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Abstract
Traffic  signal  control  (TSC)  systems  are  one  essential  component  in  intelligent  transport  systems.  However,  relevant  studies  are  usually

independent  of  the  urban  traffic  simulation  environment,  collaborative  TSC  algorithms  and  traffic  signal  communication.  In  this  paper,  we

propose  (1)  an  integrated  and  cooperative  Internet-of-Things  architecture,  namely  General  City  Traffic  Computing  System  (GCTCS),  which

simultaneously  leverages  an urban traffic  simulation environment,  TSC algorithms,  and traffic  signal  communication;  and (2)  a  general  multi-

agent reinforcement learning algorithm, namely General-MARL,  considering cooperation and communication between traffic  lights for  multi-

intersection TSC. In experiments, we demonstrate that the integrated and cooperative architecture of GCTCS is much closer to the real-life traffic

environment. The General-MARL increases the average movement speed of vehicles in traffic by 23.2% while decreases the network latency by

11.7%.
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 Introduction

Urban  traffic  congestion  has  become  a  global  issue  and
caused  severe  effects,  such  as  increased  travel  time,  fuel  con-
sumption,  and  air  pollution[1−3] It  has  serious  implications  for
the  global  economy  and  the  environment.  For  example,  in
recent  years,  the  USA  alone  lost  $87  billion  per  year  in  extra
driving time and gasoline due to traffic jams[4,5].

Inadequate  traffic  infrastructure,  the  rapid  growth  of  vehi-
cles,  and  pre-determined  traffic  signal  control  (TSC)  methods
are  the  leading  causes  of  urban  traffic  congestion[6].  Address-
ing  urban  planning  and  infrastructure  concerns  necessitates
significant financial and material resources. As a result, improv-
ing the existing TSC methods is  the most cost-efficient  way to
relieve traffic congestion.

In recent years,  significant progress has been made on rein-
forcement learning (RL) for solving various sequential decision-
making  problems  in  Artificial  Intelligence  (AI)  games,  such  as
Atari[7], Go[8], and Dota2[9,10]. The TSC problem can be regarded
as  an  agent  that  can  make  decisions  at  intersections  by  inter-
acting with the environment, just like in a game.

It  is  challenging to alleviate traffic congestion by optimizing
and  controlling  traffic  signals  only  at  a  single  intersection[11].
TSC  is  being  extended  from  optimization  of  a  single  intersec-
tion  to  multiple  intersections,  which  can  be  formulated  as  a
multi-agent  system  with  cooperation  between  agents.  Hence,
multi-agent reinforcement learning (MARL) has been receiving

more  attention  from  researchers  in  these  years[12−14].  Further-
more,  considering  the  network  transmission  and  communica-
tion between traffic  lights,  efforts  toward efficiently  deploying
MARL in practice has remained a research challenge.

Additionally,  most  research  focused  on  lab  theories  and
algorithms  with  few  considerations  of  industrial-scale  deploy-
ment issues. With the limited capabilities of the network trans-
mission bandwidth and underlying computing resources, opti-
mizing  the  deployment  structure  and  algorithmic  perfor-
mances  for  TSC  is  essential  for  intelligence  transport  systems
(ITS).

ITS-related  technologies,  such  as  urban  traffic  simulation
environments[15−18],  TSC  algorithms[19,20],  and  traffic  signal
communication[14,21],  have considerably enhanced traffic  oper-
ation and management. To the best of our knowledge, there is
rare  research  considering  all  aspects  above  for  TSC,  and  few
works can be deployed in the real-world. We summarize several
existing challenges in TSC:

1) Although some studies have contributed to multi-intersec-
tion  TSC[22−24],  it  lacks  an  integrated  architecture  to  leverage
the traffic  simulation environment,  cooperative TSC algorithm,
and  traffic  signal  communication  to  achieve  optimal  multi-
intersection TSC;

2)  Traditional  algorithms in  urban TSC rarely  consider  traffic
light cooperation and communication simultaneously;

3)  Most  studies  optimize  the  algorithms  but  ignore  the
network capacity or latency in the urban TSC process.
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To  address  the  aforementioned  challenges,  an  integrated
and  cooperative  architecture  for  TSC  across  multiple  intersec-
tions is proposed in this paper. The main contribution is three-
fold:

1)  An  integrated  architecture,  namely  General  City  Traffic
Computing  System  (GCTCS),  is  proposed,  which  integrates  an
urban traffic simulation environment, TSC algorithm, and com-
munication across the traffic signal network simultaneously.

2) A MARL algorithm, namely General-MARL, is developed for
TSC  based  on  GCTCS,  considering  cooperation  and  communi-
cation between traffic lights.

3) Comprehensive experiments have been conducted to vali-
date  the  proposed  architecture  and  algorithm  with  promising
results.  From  experimental  results,  our  novel  architecture  is
much  closer  to  the  real-life  traffic  environment.  With  the
proposed algorithm, the average speed of vehicles is increased
by  23.2%,  and  the  network  latency  is  reduced  by  11.7%
compared with baseline algorithms.

The remainder  of  this  paper  is  organized as  follows:  Section
Related  Work  introduces  related  works.  Section  Preliminary
explains  the  basic  concepts  and  problem  definition.  Section
Methodology  describes  the  architecture  of  GCTCS  and  details
the  General-MARL  method  for  cooperative  traffic  light  control
based on GCTCS. Section Experiments conducts experiments to
demonstrate  the  advantage  of  the  General-MARL  algorithm.
Section Conclusions  concludes  the paper  and discusses  future
work.

 Related Work

In this section, we discuss and introduce studies on the TSC,
which can be divided into two typical categories: Conventional
approaches and RL-based methods.

