

Open Access https://doi.org/10.48130/DTS-2023-0012

Digital Transportation and Safety 2023, 2(2):150−163

An integrated and cooperative architecture for multi-intersection
traffic signal control
Qiang Wu1, Jianqing Wu2, Bojian Kang3, Bo Du4*, Jun Shen5* and Adriana Simona Mihăiţă6

1 Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chendu 610054, China
2 School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
3 School of Management, Lanzhou University, Lanzhou 730000, China
4 SMART Infrastructure Facility, University of Wollongong, Wollongong 2522, Australia
5 School of Computing and Information Technology, University of Wollongong, Wollongong 2522, Australia
6 Faculty of Engineering and IT, University of Technology Sydney, Sydney 2007, Australia
* Corresponding authors, E-mail: bdu@uow.edu.au; jshen@uow.edu.au

Abstract
Traffic signal control (TSC) systems are one essential component in intelligent transport systems. However, relevant studies are usually

independent of the urban traffic simulation environment, collaborative TSC algorithms and traffic signal communication. In this paper, we

propose (1) an integrated and cooperative Internet-of-Things architecture, namely General City Traffic Computing System (GCTCS), which

simultaneously leverages an urban traffic simulation environment, TSC algorithms, and traffic signal communication; and (2) a general multi-

agent reinforcement learning algorithm, namely General-MARL, considering cooperation and communication between traffic lights for multi-

intersection TSC. In experiments, we demonstrate that the integrated and cooperative architecture of GCTCS is much closer to the real-life traffic

environment. The General-MARL increases the average movement speed of vehicles in traffic by 23.2% while decreases the network latency by

11.7%.

Keywords: Intelligent transport system, Traffic signal control, Traffic, Deep learning

Citation: Wu Q, Wu J, Kang B, Du B, Shen J, et al. 2023. An integrated and cooperative architecture for multi-intersection traffic signal control. Digital
Transportation and Safety 2(2):150−163 https://doi.org/10.48130/DTS-2023-0012

 Introduction

Urban traffic congestion has become a global issue and
caused severe effects, such as increased travel time, fuel con-
sumption, and air pollution[1−3] It has serious implications for
the global economy and the environment. For example, in
recent years, the USA alone lost $87 billion per year in extra
driving time and gasoline due to traffic jams[4,5].

Inadequate traffic infrastructure, the rapid growth of vehi-
cles, and pre-determined traffic signal control (TSC) methods
are the leading causes of urban traffic congestion[6]. Address-
ing urban planning and infrastructure concerns necessitates
significant financial and material resources. As a result, improv-
ing the existing TSC methods is the most cost-efficient way to
relieve traffic congestion.

In recent years, significant progress has been made on rein-
forcement learning (RL) for solving various sequential decision-
making problems in Artificial Intelligence (AI) games, such as
Atari[7], Go[8], and Dota2[9,10]. The TSC problem can be regarded
as an agent that can make decisions at intersections by inter-
acting with the environment, just like in a game.

It is challenging to alleviate traffic congestion by optimizing
and controlling traffic signals only at a single intersection[11].
TSC is being extended from optimization of a single intersec-
tion to multiple intersections, which can be formulated as a
multi-agent system with cooperation between agents. Hence,
multi-agent reinforcement learning (MARL) has been receiving

more attention from researchers in these years[12−14]. Further-
more, considering the network transmission and communica-
tion between traffic lights, efforts toward efficiently deploying
MARL in practice has remained a research challenge.

Additionally, most research focused on lab theories and
algorithms with few considerations of industrial-scale deploy-
ment issues. With the limited capabilities of the network trans-
mission bandwidth and underlying computing resources, opti-
mizing the deployment structure and algorithmic perfor-
mances for TSC is essential for intelligence transport systems
(ITS).

ITS-related technologies, such as urban traffic simulation
environments[15−18], TSC algorithms[19,20], and traffic signal
communication[14,21], have considerably enhanced traffic oper-
ation and management. To the best of our knowledge, there is
rare research considering all aspects above for TSC, and few
works can be deployed in the real-world. We summarize several
existing challenges in TSC:

1) Although some studies have contributed to multi-intersec-
tion TSC[22−24], it lacks an integrated architecture to leverage
the traffic simulation environment, cooperative TSC algorithm,
and traffic signal communication to achieve optimal multi-
intersection TSC;

2) Traditional algorithms in urban TSC rarely consider traffic
light cooperation and communication simultaneously;

3) Most studies optimize the algorithms but ignore the
network capacity or latency in the urban TSC process.

