sets, vehicle detector station readings from PeMS are not associated38
with traffic accident reports from CTADS either by time, location or coverage area. The lack of39
such association makes it impossible to analyse the relation between accidents and their effects on40
traffic flow and speed. To address this challenge, in our paper we introduce the following mapping41
algorithm which will secure several steps such as :42

• an association of Vehicle Detection Stations (VDS) with reported accidents in their prox-43
imity,44

• a segmentation of traffic speed disruptions from detector readings,45
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• an association of detector stations with reported accidents (we will further show that this1
step is necessary due to many detected user-input errors in accident reports).2

As a result, we obtain traffic disruptions segmented by the traffic flow associated with reported3
accidents. This association makes it possible to perform various important tasks of the accident4
analysis: 1) prediction of the traffic accident impact on the traffic speed based on accident reports,5
2) prediction of the traffic accident duration derived directly from the effect of disruption on the6
traffic speed (impact-based duration), 3) analysis of disruption propagation (each detected disrup-7
tion can be studied for spatial-temporal impact within the traffic network). Through this work,8
we will focus on the prediction of the impact-based accident duration and lay the foundation for9
a further research. Overall, the main contributions (summarised in Figure 1) of our paper is as10
follow:11

1. We conduct a fusion methodology of two large data sets (CTADS and PeMS) for a12
detailed traffic accident analysis. To the best of our knowledge, this is the first research study13
proposing the methodology for merging of two large data sets of such nature, which allows an14
association between observed disruptions in traffic flow and the reported accidents.15

2. We propose a novel methodology for the disruption mining using a combination of16
different metrics: a) the Wesserstein metric, which allows us to measure the disruption severity17
and b) the Chebyshev metric, which provides a higher selectivity for the disruption mining and18
a rectangular shape of the disrupted segments, allowing an automated disruption segmentation.19
We detail all unique properties of both metrics utilized together to allow an accurate disruption20
segmentation.21

3. We perform the estimation of traffic accident disruption duration from traffic speed via22
the above metrics which allows us to alleviate user-input errors in accident reports.23

4. We evaluate multiple machine learning models by comparing both the reported and the24
estimated accident duration predictions extracted from traffic speed disruptions.25

5. We introduce a new modelling approach which focuses on predicting the amount of26
the the disruption associated with an accident, rather than predicting via only historical logs. Our27
advanced disruption mining associated with traffic accident reports allows us to extract actual28
shapes of the disruptions, which allows a further analysis and modelling of the traffic flow impact29
properties. We also detect multiple accidents which produce secondary disruptions by using this30
approach.31

Overall, this research forms the foundation for a new early traffic accident disruption de-32
tection, traffic flow disruption shape analysis and the use of observed traffic accident durations for33
correcting errors in user reports. Moreover, this work contributes to our ongoing objective to build34
a real-time platform for predicting traffic congestion and to evaluate the incident impact (see our35
previous works published in Mihaita et al. (6)-Shafiei et al. (7)-Mao et al. (8)).36

The paper is further organised as follows: Section 3 discusses related works, Section 437
presents the data sources available for this study, Section 5 showcases the methodology, Section 638
presents the disruption segmentation results, showcases the result of data set fusion and Section 739
provides conclusions and future perspectives.40

RELATED WORKS41
Multiple studies rely on user-input-based incident reports from Traffic Management Centers (TMC)42
with different machine learning models to predict the traffic incident duration (9). The use of traffic43
flow features is found to be rare and mostly specific - incident detection and incident impact pre-44
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FIGURE 1 Contributions and data-flow schema for association of traffic speed readings with
accident reports

diction by using traffic flow (10). In other words, traffic flow data is rarely combined with actual1
incident reports since it requires a higher system complexity and extensive data collection.2

There were numerous studies related to accident detection from traffic flow using anomaly3
detection techniques (11). Various methods used for anomaly detection in time series are applicable4
for the task of traffic disruption detection. The ability to perform the detection of actual disruption,5
which should give us actual shapes of disruptions and time intervals allows in-depth analysis of6
usual accident statistics including the effect of the type of accident on the pattern of disruption7
in traffic flow. By integrating data on traffic state with accident reports we are able to further8
connect traffic flow disruption patterns to various accident characteristics (hour of the day, weather9
conditions, crash type, type of vehicle involved - truck/car (12), the effect of road pavement types10
(13), road design and road operation (14), etc).11