 Conventional methods for TSC
Conventional  TSC  methods  are  classified  into  four  types:

fixed-time  control[25],  actuated  control[26],  adaptive  control[27],
and  optimization-based  control[28].  Fixed-time  is  a  conven-
tional  and  primary  method  of  urban  TSC,  benefiting  from  the
simplicity of deployment. It usually consists of a pre-timed cycle
length,  fixed  cycle-based  phase  sequence,  and  phase  split.
While  calculating  the  cycle  length  and  phase  split,  the  traffic
flow  is  assumed  to  be  uniform  during  a  specific  period.  Since
introduction  in  the  1950s[25],  it  has  been  a  leading  solution  to
TSC in practice considering that  the urban traffic  environment
is  complex  and  uncertain,  and  mathematical  approaches
cannot precisely build a model from internal operational mech-
anisms  of  a  TSC  system.  Actuated  control[26] decided  whether
to keep or change the current phase based on the pre-defined
rules and real-time traffic data. It could set the green signal for a
specific traffic signal phase if the number of approaching vehi-
cles  is  larger  than  a  threshold.  Based  on  traffic  volume  data
from  loop  sensors,  adaptive  control[27] created  a  set  of  traffic
plans  and  chose  the  one  that  was  best  for  the  current  traffic
situation.  Optimization-based  control[28] formulated  TSC  as  an
optimization problem under a dynamic traffic flow and decided
the traffic signal according to the observed traffic information.
All  of  the  methods  discussed  above  heavily  rely  on  human-
designed traffic signal plans or rules.

 RL based methods for TSC
RL-based  methods  have  emerged  as  a  promising  TSC  solu-

tion,  which  are  designed  for  different  application  scenarios

including  single  intersection  control[11,29],  and  multi-intersec-
tion control[30,31].

 Single intersection control
Abdulhai  et  al. [11] introduced  Q-learning  for  TSC  and

presented  a  case  study  involving  application  to  traffic  signal
control. Li & Wang[29] proposed the idea to set up a deep neural
network (DNN) to learn the Q-function of reinforcement learn-
ing from the sampled traffic state/control inputs and the corre-
sponding traffic system performance result. Park et al.[32] devel-
oped  two  traffic  signal  control  models  using  reinforcement
learning and a microscopic simulation-based evaluation for an
isolated  intersection.  Additionally,  the  models  could  also  be
adapted for two coordinated intersections.

 Multi intersection control
Multi-agent  reinforcement  learning  (MARL)  involves  the

participation  of  more  than  one  agent[12].  It  can  learn  through
the  cooperation  of  (1)  sharing  instantaneous  information
through  interaction  with  the  environment  and  (2)  sharing
learned policies in episodic experience.

MARL  is  a  suitable  method  for  the  TSC  problem,  which  can
be solved as a typical MARL system for optimization of all inter-
sections[13,14].  There  exist  intelligent  traffic  agents  in  the  envi-
ronment that can facilitate learning progress in MARL. Co-DQL
model[12] used  a  highly  scalable  independent  double  Q-learn-
ing  method  based  on  double  estimators  and  the  upper  confi-
dence bound (UCB) policy for multi intersections. Wang et al.[13]

proposed  two  distributed  MARL  control  models  as  well  as  a
Federated Learning (FL) framework to solve the ATSC problem,
where  the  former  is  based  on  Advantage  Actor-Critic  (A2C)
algorithm,  and  the  latter  is  based  on  Federated  Averaging
(FedAvg)  algorithm.  El-Tantawy  et  al.[30] investigated  the
following  dimensions  of  the  control  problem:  (1)  RL  learning
methods,  (2)  traffic  state  representations,  (3)  action  selection
methods,  (4)  traffic  signal  phasing  schemes,  (5)  reward  defini-
tions,  and  (6)  variability  of  flow  arrivals  to  the  intersection.
Rasheed  et  al.[31] designed  a  multi-agent  DQN  (MADQN)  and
investigated its use to further address the curse of dimensional-
ity under traffic network scenarios with high traffic volume and
disturbances. El-Tantawy et al.[30] introduced a multi-agent auto
communication  (MAAC)  algorithm,  which  is  an  innovative
adaptive  global  traffic  light  control  method  based  on  multi-
agent reinforcement learning (MARL) and an auto communica-
tion  protocol  in  edge  computing  architecture.  The  MAAC
model  considered  traffic  communication  but  did  not  leverage
MARL and traffic simulation environment optimization.

From  the  literature,  we  find  that  most  studies  attempt  to
develop  an  RL  or  MARL  model  to  address  the  TSC  problem
directly,  ignoring  the  traffic  simulation  environment  optimiza-
tion and traffic communication simultaneously.

 Preliminary

 Traffic simulation environment
In  order  to  create  models  for  simulating  complex  traffic

dynamics,  urban  traffic  simulation  systems  typically  integrate
computing technologies and operational features of traffic flow
(as  illustrated  in Fig.  1).  Road  network,  vehicle  description,
traffic signal control,  and communication between the simula-
tion  system  and  traffic  equipment  are  typically  the  basic
elements of an urban traffic simulation system.
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The traffic simulation system can be divided into two groups:
the commercial and open-source system. VISSIM[33] and Param-
ics[34] are widely used as commercial traffic simulation systems.
While,  open-source  systems,  such  as  MIT  Simlab[15],  SUMO[16],
CityFLow[17] are usually adopted by researchers.

 Traffic computing structure
Communication  is  one  of  the  key  functions  in  cooperation,

which usually suffers from inevitable network latency. However,
relevant  studies  on  the  development  and  deployment  of
computing  frameworks  often  ignore  the  network  delay  in
communication.  In  general,  there are three major  IoT comput-
ing  structures,  namely  cloud  computing[35],  fog  computing[21],
and edge computing[36].

Cloud  computing  is  a  ubiquitous,  convenient,  and  on-
demand  repository  of  computing  resources  such  as  networks,
servers,  and storage.  Fog computing is  closer  to where data is
generated  than  cloud  computing.  Edge  computing  and  data
processing are performed at the nearest location where termi-
nal devices generate the data.

 Problem definition
The TSC problem can be regarded as an agent that can make

decisions at intersections by interacting with the environment.