ARTICLE

© The Author(s)
www.maxapress.com/dts

www.maxapress.com

http://orcid.org/0000-0001-7670-5777
http://orcid.org/0000-0001-7670-5777
mailto:bdu@uow.edu.au
mailto:jshen@uow.edu.au
https://doi.org/10.48130/DTS-2023-0012

To address the aforementioned challenges, an integrated
and cooperative architecture for TSC across multiple intersec-
tions is proposed in this paper. The main contribution is three-
fold:

1) An integrated architecture, namely General City Traffic
Computing System (GCTCS), is proposed, which integrates an
urban traffic simulation environment, TSC algorithm, and com-
munication across the traffic signal network simultaneously.

2) A MARL algorithm, namely General-MARL, is developed for
TSC based on GCTCS, considering cooperation and communi-
cation between traffic lights.

3) Comprehensive experiments have been conducted to vali-
date the proposed architecture and algorithm with promising
results. From experimental results, our novel architecture is
much closer to the real-life traffic environment. With the
proposed algorithm, the average speed of vehicles is increased
by 23.2%, and the network latency is reduced by 11.7%
compared with baseline algorithms.

The remainder of this paper is organized as follows: Section
Related Work introduces related works. Section Preliminary
explains the basic concepts and problem definition. Section
Methodology describes the architecture of GCTCS and details
the General-MARL method for cooperative traffic light control
based on GCTCS. Section Experiments conducts experiments to
demonstrate the advantage of the General-MARL algorithm.
Section Conclusions concludes the paper and discusses future
work.

 Related Work

In this section, we discuss and introduce studies on the TSC,
which can be divided into two typical categories: Conventional
approaches and RL-based methods.

 Conventional methods for TSC
Conventional TSC methods are classified into four types:

fixed-time control[25], actuated control[26], adaptive control[27],
and optimization-based control[28]. Fixed-time is a conven-
tional and primary method of urban TSC, benefiting from the
simplicity of deployment. It usually consists of a pre-timed cycle
length, fixed cycle-based phase sequence, and phase split.
While calculating the cycle length and phase split, the traffic
flow is assumed to be uniform during a specific period. Since
introduction in the 1950s[25], it has been a leading solution to
TSC in practice considering that the urban traffic environment
is complex and uncertain, and mathematical approaches
cannot precisely build a model from internal operational mech-
anisms of a TSC system. Actuated control[26] decided whether
to keep or change the current phase based on the pre-defined
rules and real-time traffic data. It could set the green signal for a
specific traffic signal phase if the number of approaching vehi-
cles is larger than a threshold. Based on traffic volume data
from loop sensors, adaptive control[27] created a set of traffic
plans and chose the one that was best for the current traffic
situation. Optimization-based control[28] formulated TSC as an
optimization problem under a dynamic traffic flow and decided
the traffic signal according to the observed traffic information.
All of the methods discussed above heavily rely on human-
designed traffic signal plans or rules.

 RL based methods for TSC
RL-based methods have emerged as a promising TSC solu-

tion, which are designed for different application scenarios

including single intersection control[11,29], and multi-intersec-
tion control[30,31].

 Single intersection control
Abdulhai et al. [11] introduced Q-learning for TSC and

presented a case study involving application to traffic signal
control. Li & Wang[29] proposed the idea to set up a deep neural
network (DNN) to learn the Q-function of reinforcement learn-
ing from the sampled traffic state/control inputs and the corre-
sponding traffic system performance result. Park et al.[32] devel-
oped two traffic signal control models using reinforcement
learning and a microscopic simulation-based evaluation for an
isolated intersection. Additionally, the models could also be
adapted for two coordinated intersections.

 Multi intersection control
Multi-agent reinforcement learning (MARL) involves the

participation of more than one agent[12]. It can learn through
the cooperation of (1) sharing instantaneous information
through interaction with the environment and (2) sharing
learned policies in episodic experience.

MARL is a suitable method for the TSC problem, which can
be solved as a typical MARL system for optimization of all inter-
sections[13,14]. There exist intelligent traffic agents in the envi-
ronment that can facilitate learning progress in MARL. Co-DQL
model[12] used a highly scalable independent double Q-learn-
ing method based on double estimators and the upper confi-
dence bound (UCB) policy for multi intersections. Wang et al.[13]

proposed two distributed MARL control models as well as a
Federated Learning (FL) framework to solve the ATSC problem,
where the former is based on Advantage Actor-Critic (A2C)
algorithm, and the latter is based on Federated Averaging
(FedAvg) algorithm. El-Tantawy et al.[30] investigated the
following dimensions of the control problem: (1) RL learning
methods, (2) traffic state representations, (3) action selection
methods, (4) traffic signal phasing schemes, (5) reward defini-
tions, and (6) variability of flow arrivals to the intersection.
Rasheed et al.[31] designed a multi-agent DQN (MADQN) and
investigated its use to further address the curse of dimensional-
ity under traffic network scenarios with high traffic volume and
disturbances. El-Tantawy et al.[30] introduced a multi-agent auto
communication (MAAC) algorithm, which is an innovative
adaptive global traffic light control method based on multi-
agent reinforcement learning (MARL) and an auto communica-
tion protocol in edge computing architecture. The MAAC
model considered traffic communication but did not leverage
MARL and traffic simulation environment optimization.