Analysis of the effect of traffic incidents has been performed previously using Caltrans12
PeMS data, where the measure of incident impact was represented as a cumulative travel time13
delay (15), which is an aggregated value. However, traffic state recovery from disruptions is not14
necessarily following a single pattern - it may be slowly dissipating, we may observe secondary15
crashes, it may have a high or low impact, etc. Traffic accident duration prediction methodology16
relies on reported traffic accidents, but actual reports may contain user-input errors and be mis-17
aligned with the actual shape of disruption produced by the accident. Therefore, the approach18
for disruption segmentation may provide the accident duration estimated from the actual shape of19



Grigorev et. all 6

disruption in traffic flow.1
Various machine learning models are used to solve the task of traffic accident duration2

prediction(9) including k-nearest neighbours and Bayesian networks (16), Recursive Boltsman3
Machines and Support Vector Machines (17), Random Forests and XGBoost (6).4

The definition of traffic incident duration phases is provided in the Highway Capacity Man-5
ual (18) and includes the following time-intervals: 1) incident detection - the time interval between6
the incident occurrence and its reporting, 2) incident response - time between the incident reporting7
and the arrival of the response team, 3) incident clearance time between the arrival of the response8
team and the clearance of the incident, 4) incident recovery - the time between the clearance of9
the incident and the return of traffic state to normal conditions. In this research, we rely on total10
incident duration - the time between incident occurrence and return of the state to normal condi-11
tions. Also, we analyse the subset of traffic incidents - traffic accidents. As we found during the12
data investigation, traffic accident duration is reported at the time when the incident is cleared by13
the response team, which doesn’t include the duration of the effect that the accident produces on14
traffic flow.15

CASE STUDY16
Before diving into the methodology, we provide a brief introduction into the data sets in use for17
showcasing our approach, which helps establishing the modelling base and understanding of the18
steps taken. We make the observation that the current methodology can be applied on any incident19
and traffic state data set which can contain a time component, and is not bounded to the chosen20
data sets for exemplification.21

CTADS: Accident reports data set22
We rely on accident reports from the "Countrywide Traffic Accident Dataset" (CTADS), recently23
released in 2021 (19, 20), which contains 1.5 million accident reports collected for almost 4.5 years24
since March 2016, each report containing 49 features obtained from MapQuest and Bing services.25
We select the area of San-Francisco, U.S.A and extract data for 9,275 accidents (see Figure 2).26

FIGURE 2 CTADS reported accidents for San-Francisco
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PeMS: Traffic speed and flow data set1
We rely on Caltrans Performance Measurement System (PeMS) (21) to collect data on traffic flow2
and speed. This data set provides aggregated 5-minute measurements of traffic flow, speed and3
occupancy across California. We decided to extract the data for the area of San-Francisco (see 3a),4
which contains 83 Vehicle Detection Stations (VDS) placed in that area (see 3b), and we try to5
associate each traffic accident occurred with each of San-Francisco VDS in their 500m proximity6
using the algorithm detailed in the following section. In total, from 9,275 accidents in the area7
(extracted from CTADS) we have obtained 1,932 traffic incident reports which we were able to8
associate with the correct and complete traffic flow and speed readings from a VDS.9

FIGURE 3 1) PeMS data set area coverage for San-Francisco 2) Mapping of the Vehicle
Detection Stations from PeMS data set.