⟨S ,A,P,R,π,γ⟩
π

γ ∈ [0,1]

It can be formulated as an Markov Decision Process (MDP)[37]

( ),  with the traffic state set S,  action set A,  transi-
tion  probability P,  reward R,  control  policy  and  discount
factor , as shown in Fig. 2.

Ii

Ai t Ai

Si

In this paper, we formalize the TSC problem as decentralized
intersection  optimization  by  MARL  for  multi-intersection  (as
shown  in Fig.  3).  Each  intersection  is  controlled  by  an  algo-
rithm . At time step ,  makes an optimal decision to choose
proper signal phase after analyzing its observation of the traffic
state  (vehicle queue, number of vehicle and etc.) at the inter-
section. In this case, the time T (average travel time) that vehi-
cles spend in the traffic network can be minimized, denoted as:

minT Ii(Ai(Si))
i (1)

T Ii(Ai(Si))
i

Ii Ai Si

where  is  the  average  time  vehicles  spending  at

intersection  based on algorithm  on state .

Road Network Description Signal Control Vehicle Description

Traffic Simulation Environment

 
Fig. 1    An urban traffic simulation environment for traffic research.
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Fig. 2    An illustration of traffic signal control at an intersection. According to the current traffic state  and the reward , the agent selects
and executes the corresponding action  (change or maintain the current traffic light). Then the agent evaluates the effects of the action to
obtain a new traffic state  and a new reward .
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In  a  multi-agent  system,  the cooperation between agents  is
usually  based  on  one  computing  structure.  Thus,  an  effective
and  efficient  integration  solution  covering  different  aspects  is
needed for TSC in practice.

 Methodology

 Architecture
In  this  section,  we  introduce  an  integrated  and  cooperative

architecture, i.e., GCTCS, for urban TSC across multiple intersec-
tions.  It  integrates  an  urban  simulation  environment,  a  hybrid
computing  framework  (cloud  computing,  fog  computing,  and
edge computing), an interface for TSC algorithm deployment, a
dynamic prediction module of  traffic  flow for traffic  configura-

tion interface, and an edge computing node of real-time traffic
video processing[38].

The development of GCTCS is to support more synthetic and
efficient  TSC  experiments  involving  multiple  intersections  and
to provide simulation data  that  are  closer  to  real  traffic  condi-
tions for industrial deployment, as shown in Fig. 4.

GCTCS  dynamically  connects  the  simulation  environment
with  the  natural  environment  of  multi-intersection  traffic
signals;  provides  urban  TSC  algorithm  interfaces  deployed
under  the hybrid computing architecture of  cloud computing,
fog  computing,  and  edge  computing;  and  takes  complete
account of  network bandwidth and network delay.  GCTCS can
break  through  the  barrier  between  the  real  traffic  flow  across
multiple  intersections  and the  traffic  flow configuration of  the
simulation  environment  and  realize  dynamic  synchronization

 
Fig. 3    The MARL structure in urban traffic signal control.
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Fig. 4    The General City Traffic Computing System (GCTCS) for urban traffic signal control.
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between  the  real  environment  and  the  simulation  environ-
ment. In addition, the overall computing architecture of GCTCS
is based on a hybrid computing framework, which fully consid-
ers  and  simulates  network  delay.  It  provides  interfaces  for
urban TSC and traffic flow prediction algorithms.

 The functions of each layer
The cloud computing layer is  located at the top layer of  the

architecture.  It  is  responsible  for  interacting  with  each  fog
computing node in the fog layer,  collecting information at the
fog  node,  and  sending  control  instructions  from  the  cloud
computing layer.

The fog computing layer  is  located between cloud comput-
ing  and  edge  computing  layers  and  consists  of  various
powered  servers,  routers,  and  controllers  that  can  bear  heavy
processing[39].  The  primary  function is  to  compute  and output
the control signal instructions.

The edge computing nodes are located at the bottom layer,
mainly  processing  surveillance  videos  and  extracting  status
information at the current traffic intersection.

 The module of traffic simulation environment
We designed the module of urban traffic simulation environ-

ment based on the urban traffic simulation platform described
above,  and  it  flexibly  establishes  the  traffic  flow  forecasting
interface  for  multiple  intersections[40].  The  module  can  be
configured by dynamic traffic flow based on the current simula-
tion environment, making the environment more realistic.

This  module  employs  the  traffic  flow  forecasting  method's
external  interface  to  dynamically  construct  traffic  flow  at  each
intersection,  allowing  the  traffic  simulation  system  to  assimi-
late  the  current  condition  and  provide  an  algorithm  interface
for  TSC.  The simulation environment  FLOW framework[18] is  to
optimize  the  urban  traffic  simulation  environment  benefiting
from  the  forecasting  capabilities  based  on  data  sets  and  time
series models.

The  traffic  environments  in  different  cities  differ,  and  it  is
necessary to establish a  unified method to obtain traffic  circu-

lating  situations  to  construct  the  urban  traffic  environment
closer to the real  world (as shown in Fig.  5).  The methodology
(1) uses edge computing capabilities to convert the traffic flow
captured  in  the  urban  traffic  monitoring  videos  into  text
content; (2) applies a traffic flow prediction algorithm to predict
relatively  accurate  traffic  flow;  and  (3)  dynamically  interacts
with  the  simulation  environment's  traffic  flow  configuration
interface. The urban traffic environment is not built in isolation.
It  interacts  with the simulation environment.  The process  is  as
follows:

(1) Establish a data set of urban traffic flow;
(2) Design a forecasting model for traffic flow;
(3) Develop an interactive interface with the simulation envi-

ronment.
The  simulation  environment  interacts  with  the  traffic  flow

anticipated  by  the  traffic  flow  prediction  model,  allowing  the
simulation environment to configure real-time traffic flow.