From the literature, we find that most studies attempt to
develop an RL or MARL model to address the TSC problem
directly, ignoring the traffic simulation environment optimiza-
tion and traffic communication simultaneously.

 Preliminary

 Traffic simulation environment
In order to create models for simulating complex traffic

dynamics, urban traffic simulation systems typically integrate
computing technologies and operational features of traffic flow
(as illustrated in Fig. 1). Road network, vehicle description,
traffic signal control, and communication between the simula-
tion system and traffic equipment are typically the basic
elements of an urban traffic simulation system.

An integrated and cooperative architecture

Wu et al. Digital Transportation and Safety 2023, 2(2):150−163 Page 151 of 163

The traffic simulation system can be divided into two groups:
the commercial and open-source system. VISSIM[33] and Param-
ics[34] are widely used as commercial traffic simulation systems.
While, open-source systems, such as MIT Simlab[15], SUMO[16],
CityFLow[17] are usually adopted by researchers.

 Traffic computing structure
Communication is one of the key functions in cooperation,

which usually suffers from inevitable network latency. However,
relevant studies on the development and deployment of
computing frameworks often ignore the network delay in
communication. In general, there are three major IoT comput-
ing structures, namely cloud computing[35], fog computing[21],
and edge computing[36].

Cloud computing is a ubiquitous, convenient, and on-
demand repository of computing resources such as networks,
servers, and storage. Fog computing is closer to where data is
generated than cloud computing. Edge computing and data
processing are performed at the nearest location where termi-
nal devices generate the data.

 Problem definition
The TSC problem can be regarded as an agent that can make

decisions at intersections by interacting with the environment.

⟨S ,A,P,R,π,γ⟩
π

γ ∈ [0,1]

It can be formulated as an Markov Decision Process (MDP)[37]

(), with the traffic state set S, action set A, transi-
tion probability P, reward R, control policy and discount
factor , as shown in Fig. 2.

Ii

Ai t Ai

Si

In this paper, we formalize the TSC problem as decentralized
intersection optimization by MARL for multi-intersection (as
shown in Fig. 3). Each intersection is controlled by an algo-
rithm . At time step , makes an optimal decision to choose
proper signal phase after analyzing its observation of the traffic
state (vehicle queue, number of vehicle and etc.) at the inter-
section. In this case, the time T (average travel time) that vehi-
cles spend in the traffic network can be minimized, denoted as:

minT Ii(Ai(Si))
i (1)

T Ii(Ai(Si))
i

Ii Ai Si

where is the average time vehicles spending at

intersection based on algorithm on state .

Road Network Description Signal Control Vehicle Description

Traffic Simulation Environment

Fig. 1 An urban traffic simulation environment for traffic research.

Agent

Action At

State

Reward Rt

St

St+1

Rt+1

S t Rt

At
S t+l Rt+1

Fig. 2 An illustration of traffic signal control at an intersection. According to the current traffic state and the reward , the agent selects
and executes the corresponding action (change or maintain the current traffic light). Then the agent evaluates the effects of the action to
obtain a new traffic state and a new reward .

An integrated and cooperative architecture

Page 152 of
163

 Wu et al. Digital Transportation and Safety 2023, 2(2):150−163

In a multi-agent system, the cooperation between agents is
usually based on one computing structure. Thus, an effective
and efficient integration solution covering different aspects is
needed for TSC in practice.

 Methodology

 Architecture
In this section, we introduce an integrated and cooperative

architecture, i.e., GCTCS, for urban TSC across multiple intersec-
tions. It integrates an urban simulation environment, a hybrid
computing framework (cloud computing, fog computing, and
edge computing), an interface for TSC algorithm deployment, a
dynamic prediction module of traffic flow for traffic configura-

tion interface, and an edge computing node of real-time traffic
video processing[38].

The development of GCTCS is to support more synthetic and
efficient TSC experiments involving multiple intersections and
to provide simulation data that are closer to real traffic condi-
tions for industrial deployment, as shown in Fig. 4.

GCTCS dynamically connects the simulation environment
with the natural environment of multi-intersection traffic
signals; provides urban TSC algorithm interfaces deployed
under the hybrid computing architecture of cloud computing,
fog computing, and edge computing; and takes complete
account of network bandwidth and network delay. GCTCS can
break through the barrier between the real traffic flow across
multiple intersections and the traffic flow configuration of the
simulation environment and realize dynamic synchronization

Fig. 3 The MARL structure in urban traffic signal control.