METHODOLOGY10
The new framework we propose in this paper is represented in Figure 1 which we support across11
some initial definitions for our modelling approach (see next sub-section). First, we associate the12
road segments with their corresponding Vehicle Detector Stations (VDS) from the Caltrans PeMS13
data set, as well with the locations of reported accidents (see Algorithms 1 and 2 proposed in sub-14
section 5.2). The main outcome of this algorithm is that traffic accidents will get associated with15
the traffic flow, speed and occupancy readings from the VDS stations.16

Second, we propose an new algorithm for an early disruption detection and segmentation,17
detailed in sub-section 5.3. By segmenting the disruptions occurred in time-space proximity of18
reported traffic accidents, we obtain the estimated traffic accident duration. This gives us much19
more information to include in the model training than just the simple accident duration: 1) the20
disruption shape in terms of modifications of speed data profiles from the standard patterns 2) the21
accident duration estimated from the impact on the traffic flow 3) the cumulative accident impact22
estimation.23

Definitions24
Speed difference estimation definitions25
In the current study we compare the performance of multiple difference metrics that will help us26
to correctly estimate the impact of an accident and the deviation from the historical speed patterns.27
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These metrics are defined as follows:1
a) the Chebyshev difference is expressed as:2

DCheb(x,y) :=
∫

max
i
(|xi − yi|) (1)3

4
b) the Wasserstein difference:5

DWD(u,v) = in fπ∈Γ(u,v)

∫
R×R

|x− y|dπ(x,y) (2)6
7

where Γ(u,v) is the set of (probability) distributions on R×R whose marginals are u and v8
on the first and second factors respectively.9

c) the Cosine difference:10

DC(u,v) =
u · v

∥u∥2∥v∥2
. (3)11

12
where u · v is the dot product of u and v.13

d) the Euclidean difference between 1-D arrays u and v, is defined as14

DE(u,v) =
(
∑(wi|(ui − vi)|2)

)1/2
(4)1516

e) the Minkowski difference between 1-D arrays u and v, is defined as17

DM(u,v) = (∑ |ui − vi|p)1/p.
(
∑wi(|(ui − vi)|p)

)1/p
. (5)1819

5.1 Algorithm for vehicle detector station to accident association20
In order to match correctly what traffic conditions reflect best the effects of each incident, we21
further define the association procedure between traffic accidents and VDS (A-to-VDS), for the22
San Francisco area, as shown in Figure 4. We observe that only a few traffic accidents have VDS23
stations in their proximity to allow a good traffic speed and flow extraction.24

FIGURE 4 a) Traffic incidents [marked in red dots] and VDS stations [marked in green
diamonds] across the San Francisco city area. b) A closer look into VDS and traffic incidents
locations where black dots are road points.

In order to find the traffic incidents for which we can have traffic flow and speed data, we25
develop a mapping algorithm (A-to-VDS) which consists of two parts (see Algorithm 1-2), defined26
by the following steps:27

1. We first extract the primary and secondary road lines from Open Street Maps.28
2. Road segments are then transformed (segmented) into points at 2-meters equal distance.29
3. Each VDS station and accident are mapped to the closest road point (up to 10m dis-30

tance). Accidents that are not in the proximity of road points removed.31
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4. From this step we use Algorithm 1 to process the point-based representation of VDS,1
accidents and road segments. The vdsPoints array contains a tuple of the form (VDS ID,2
x and y coordinates); each point in accidentPoints contains an array visitedBy (initialized3
as empty) to maintain a list of stations in the proximity of the accident; assignedVDS is4
a final nearest VDS station close to the accident along the road.5

The algorithm relies on a recursive function to implement the process of visiting road points6
(see Algorithm 2). The association part of the algorithm works as follows:7

1. We select the current VDS station.8
2. We move (jump by points) in all possible directions available from the starting and forth-9

coming points in a 3m radius. This radius allows us to move along the road jumping10
between road points. Movement in all possible directions allows to grasp the propa-11
gation of the traffic congestion associated with the accident. The maximum available12
distance is set to 500m (250 jumps) and allows to limit the observable impact distance.13

3. By moving across points we collect traffic incidents in the 5m proximity of each point14
and associate them with the current VDS station.15