 General-MARL
In  this  section,  we  design  a  TSC  method,  named  General-

MARL, based on the GCTCS.
The  design  of  the  General-MARL  algorithm  is  according  to

different  layers  of  the  GCTCS  architecture.  Thus,  the  General-
MARL  is  composed  of  three  sub-algorithms:  the  algorithm  at
the  edge  computing  layer  (Edge-General-control),  the  algo-
rithm at the fog computing layer (Fog-General-control), and the
algorithm  at  the  cloud  computing  layer  (Cloud-General-
control).  Additionally,  the  GCTCS  with  a  layer-to-layer  connec-
tion,  which  has  a  clear  structure  and  lowers  complexity
compared  to  point-to-point  connections,  making  feasible  for
the  General-MARL  with  the  increasing  computation  ability  for
edge and fog devices.

The  Cloud-General-control  produces  the  global  control
signal  for  each  fog  node's  parameter  updating  based  on  the
joint  state  (all  traffic  states  from  each  node)  and  playback
mechanism  (historical  interactions  from  fog  nodes).  The  Fog-
General-control  generates a TSC signal  according to the traffic
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Fig. 5    The processes of construction of the urban traffic real environment.
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state  abstraction  from  Edge-General-control,  the  intelligent
communication  between  agents  allows  an  agent  to  share  the
learned  strategies  and  the  parameters  from  the  cloud  layer.
Deep neural  networks[41] are  the  basic  component  in  General-
MARL for  generating control  actions,  communication informa-
tion,  and  so  on.  The  structure  of  the  algorithm  architecture  is
illustrated in Fig. 6.

 Edge-General-control
The  Edge-General-control  algorithm  processes  the  traffic

surveillance  video  based  on  the  target  detection  algorithm
YOLO[38], detecting the vehicles' location at the intersection.

As  shown  in Fig.  7,  we  apply  an  open-source  vehicle  image
dataset, i.e., BIT-Vehicle[42], to fine-tune the YOLO algorithm for
vehicle  detection  precisely.  The  center  of  each  intersection  is
the  center  point  (0,0).  We  get  the  vehicle  position  from  the
YOLO-based model and add two fully-connection (FC) layers for
fine-tuning.  Then,  we obtain the direction information accord-
ing to the vehicle's  location and center  position.  Hence,  traffic
state  text  is  abstracted  from  the  traffic  surveillance  video,
including  the  vehicle-id,  type,  direction,  and  timestamp  for
passing vehicles.

Finally,  we  introduce  the  traffic  flow  prediction  algorithm
GCN-GAN[40],  which  can  predict  the  traffic  flow  and  synchro-
nizes with the simulation environment in real-time (Algorithm 1).

 Fog-General-control
The  Fog-General-control  algorithm  includes  the  Nash-MARL

module  and  the  communication  module  to  generate  control
strategies for urban traffic signals.

X
U

Nash-MARL  Module: The  Nash-MARL  Module  is  to  obtain
Nash  equilibrium  for  TSC  without  prior  knowledge
dynamically[43]. It defines that  is the traffic environment state
space for multi-intersection;  is the joint action from agents to

A a ∈ A
ua ∈ U R

Agenti πi

Ri

tune  transfer  signal;  is  the  action  space  of  one  agent ;
joint action is .  is the reward or objective function. The
object of  is  to choose a proper strategy  and to maxi-
mize the objective function .

π∗−i

Agent−i : Ri

(
x;πi;π∗−i

)Herein,  the  Bellman  equation  with  Nash  Equilibrium:  firstly,
fix other agents' policies ; optimize the objective function of

:

R =max
u∈Ui

{
ri
(
x,u,π∗−i (x)

)
+γi E

x′∼p(·|x,u)

[
Ri

(
x′;π∗i,1;π∗−i,1

)]}
(2)

π∗i Agenti Agent−i

π∗i γ ∈ [0,1]

Agenti

Where  is '  policy according to other agents' 
action  selection  policies.  and .  The  result  of  the
objective (reward) function is based on the policy selection for
participated  each  agent.  It  automatically  generates  its  action
policy  by  considering  the  behavior  of  other  agents.  When  the
behavior  of  other  agents  is  stable,  tries  to  optimize  the
behavior  of  the  objective  function.  All  agents'  policies  could
achieve Nash equilibrium after iteration update.

Algorithm 1.    Edge-General-control algorithm.

1: Input the video information of the traffic situation.
2: Capture one frame from the video: G
3: Use and fine-tune the YOLO to recognize all the vehicle's position
(x,y) and type in G.
4: for vehicle in G do
5:    Obtain the direction of vehicles by judging the (x,y) from the
regions according the three regions predefined.
6:    Record traffic state text information (vehicle -id, types, direction,
and the timestamp) into traffic state text T.
7: end for
8: Use GCN-GAN for traffic flow prediction to T.
9: Connect traffic flow prediction capability to the urban simulation
environment.
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Fig. 6    The General-MARL is composed of three sub-algorithms based on different layers of the GCTCS architecture.
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Q Agent−i
(
Q̂θi (x;u)

)
i∈N

Agent−i
(
V̂θi (x;u)

)
i∈N

u
x

In the design of the Nash-MARL Module, the computation of
the  critic  function (advantage)  in  deep reinforcement  learning
might  have  positive  (good)  and  negative  (bad)  reward  results,
making  the  learning  process  efficiently.  Thus,  the  Nash-MARL

module  defines  the  function  of  an  as ;

the estimate value function of  is , wherein 

is the union action, and  is the union state.

Âθ (x;u) = Q̂θ (x;u)− V̂θ (x;u) (3)

θ

θ = (θV , θA) θV
V̂θV θA

π̂θA x’m xm

Lm (θ)

It  employs  the  actor-critic  model[44] as  a  framework.  In  the
actor-critic model, the actor is a policy function and the critic is
a  value  function.  The  parameter  set  into  the  value  function
parameter  set  and  the  policy  function  parameter  set

,  where  represents  the  model  of  the  value  func-
tion ;  represents  the  parameters  of  the  agent  (partici-
pant) action selection policy .  is the next state of .  The
model  samples  M  epochs.  The  object  of  the  algorithm  is  to
minimize  the  loss  of  the  sampled  data  and  the  Nash-Bellman
equation :

Lm (θ) =
1
M

∑M

m=1

∣∣∣∣∣∣V̂θ (xm)+ Âθ (xm;um)− r (xm;um)−γiV̂θ
(
x′m
)∣∣∣∣∣∣ (4)

ym = L̂ (y, θV , θA)The  module  defines  for  simplifying  the
above expression.

ym =
∣∣∣∣∣∣V̂θV (xm)+ ÂθA (xm;um)− r (xm;um)−γiV̂θV

(
x′m
)∣∣∣∣∣∣2 (5)

Inspired  by  the  deep  Q-networks[7],  the  module  also  intro-

yt = (xt−1,u, xt)
xt−1 u

xt yt

duce  a  memory  buffer  (replay  buffer)  to  store  triples
, which represents the previous state of the envi-

ronment ;  the union operation performed ;  the next state
of  the  environment ;  and  the  reward  that  passes  through
this  state.  The  module  can  use  stochastic  gradient  descent
(SGD)  to  update  the  parameters  after  randomly  selecting  a
piece  of  memory  data  from  the  replay  buffer.  To  improve  the
action plan, the algorithm also employs ϵ-greedy exploration.

Additionally, the idea of parallel space-time is incorporated to
enable the simultaneous execution in various environments. To
achieve  a  stable  learning  process,  multiple  explorations  in
multiple  environments  would  explore  different  policies  and
accelerate the learning speed. The overall algorithm structure is
shown  in Fig.  6.  Further,  the  Nash-MARL  algorithm  process  is
detailed in Algorithm 2.

Communication  Module: The  communication  module
between  agents  allows  an  agent  to  share  the  learned  strate-
gies with others based on the attention mechanism[45].

t t
Xt =
(
x1

t , · · · , xN
t

)
Ct =

(
c1

t , · · · ,cN
t

) (
Agent1, · · · ,AgentN

)
xt

The  calculation  steps  in  the  communication  module[14] at
time  are  shown  in Fig.  8.  At  a  time  in  the  communication

module,  the  environment  input  is  and  the

corresponding  communication  information  input  is

.  Multi-agents  are  able  to

interact with each other. Each agent receives information from
receivers  and  transmitters  internally.  The  receiver  receives  its
own  environmental  information  and  communication

YOLO
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Fig. 7    The process of abstracting traffic information from the video to generate the text info from traffic flow. Detection of vehicles in the
three regions stands for different directions of passing vehicles

Algorithm 2.    Nash-MARL Module.

1: B > 0 b = 1 M̂ > 0Init Episode , ; Minibatch Size , Game Step N

2: D θV θAInit Replay Buffer ,  and 
3: repeat
4: x0  Reset, go to the 
5:   repeat

6: u← πθA (x) u    Select  or select  randomly (e.g., ϵ-greedy)

7: yt = (xt−1,u, xt)    Observe 

8: yt D    Store  to Reply Buffer 

9: Y = {yi}M̂i=1    Sampling from Replay Buffer: 

10: 1
M+1
∑

y∈Y∪{yt}L̂ (y, θV , θA) θA θV    Optimize  fix  update 

11: 1
M+1
∑

y∈Y∪{yt}L̂ (y, θV , θA) θV θA    Optimize  fix  update 

12: t > N  Until 
13: b > BUntil 

14: θV θAreturn  and 

 
Fig.  8    The  communication  process  between  agents  in  the
communication module.
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ct

(at+1,ct+1) t+1
information ,  and  generates  action  and  external  interaction
information group  at .

Agenti θi θi

θiS ender θiReceiver

In the communication module (as shown in Algorithm 3), the
parameter  set  of  for  each  agent  is .  Furthermore,  is

divided  into  the  sender  and  receiver .

The parameters  of  the sending side and the receiving end are
optimized  by  the  overall  multi-agent  objective  function.  The
parameter sets of the receiver and the sender are updated iter-
atively for each agent.

The  Fog-General-control  algorithm  is  illustrated  as  below
(Algorithm 4):

 Cloud-General-control
The  Cloud-General-control  algorithm  deploys  the  Nash-

MARL  module,  the  'parallel  universe'  of  the  Nash-MARL  algo-
rithm are fog nodes.

The Cloud-General-control Algorithm 5 is:

Algorithm 3.    The communication module.

C01: Initialize the communication matrix of all agents 

θiS ender θiReceiver2: Initialize the parameters of agent  and 
3: repeat

Agenti

Ĉt

4:    Receiver of : use attention mechanism to generate
communication matric 

Agenti ai
t+15:    Sender of : chooses an action  from policy selection

network, or randomly chooses an action (e.g., ϵ-greedy exploration)

Agenti

Ĉt : ci
t+1

6:    Sender of : generate its own information through the
receiver's communication matrix 

a1
t+1, · · · ,aN

t+1 Rt+1
Xt+1

7:    Collect all the joint actions of Agent and execute the actions
, get the reward from the environment  and next state

8: until End of Round Episode

θiS ender θiReceiver9: return  and  for each agent

Algorithm 4.    Fog-General-control.