Algorithm 1: A-to-VDS: Accident to VDS mapping algorithm
Input: point
Output: None
Access global arrays: roadPoints,accidentPoints,vdsPoints
Function visitNearestPoints(V DSID, point,currentHops)
accidents := f indNearestAccidents(point,accidentPoints,10m)
for i = 0 to length(accidents) do

a := accidents[i]
a.visitedBy.append([V DSID,currenthops])

end
if currenthops < 500/2 then

roadpoints:=findNearestRoadPoints(point, roadPoints, 3m) for i = 0 to
length(road points) do

rp := road points[i]
if V DSID not in rp.visitedBy then

rp.visitedBy.append(V DSID) visitNearestPoints(point,currentHops+1)
end

end
else

Return
end

The algorithm is recursive and relies on the list of visited points for each VDS. At the end16
of the algorithm, we have a subset of traffic accidents with their associated VDS which allows us17
to extract the traffic flow and speed in the vicinity of the accident. Ideally, all traffic accidents18
should have associated traffic flow but given their unavailability (due to detector coverage), we19
select accident reports which have associated traffic flow information currently available from the20
PeMS data set.21
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Algorithm 2: The recursive function for traveling across road points
Input: roadPoints,accidentPoints,vdsPoints
Output: assignedAccidents
for i := 0 to length(vdsPoints) do

vds: = vdsPoints[i]
visitNearestPoints(vds, 0)

end
assignedAccidents = []
for i := 0 to length(accidentPoints) do

accident := accidentPoints[i]
if length(accident.visitedBy)> 0 then

accident.assignedV DS = sort(accidetn.visitedBy,sortvalue = hops)[0]
assignedAccidents.append(accident)

end
end
return assignedAccdents

5.2 Algorithm for automated disruption segmentation (ADS)1
Once the accidents have been mapped and associated to their VDS stations which allows us to2
select the flow/speed that match the day of the incident, etc, we are using the extracted traffic state3
parameters to propose a new automated disruption segmentation (ADS) method. The algorithm4
for the segmentation of disruptions via traffic speed works as follows:5

1. A time series pre-processing step prepares all the data for segmentation (see Alg. 3):6
(a) Calculate the average monthly profile for daily traffic speed measurements;7
(b) Iterate over the traffic speed time series using a moving window of 1-hour time8

interval (in total there are twelve measurements of 5-minute each)9
(c) On each iteration perform a comparison of a 12-unit window between the monthly10

profile and the current day of measurements. The resulting single value is added to11
the resulting time series sequence.12

(d) Calculated the time series differences (TS) choosing the above defined metrics will13
be then adjusted by selectivity (using the power function, which will keep values14
closer to one for the least affected by the function and minor values the most sup-15
pressed) and normalized to produce nTS and pTS arrays respectively.16

2. The time-series segmentation step (see Alg. 4):17
(a) A first order derivative (dTS) is calculated for the resulting time series of the pre-18

vious stage (nTS), which returns positive peaks when entering the disruption and19
negative peaks when exiting the disruption state.20

(b) We iteration over resulting derivative time series to record the opening and closing21
of each disruption in each time series. If two consecutive positive peaks (opening22
times) are observed then we choose the largest one between the two (we will further23
debate on this aspect in our future work plans). We repeat the same for consecutive24
negative peaks.25

(c) We then associate the detected disruptions with the accident reports: for each acci-26
dent report, we extract the traffic speed time series on the day of the accident and27
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if both opening and closing times are recorded, we perform an association of the1
accident with these times and extract the actual time series sequence for further2
analysis.3

Enhancing selectivity: We use the convolution with the kernel (1,1,1), which attributes to4
the morphological dilation operation, to facilitate the work of the segmentation algorithm. By ap-5
plying this convolution we make multiple consequent differences to be accumulated ; for example,6
assuming we have a sequence of 0.3, 0.1, 0.1, 0.2 and 0.2 as differences for each 5-minute step,7
therefore a total of 0.9 change over 4 iterations. The convolution (1, 1, 1) will produce the values8
of 0.5, 0.4, and 0.5 by making a sequence of high values from the sequence of small changes (see9
Figure 5). The dilation operation is primarily used in computer vision tasks to make connected10
groups from closely placed scattered points to facilitate a further image analysis.11

FIGURE 5 The application of dilation operation to an image and time series

To obtain the monthly profile, the traffic speed measurement sequence was obtained for12
a duration of 1 month from the VDS before the accident occurred, and was done separately for13
each accident. This sequence then gets reshaped into a matrix of the form [number_o f _days;288],14
where columns contain the total number of measurements across an entire day (24*12=288). The15
monthly average was then calculated across axis 1 to obtain a vector with 288 values of measure-16
ments. This vector gets recalculated for a number of days of observations from each detector to be17
comparable with the VDS daily measurements.18

As an observation, the constants pThreshold and nThreshold represent thresholds for change19
that observed in the time series of the metric derivative; they allow us to define a positive and nega-20
tive change of the difference metric, the selectivity controls power function coefficient to suppress21
the non-significant and filter the most significant disruptions.22

5.3 Modification of the algorithm for automated real-time early disruption detection23
Since our proposed algorithm doesn’t look into the future and calculates different metrics based24
on the currently observed traffic speed and a few measurements in the past (11 units in the current25
study), we can perform an early accident detection which will consist in calculating and comparing26
the FOD of Chebyshev metric based on the monthly profile. The detection of significant positive27
peaks (e.g. 0.3-0.5 of normalized difference metric) can identify the amount of disruption in real-28
time. The end of the disruption can be detected using the same approach in real-time as well by29
observing a significant negative peak.30
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Algorithm 3: Algorithm for automated disruption segmentation. Part 1
Input: monthlyPro f ile,speedReadings
Output: cT S
; //Accident array contains a day number, starting and ending index
for segmented traffic disruptions

step := 1
windowsize := 12
i := windowsize
lastDi f f = 0
DS = []
while i < length(speedReadings) do

A := speedReadings[i−windowsize+1 : i]
B := monthlyPro f ile[i−windowsize+1 : i]
di f f := metric(A,B)
DS.append(di f f )
lastDi f f = di f f

end
for i = 0 to windowsize do

DS.append(lastDi f f )
end
pT S = power(T S,selectivity)
nT S = normalize(pT S)
dT S = derivative(nT S)
cT S = convolution(dT S, [1,1,1])
return cT S

5.4 Accident duration prediction definitions1
Using all available data sets and the incident information, we first denote the matrix of traffic2
incident features as:3
X = [xi j]

j=1..N f
i=1..Ni

(6)45
where Ni is the total number of traffic incident records used in our modelling and N f is the total6
number of features characterising the incident (accident severity, vehicles involved, number of7
lanes, etc) according to the accident report data set.8

Traffic speed is represented as a vector with 5-minute averaged readings from Vehicle De-9
tector Stations:10
S = [si]i=1..N (7)1112
where N is the total amount of traffic speed readings.13

As detailed in our methodological framework, the last step of our approach for improving14
the incident duration prediction is to assess the performance of various Machine Learning models15
on the tasks of predicting the reported and the estimated accident duration. This is mainly to16
understand if the approach we have proposed for an early accident detection is better or worse than17
by simply using reported incident logs from the traffic management centres. We define the task of18
the accident duration prediction as a regression problem.19



Grigorev et. all 13

Algorithm 4: Algorithm for automated disruption segmentation. Part 2
Input: cT S, pT hreshold,nT hreshold,selectivity
Output: Accidents
; //Accidents array contains a day number, starting and ending index
for segmented traffic disruptions

state := 0
Accidents = []
for i := 0 to length(cT S do

if cT S[i]> pT hreshold then
if state <>+1 then

state =+1
enteridx = i

else
if cT S[i]> cT S[enteridx] then enteridx = i;

end
end
if cT S[i]< nT hreshold then

if state <>−1 then
state =−1 exitidx = i

else
if cT S[i]< cT S[enteridx] then exitidx = i;

end
end
if i mod 288 == 0 and i > 0 then

state = 0
Accident.append([i div 288,enteridx,exitidx])

end
end
return Accidents

The incident duration regression vector (Yr) is represented as:1
Yr = [yr

i ]i∈1..N , yr
i ∈ N (8)23

and the regression task is to predict the traffic accident duration yr
i based on the traffic incident4

features xi, j. The regression models go via an 10-fold cross-validation procedure with intense5
hyper-parameter tuning. Several models have been trained and compared and their performance6
assessed in our results section.7