1: Apply the communication module:

C02: Initialize the communication matric  of all fog computing node Agents

θiS ender θiReceiver3: Initialize the parameters  and  of the fog computing node Agents

θV θA θiV θiA4: Receive the global parameter sets  and  distributed by the cloud computing node and initialize the parameter sets  and 

B > 0 b = 1
−
M> 0 N5: Initialize the Episode , ; the minimum batch size Minibatch Size , the number of game steps 

6: Apply the Nash-MARL Module:

D7: Initialize the memory record Replay Buffer 
8: repeat
9: x0Reset the environment and enter the initial state 
10: repeat

11: u← πθA (x) u    Choose joint action  or randomly choose joint action  (e.g., ϵ-greedy exploration)

12: yt = (xt−1,u, xt)    Observe the state-action-state triplet 
13: D    Store triples in the Replay Buffer 

14: Y = {yi}Mi=1    Extract data  from the Replay Buffer

15: Agenti Ĉt      receiver uses Attention mechanism to generate communication matrix 

16: ti ai
t+1    The strategy choice network of the Agent  sender chooses an action , or randomly chooses action a (e.g., ϵ-greedy exploration)

17: Agenti ci
t+1 Ĉt    The  sender generates its own information  through the communication matrix  at the receiving end

18: ai
t+1, · · · ,aN

t+1 Rt+1 Xt+1    Collect the joint actions of all Agents, execute an action , get rewards  and the next state  from the environment

19: 1
M+1
∑

y∈Y∪{yt}L̂
(
y, θiV , θ

i
A,Ĉt

)
θiA θiV    Optimization step , fixes  updates 

20: 1
M+1
∑

y∈Y∪{yt}L̂
(
y, θiV , θ

i
A,Ĉt

)
θiV θiA    Optimization step , fixes  updates 

21: > Nuntil 
b > B22: until 

θiV θiA23: Return  and 

Algorithm 5.    Cloud-General-control.

1: Apply the Nash-MARL module:

θV θA T2: Initialize the global parameter sets  and  of the cloud computing center and the global counter 
3: repeat

θiV = θV θ
i
A = θA4:     Distributer global parameters to fog computing nodes , 

5:     repeat

θV = θV +dθiV θA = θA+dθiA6:         Update global parameters , 
7:     until all fog computing nodes are traversed and collected

T ← T +18:     
T > Tmax9: until 
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 Experiments

In  this  section,  we  apply  General-MARL  and  baseline  meth-
ods  to  the  integrated  and  cooperative  architecture  GCTCS  for
multi-intersection  TSC.  The  experimental  process  ignores  or
considers  the  situation  of  network  bandwidth  and  network
delay, respectively.

 Dataset
The dataset from Lanzhou in China consists of two parts:  (1)

the traffic  network;  and (2)  the traffic  flow.  The traffic  network
describes  the  traffic  network,  including  lanes,  roads,  intersec-
tions, and signal phases. As shown in Fig. 9, there are 27 inter-
sections connecting 45 roads. All the traffic networks are simu-
lated  in  the  simulation  environment  from  our  GCTCS.  Various
and  flexible  TSC  algorithms  control  each  intersection's  signal.
The distance between two intersections is  two to four  kilome-
ters (km). The speed limitation is 60 (km/h).

(t,u) t
u

The  initial  flow  of  incoming  and  outgoing  vehicles  at  each
intersection  is  configured  based  on  the  real  traffic  flow  data.
The  traffic  flow  dataset  contains  vehicles  travel  information,
which is described as , where  is the time that each vehicle
starts  entering  the  traffic  network  and  is  the  pre-planned
route from its original location to its destination.

 Parameter settings of General-MARL

 Cloud computing center

x x
x

π (x)

We deploy the Cloud-General-control  algorithm in  a  Docker
environment[46],  logically  away  from  the  intersections,  and  set
the  communication  delay  from  the  cloud  center  to  the  fog
computing node to  seconds in the simulation code (set  = 0
second to sleep to ignore network delay; set  = 10 seconds to
consider network delay). Then we set four hidden layers in the
network  for  policy  network  generation  in  the  cloud
computing  node  with  40,  80,  80  and  80  nodes  in  each  layer,
respectively.  The  network  layers  are  activated  and  connected
through  the  activation  function  ReLU[47];  the  main  neural
network has three hidden layers, each containing 40 nodes. The
layers are activated and connected through ReLU. The learning
rate is set to 0.001.

 Fog computing node

x x
x

π (x)

We deploy the Fog-General-control  algorithm in the Docker
environment and set it to be logically close to the intersection.
The  delay  from  the  intersection  to  the  fog  computing  node  is
set  to  second  (set  =  0  second  to  sleep  to  ignore  network
delay;  set  =  1  second  to  consider  network  delay).  Twenty
seven fog computing nodes are deployed in the environment.
The network for policy network generation  in each node is
set  with  four  hidden  layers,  with  40,  80,  80,  and  40  nodes,
respectively. The layers are connected through ReLU activation,
and  the  main  neural  network  has  three  hidden  layers,  each
containing  40  nodes.  The  layers  are  connected  through  ReLU
activation. The learning rate is set to 0.001.

 Edge computing node

x x
x

We deploy the Edge-General-Control algorithm in the Docker
environment  at  one  intersection.  The  network  delay  from  the
edge computing nodes to fog computing and vehicles are both
set  to  seconds  (set  =  0  second  to  sleep  to  ignore  network
delay; set  = 1 second to consider network delay).

 Initial traffic light period setting

gt rt

yt

The traffic  control  period is  set  to 60 s  initially.  The intervals
of the green, red and yellow lights are set as  = 27 s,  = 27 s,
and  = 27 s, respectively.

 Vehicle simulation
According to the actual traffic flow forecasting algorithm, the

traffic  flow  is  predicted  every  15  min,  and  the  vehicle  simula-
tion is conducted at each intersection.

 Evaluation mechanism

Te =
∑I

i=1
∑M

m=1tm e ∈ E M
I

E I

In  the  simulation  environment,  the  passing  time  of  all  vehi-
cles  at  each  intersection  in  an  Episode  is  recorded  as

, wherein  is the number of Episodes,  is
the number of vehicles, and  is the number of intersections. In
this configuration, we set  = 1,000;  = 27.

 Methods for comparison
Fixed-Time[25]: a policy gives a fixed cycle length with prede-

fined green time among all  phases.  The intervals of  the green,
red and yellow signals are fixed as green and red are 27 s, and

 
Fig. 9    The illustration of topology map of real traffic intersection.
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the yellow is  6 s,  which are the same as the initial  intervals  for
other methods for a fair comparison.