The estimate the accident duration prediction performance we use the root mean squared8
error:9

RMSE =

√
1
n

n

∑
i=1

(At −Ft)2 (9)10
11

where At represents the actual value of the incident duration logs (which can be either used raw12
from the incident logs or from our automated segmentation technique) and Ft the predicted value13
of the regression models.14
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RESULTS1
Data exploration and setup2
CTADS data set contains traffic accident reports, which after an initial data mining investigation,3
we found to contain several user-input errors; for example, a lot of traffic accident durations have4
been rounded to 30 or 360 minutes (see Fig. 6d)); or the incident start time which was reported5
is unrelated to any disruptions observed by the vehicle detector stations in the proximity - see6
Figure 6 in which we have provided two different examples of speed recorded during two different7
accidents A-1390 and A-7102; the red lines indicate the official reported start and end time of the8
accidents, while in reality the accidents have had a long lag in spreading across the network - see9
Fig. 6a) or were reported much later that the official speed drop was recorded - see Fig. 6b).10

At this step we observed a significant amount of user-input errors in accident reports, which11
affect the accident duration/impact analysis: 1) accidents can be reported earlier or later than its oc-12
currence (observable disruption misalignment in time) 2) a report can be filled with "placeholder"13
duration values not representing the actual accident duration 3) there may be no observable disrup-14
tion in traffic speed despite the accident report (due to placement and management of the accident)15
(false positive) 4) there may be accident-related traffic disruptions not grasped by accident reports16
(false negative). Therefore, incorrect accident start time, duration and end time, unreported pres-17
ence or abscence of disruption make it necessary to estimate accident duration characteristics from18
traffic state data instead of relying on user reports. In this paper our proposed methodology is really19
meant to solve the user-reporting issues related to traffic accidents and to be applied automatically20
on any data set, regardless of its nature or geo-location.21

The use of PeMS data set allows to estimate the impact of accidents on the traffic states22
(flow, speed). For our scenarios, we choose the area of San-Francisco with accidents recorded23
from 2016 to 2020 in the CTADS data set. We then obtain Vehicle Detector Station locations from24
PeMS, the road network shape from OpenStreetMap and we perform an association of CTADS25
accident reports with VDS stations along the road within 500m proximity. We then try to segment26
the disruption time interval occurred on the day of an accident. Further, we associate observed27
disruptions in the traffic speed series with actual accident reports. The purpose of this step is to28
reduce user-input errors in accident reports and to enhance the modelling of traffic disruptions with29
an analysis of traffic speed.30

Metric performance comparison31
We apply the difference metrics detailed earlier in Section 5.1 to a monthly traffic speed/flow pro-32
file (monthly readings averaged to one day) and reading on the day of traffic accident. There are33
two approaches to applying the difference calculation: 1) a global difference - when we try to34
find the difference between monthly profile and traffic flow/speed readings on the day of accident;35
the global approach is too broad and will not allow the actual comparison between disruptions36
localized in time (very long but subtle disruptions can be measured as the same amount of dis-37
ruption as abrupt but impactful one). We measure the amount of difference that occurred within a38
moving time window (we choose twelve 5-minute time intervals equivalent to one hour). Traffic39
speed/flow readings from the moving window are taken right before the currently observed value40
to ensure that the difference estimation algorithm is not looking into the future. It will be further41
necessary to perform the prediction of difference values.42

To compare the metric performances we provide an example of speed readings from one of43
the detector stations. Each difference metric demonstrates its specifics as represented in Figure 7:44
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Accident A-1390

Misalignments of reported accident times (before or after accident 
happened, with “rounded” accident duration 30m) with readings 

from VDS stations in 500m proximity

Accident A-7102

“Rounded” accident durations (30 and 360 
minutes) observed in CTADS data set.

a)

b)

c)

d)