Q-learning[32]:  a  model-free  reinforcement  learning  algo-
rithm to learn the value of an action in a particular traffic state
based  on  Q-learning[48],  which  leverages  the  advantage  deep
neural network for addressing TSC problem. The algorithm can
be deployed on the Fog or Edge node with the same parame-
ters as shown in Table 1.

Nash-Q[49]:  a  model integrates Q-learning[48] and Nash Equi-
librium[50] for  making  agents  learn  a  better  cooperative  strat-
egy, which can be deployed on the Fog node.

Nash-DQN[51]:  a  Deep-Q-learning  methodology  for  model-
free  learning  of  Nash  Equilibrium  for  general-sum  stochastic
games.

MAAC[14]:  a  multi-agent  auto  communication  (MAAC)  algo-
rithm is an adaptive global TSC method based on MARL. MAAC
combines  multi-agent  auto  communication  protocol  with

MARL,  allowing  an  agent  to  communicate  the  learned  strate-
gies  with  others  for  achieving  global  optimization  in  traffic
signal control. The intervals of the green, red and yellow signals
are fixed as the experiment settings.

 Experimental process
Each experiment  consists  of  two parts:  the first  part  ignores

the  network  delay  and  compares  results  with  other  TSC  algo-
rithms; in the other part, network delay is considered.

 Ignoring network delay
The  delays  of  edge  computing,  fog  computing,  and  cloud

computing  nodes  in  General-MARL  are  all  set  to  0  without
considering  network  latency.  In  the  urban  simulation  environ-
ment, we input actual traffic data before configuring various TSC
algorithm models via the algorithm interface.  Baseline methods
and the General-MARL algorithm are run in the simulation envi-
ronment. The traffic flow at each intersection is updated every 15
min. We record the waiting time of vehicles at each traffic inter-
section every minute (considered as an environmental feedback
reward) and conduct 1000 Episode (round) training.

As  shown  in Fig.  10,  the  training  convergence  effect  of  the
General-MARL  algorithm  is  as  good  as  the  Nash-DQN  algo-
rithm but does not perform the best.

 Considering network delay
In  the  case  of  considering  network  delay,  the  delays  of  the

edge computing,  fog computing,  and cloud computing nodes
in General-MARL are all  set parameters according to the previ-
ous section. Then we configure the fixed duration as the traffic
signal  time  series  as  the  previous  setting.  Q-learning  (edge)
deploys  the  Q-learning  algorithm  on  the  fog  computing  node
to control  the traffic  lights,  and the delay from the controlling
agent to the intersection is 1 s. There are 27 docker containers
deployed at 27 traffic intersections with Q-learning capabilities
to generate traffic flow controlling signals, respectively.

Q-learning  (center)  and  DQN  only  use  the  cloud  computing
center to collect the information at each intersection. They are
applied  for  overall  control  and  generation  of  control

Table 1.    List of parameters in this paper.

Module Parameters Description

Cloud
Computing
Center

x = 0|x = 10
20, 60, 60, 20

0.001

The delay from the cloud to the
fog node
The hidden layers in the
network
The learning rate

Fog
Computing
Node

x = 0|x = 1
20, 60, 60, 20

0.001

The delay from intersection to
the fog node
The hidden layers in the
network
The learning rate

Edge
Computing
Node

x = 0|x = 1 The delay from edge nodes to
fog node

Experiment
Settings

gt = rt = 27,yt = 6
15

E = 1,000
I = 27

l = 0.001
γ = 0.982

The initial intervals of the green,
red and yellow
The traffic flow prediction
period
The number of Episodes
The number of intersections
The learning rate
The discount rate
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Fig. 10    Multi-intersection traffic signal control training process (without network delay).
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commands  for  each  intersection.  The  traffic  flow  prediction
algorithm  then  updates  the  traffic  flow  at  each  intersection
every  15  min  (GCN-GAN).  GCTCS  records  the  waiting  time  of
vehicles  at  each intersection every minute (as  an environmen-
tal  feedback  reward)  and  conducts  the  training  with  1000
Episodes.

As shown in Fig.  11,  the convergence speed of  the General-
MARL is faster than Nash-DQN, and the training results outper-
form other baseline algorithms.

 Experimental results
The results of the experiment are also split into two parts: the

first part ignores network delay, and the second part considers
network delay.

 Ignoring network delay
After  training  in  the  simulation  experiment  in  the  previous

section,  500  episode  tests  were  performed  to  generate  the
experimental results, as shown in Table 2.

The  experimental  results  show  that,  regarding  the  average
speed and average waiting time of vehicles at 27 intersections,
the General-MARL algorithm leads a similar performance as the
Nash-DQN algorithm. The performance of General-MARL is not
outstanding  when  network  delay  is  ignored,  but  the  overall
performance  of  General-MARL  is  better  than  other  baseline
algorithms.

 Considering network delay
We  conduct  500  episodes  in  the  tests  after  training  in  the

simulation and collected the experimental results,  as shown in
Table  3.  Regarding  the  average  waiting  time  at  intersections,
the  overall  performance  of  General-MARL  is  the  best,  surpass-
ing all  the other algorithms, and it  shows an average decrease
of 18.3% waiting time compared to the baseline algorithms. As
for the average speed of vehicles at intersections, the General-
MARL  algorithm  increases  the  average  speed  by  10.2%  when
network delay is considered. As shown in Table 4, the General-
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Fig. 11    Multi-intersection traffic signal control training process (with network delay).

Table  2.    Results  of  General-MARL  and  other  algorithms  (ignoring
network delay).

Method Average speed (km/h) Average waiting time (s)

Fixed-time 10.17 166.70
Q learning 18.43 135.62
DQN 20.10 112.24
A3C 24.12 90.73
Nash-Q 29.70 70.14
Nash-DQN 33.81 61.21
MAAC 27.39 80.21
General-MARL 31.22 62.87

Table 3.    Results of the average speed and waiting time in each episode
(consider network delay).