FIGURE 6 User input errors located within the CTADS data set

1) the Chebyshev metric, which we define as the maximum difference between the monthly profile1
and the observed readings, produces a noticeably rectangular shape and demonstrates a higher2
selectivity towards major disruptions than other metrics; the Chebyshev metric will be further used3
for the automated accident segmentation; 2) the Cosine distance detects a change in the traffic4
flow state - speed fall and increase both represented as positive peak values, 3) the DWD allows for5
smooth representation of the amount of disruption (conceptually, it measures the amount of work6
necessary to change one shape into another, which we can rephrase as the amount of work produced7
by an accident to deviate the traffic state from the normal operation), 4) the Minkowsky, Euclidean8
and Manhattan difference metrics show little to no difference to the Wesserstein distance; we9
choose to use the DWD since its connection to physical interpretation.10

Automated disruption segmentation results11
Figure 8 presents the results obtained from our algorithm for the automated disruption segmenta-12
tion. The segmentation line (dotted blue) represents the estimated disruption intervals represented13
as 0 and 1 to perform our visualisation investigation better. Figure 8a) shows that there may be14
multiple observed disruptions in a 300*5=1500 time interval. Due to errors in accident reports15
regarding the starting time and the duration of the accident, it is non-trivial to determine which16
disruption is associated with the accident. The situation may be easier in the case when only one17
disruption is observed during the day. According to our algorithm we select the largest disruption18
on the day the accident reported. Figures 8b) and 8c) highlight additional specific situations which19
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FIGURE 7 Various metrics applied to difference between recorded speed and speed profile

need to be considered: 1) higher traffic speed at the end of the day than observed from the monthly1
profile, 2) unstable traffic speed approaching normal traffic conditions with high frequency, 3)2
slight misalignment of disruption intervals with the visually observed disruption intervals. All3
these problems can be addressed by instead of using manual segmentation we can deploy several4
Deep Learning models since it has advanced computer vision methods proposed in recent years.5

Comparison of our estimated durations versus the official reported accident durations6
There is a significant difference between the estimated and the reported accident durations that we7
would like to highlight: 1) the reported accident durations contain a large amount of 30 and 3608
minutes duration values (nearly 40% of data - see Figure 6d)), 2) the estimated accident durations9
using our approach have an average duration of 58 minutes, while the reported is 108 minutes10
(which is by assumption skewed due to 360 placeholder values), 3) the estimated accident durations11
are distributed between 29 and 69 minutes (0.10 and 0.90 quantiles correspondingly) (see Figure12
9a)), while the reported durations are distributed between 29 and 360 minutes (see Figure 9b)),13
which highlights that disruptions observed from traffic speed are much shorter in reality than the14
ones reported in the original data set, 4) there is no noticeable correlation between the observed and15
reported durations - see Figure 10 in which we observe that the majority of correlation points are16
on the lower side of the Ox axis, indicating that in reality the accident reports are much longer that17
what we have succeeded to estimate via our proposed segmentation and early detection approach.18

Extraction of disruption shapes19
Previously we applied a Chebyshev metric to perform the segmentation of disruptions. By applying20
the Wasserstein difference between monthly speed profile and daily traffic speeds and extracting21
the corresponding disruption interval we are able to observe the shape of disruption impact. The22
Wasserstein distance (or metric), originally named an Earth Mover distance, has intuitive physical23
interpretation - the minimum "cost" of altering one pile of earth into the other, which is assumed24
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FIGURE 8 Results for automated disruption segmentation algorithm
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Grigorev et. all 18

0 10 20 30 40 50 60 70 80 90
Estimated accident duration [minutes]

0

100

200

300

400

500

Re
po

rte
d 

ac
cid

en
t d

ur
at

io
n 

[m
in

ut
es

]

FIGURE 10 Scatter plot for a) estimated and b) reported accident durations for the area of
San Francisco

to be the amount of earth that needs to be moved times the mean distance it has to be moved. In1
relation to the traffic state, it is the minimum amount of work necessary to alter the traffic state2
to a disrupted condition, or in other words - the amount of traffic disruption. We compare the3
normalized metric values since at every vehicle detector station there is a different average traffic4
speed. As in our proposed algorithm, we use a 12-units moving window (one hour) to estimate the5
Wesserstein difference between the traffic speed measurements and provide the plot for the first 406
segmented disruptions. It allows to conduct a shape analysis investigation in relation to the traffic7
disruption amount (see Figure 11). Firstly, we observe the similarity between multiple disruptions8
- they have a ‘hill’ shape wih a high slope that almost doubles or triples the initial Wasserstein dis-9
tance (e.g. from 0.2 to 0.5-0.6). Secondly, there are secondary relapses of the Wasserstein distance10
(a double ‘hill’) which indicate long-lasting disruptions or cascading disruptions (a harder situation11
to predict in our future works). The observed shapes can be defined through the parametric equa-12
tion to perform the classification of disruption effects and facilitate the prediction of the disruption13
impact timeline, since we observe that high-peak fast-ascending disruptions have a probability to14
end sooner than slowly ascending ones (which indicate a long term effect or possibly large scale15
accidents happening in the network).16

Accident duration prediction results17
We further compare a regression model prediction performance on the CTADS data set by using18
on the training data set both our estimated versus the reported accident durations (see Table 1).19
We report results of a 10-fold cross-validation over 1,792 accident reports for which we performed20
a Vehicle Detector Station association. Firstly, we need to consider that the performance using21
reported durations from CTADS can be affected because of the presence of user-input errors in22
the form of placeholder values. Secondly, the nature of estimated accident durations is different23
since accident response teams usually report the end of the accident at the moment they finished24
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FIGURE 11 Normalized Wesserstein distance plot for disruption shapes extracted for seg-
mented intervals

the accident clearence, without estimating the time for the traffic to return to a normal condition,1
which would require additional presence, calculations and access to measurements.2

TABLE 1 Accident duration prediction results
Regression Model RMSEest RMSErep MAPEest MAPErep

KNN 60.1 85.7 46.0 32.9
RF 57.8 81.1 40.4 28.6
LR 60.5 129.6 40.8 72.7
SVM 61.9 113.8 36.1 50.3
GBDT 59.3 69.2 41.4 31.1

When we are using accident reports to predict the estimated accident duration, we obtain3
a better performance using the RMSE metric across all the regression models, which may be con-4
nected to the lower amount of long accident durations than reported (see Table 1 first column of5
RMSEest which is much lower than the RMSEest by almost 41% in the case of RF for example,6
and 45.6% in the case of SVM). When we compare the prediction results using the MAPE met-7
ric, we observe a significantly better performance only for the Linear Regression (LR) and the8
Support Vector Machines (SVM) - 48.87% and 28.2% improvement respectively, but for k-nearest9
neighbours (KNN), Random Forest (RF) and Gradient-Boosted Decision Trees (GBDT), results10
are lower, which can be explained by the presence of the high amount of 30-minute reported dura-11
tions (30% of all data set), which may skew the model performance towards this value and gain an12
misleading performance improvement. Therefore the better model performance may be deceiving13
due to uncorrected user-input errors in accident reports. This makes the estimation of accident14
duration from traffic state important and necessary allowing an in-depth analysis to be undertaken.15
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CONCLUSION1
The proposed methodology in this paper aims at detecting, segmenting and extracting the observed2
disruptions in the traffic speed which was modelled together with reported traffic accidents by3
traffic management centers. The approach is innovative in its distance metric approach for an4
automatic incident detection coupled with an incident segmentation which has shown to improve5
the incident prediction by almost 41% in RMSE across multiple machine learning models. By6
obtaining shapes of disruptions we lay the foundation for accident impact modelling. Many studies7
still rely on the modelling of reported accident durations and pre-defined parameters, while they8
can be estimated from traffic state measurements, which gives us more data than just aggregated9
variables (duration, start time, etc). By having information on how each accident affect the traffic10
flow, we can study the accident impact with precision.11

Limitations of this work: The current modelling approach has been applied to a San12
Francisco data set due to its public availability and easiness to access. However, we would like13
to test the approach on multiple other countries and incident databases across the globe; the main14
challenge is the lack of both traffic states and traffic accidents logs to be released with synchronised15
timelines. Future works: We are currently modelling the cascading effect on traffic disruptions16
and how these can be automatically identified based on multiple incoming traffic state streams; the17
main challenge of detecting subsequent incidents lie in the time-span duration of the first incident18
which is normally stochastic in nature.19
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