Method Average speed (km/h) Average waiting time (s)

Fixed-time 10.15 166.71
Q learning(center) 21.69 182.75
Q learning(edge) 23.47 155.64
DQN 24.94 132.70
A3C 26.12 108.65
Nash-Q 28.32 105.55
Nash-DQN 30.86 106.37
MAAC 27.61 116.81
General-MARL 30.78 92.48

Table 4.    Results of accumulated time and network delay in each episode
(consider network delay).

Method Accumulated time (s) Network delay (s) Delay rate

Fixed-time 38827.5 0.0 0.0%
Q learning(center) 45448.0 10809.7 23.8%
Q learning(edge) 35789.3 6522.9 18.2%
DQN 33789.9 8997.2 26.6%
A3C 31340.4 7792.1 24.9%
Nash-Q 30940.5 7536.9 24.4%
Nash-DQN 31994.6 7937.7 24.8%
MAAC 28940.7 6552.1 22.6%
General-MARL 26912.7 3264.5 12.2%
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MARL  algorithm  fully  exceeds  the  baseline  algorithms  and
other  algorithms  in  terms  of  the  accumulated  waiting  time  of
vehicles,  network  delay  time,  and  delay  rate  indicators.  The
delay rate is reduced by 7.4%. Furthermore, the General- MARL
algorithm  optimizes  each  intersection  to  a  certain  extent,  as
shown in Table 5.

 Overall analysis
The  analysis  of  experimental  results  reveals  that  network

delay has a significant impact on the actual application effect of
the  TSC  algorithm.  Although  General-MARL  showed  good
performance  even  when  network  delay  was  ignored,  imple-
mentation  of  the  method  in  urban  TSC  should  take  into
account the influence of network latency for industrial deploy-
ment.

With  the  consideration  of  network  delay,  the  General-MARL
fully  surpasses  the  baseline  algorithms  on  average  vehicle
speed  at  intersection,  average  vehicle  waiting  time,  vehicle
cumulative  waiting  time,  network  delay  time,  and  the  indica-
tors  of  delay  rate.  The  average  speed  of  vehicles  increases  by
23.2%, and the network latency decreases by 11.7%, as shown
in Fig.12.

 Conclusions

In this paper, we proposed an integrated and cooperative IoT
architecture  GCTCS  and  the  General-MARL  algorithm  for  multi-
intersection traffic signal  control.  The results from the proposed
framework  and  algorithm  showed  that  the  average  speed  of
vehicles  was  increased  by  23.2%,  and  the  network  latency  was

Table  5.    Results  of  average  waiting  time  at  each  intersection  in  each
episode (considering network delay).

ID Fixed-
time Q-edge DQN A3C Nash-Q Nash-

DQN MAAC General

1 175.27 161.96 136.93 110.89 109.34 111.21 124.69 96.81
2 188.35 172.68 145.58 116.43 115.88 119.02 130.73 105.46
3 155.28 145.58 123.71 102.43 99.35 99.27 120.99 83.59
4 197.72 180.36 151.78 120.39 120.57 124.61 133.34 111.66
5 155.23 145.54 123.68 102.41 99.32 99.24 116.97 83.56
6 168.97 156.8 132.76 108.22 106.19 107.45 122.26 92.64
7 157.68 147.55 125.30 103.44 100.55 100.7 107.91 85.18
8 161.32 150.53 127.70 104.98 102.37 102.88 119.31 87.58
9 185.23 170.13 143.52 115.11 114.32 109.88 128.53 103.40

10 176.47 162.95 137.72 111.40 109.94 111.92 115.15 97.60
11 161.21 150.44 127.63 104.94 102.31 102.81 119.28 87.51
12 125.96 121.55 104.32 90.01 104.30 81.77 105.69 64.20
13 131.62 126.19 108.06 92.41 87.52 85.15 117.87 67.94
14 169.15 156.95 132.88 108.30 106.28 107.55 122.33 92.76
15 175.52 180.84 152.16 120.64 109.47 124.96 40.06 112.04
16 132.47 126.89 108.62 92.77 87.94 85.65 108.20 68.50
17 164.12 152.83 129.56 87.56 103.77 104.55 113.46 89.44
18 166.87 155.08 131.38 107.33 105.14 106.19 121.45 91.26
19 150.39 141.57 120.48 100.36 96.90 96.35 115.11 80.36
20 177.77 164.01 138.58 111.95 110.59 112.70 125.65 98.46
21 153.63 144.23 122.62 101.73 98.52 98.29 96.35 82.50
22 167.54 155.63 131.82 107.62 105.48 106.59 121.71 91.70
23 177.62 163.89 162.05 157.98 110.52 112.61 139.54 121.93
24 186.84 171.45 144.58 115.79 115.13 118.11 129.15 104.46
25 175.36 162.04 136.99 110.93 109.39 111.26 128.73 96.87
26 175.23 161.93 136.90 110.87 109.32 111.18 124.67 96.78
27 188.35 172.68 145.58 116.43 115.88 119.02 104.64 102.77
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Fig. 12    Comparative results among different algorithms.
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reduced  by  11.7%,  when  compared  with  baseline  algorithms.
Our results  proved that  the application of  MARL in urban traffic
signal  control  needs  to  consider  multiple  factors,  including  the
simulation  environment,  algorithm  process,  deployment  archi-
tecture,  and  network  delay.  The  results  also  validated  the  best
performance  of  the  proposed  General-MARL.  Therefore,  GCTCS
and  General-MARL  showed  great  potential  in  practical  applica-
tions  and  theoretical  contributions  for  multi-intersection  traffic
signal control with large-scale deployment in real road networks.

In  traffic  signal  control,  not  only  the  vehicles'  but  also  the
pedestrians'  behaviours[52],  such as  crossing times and waiting
times  are  affected.  In  future  studies,  pedestrians  will  be
included to cover all the road users at intersections. We will be
able  to  further  validate  our  proposed  methodology  based  on
real-life case studies because we have been invited by one city
from China to deploy our GCTCS and algorithm in a test area.
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