Cloud Computing Center

Fog Computing Algorithm
Deployment Node #1

Fog Computing Algorithm
Deployment Node #n

Traffic Signal Control
Interface

Traffic Signal Control
Interface

Control
Function

Distribution
of action

Distribution
of action

Traffic Intersection
Simulation Environment #1

Traffic Intersection
Simulation Environment #n

Traffic Flow Prediction

Traffic Flow Prediction

Edge Computing Node #1

Monitor Video
Process

Monitor Video
Process

Edge Computing Node #n

Traffic Intersection
Real Environment #1

Traffic Intersection
Real Environment #n

Environment Configuration

Back End of Flow Simulation Environment

Simulation Interaction

Control
Function

Fig. 4 The General City Traffic Computing System (GCTCS) for urban traffic signal control.

An integrated and cooperative architecture

Wu et al. Digital Transportation and Safety 2023, 2(2):150−163 Page 153 of 163

between the real environment and the simulation environ-
ment. In addition, the overall computing architecture of GCTCS
is based on a hybrid computing framework, which fully consid-
ers and simulates network delay. It provides interfaces for
urban TSC and traffic flow prediction algorithms.

 The functions of each layer
The cloud computing layer is located at the top layer of the

architecture. It is responsible for interacting with each fog
computing node in the fog layer, collecting information at the
fog node, and sending control instructions from the cloud
computing layer.

The fog computing layer is located between cloud comput-
ing and edge computing layers and consists of various
powered servers, routers, and controllers that can bear heavy
processing[39]. The primary function is to compute and output
the control signal instructions.

The edge computing nodes are located at the bottom layer,
mainly processing surveillance videos and extracting status
information at the current traffic intersection.

 The module of traffic simulation environment
We designed the module of urban traffic simulation environ-

ment based on the urban traffic simulation platform described
above, and it flexibly establishes the traffic flow forecasting
interface for multiple intersections[40]. The module can be
configured by dynamic traffic flow based on the current simula-
tion environment, making the environment more realistic.

This module employs the traffic flow forecasting method's
external interface to dynamically construct traffic flow at each
intersection, allowing the traffic simulation system to assimi-
late the current condition and provide an algorithm interface
for TSC. The simulation environment FLOW framework[18] is to
optimize the urban traffic simulation environment benefiting
from the forecasting capabilities based on data sets and time
series models.

The traffic environments in different cities differ, and it is
necessary to establish a unified method to obtain traffic circu-

lating situations to construct the urban traffic environment
closer to the real world (as shown in Fig. 5). The methodology
(1) uses edge computing capabilities to convert the traffic flow
captured in the urban traffic monitoring videos into text
content; (2) applies a traffic flow prediction algorithm to predict
relatively accurate traffic flow; and (3) dynamically interacts
with the simulation environment's traffic flow configuration
interface. The urban traffic environment is not built in isolation.
It interacts with the simulation environment. The process is as
follows:

(1) Establish a data set of urban traffic flow;
(2) Design a forecasting model for traffic flow;
(3) Develop an interactive interface with the simulation envi-

ronment.
The simulation environment interacts with the traffic flow

anticipated by the traffic flow prediction model, allowing the
simulation environment to configure real-time traffic flow.

 General-MARL
In this section, we design a TSC method, named General-

MARL, based on the GCTCS.
The design of the General-MARL algorithm is according to

different layers of the GCTCS architecture. Thus, the General-
MARL is composed of three sub-algorithms: the algorithm at
the edge computing layer (Edge-General-control), the algo-
rithm at the fog computing layer (Fog-General-control), and the
algorithm at the cloud computing layer (Cloud-General-
control). Additionally, the GCTCS with a layer-to-layer connec-
tion, which has a clear structure and lowers complexity
compared to point-to-point connections, making feasible for
the General-MARL with the increasing computation ability for
edge and fog devices.

The Cloud-General-control produces the global control
signal for each fog node's parameter updating based on the
joint state (all traffic states from each node) and playback
mechanism (historical interactions from fog nodes). The Fog-
General-control generates a TSC signal according to the traffic

Step 1:
Construct

Urban Traffic
Flow Data Set

Multi-Intersection Monitors

Produce Monitoring Videos Video Data

Vehicle Recognition

Vehicle Information in the Video

Time Series Prediction

Historical Traffic
Flow Text

Historical Traffic
Flow Text

Traffic Flow Prediction Model

Predict the Traffic Flow
of Each intersection

Existing Simulation Software

Config the Environment

Urban Traffic Topology
Configuration File

Produce Text Data

Traffic Flow Data

Extract Time
Series Data

Step 2:
Construct

Traffic Flow
Prediction

Model

Step 3:
Optimize

Existing Traffic
Simulation

Model

Fig. 5 The processes of construction of the urban traffic real environment.

An integrated and cooperative architecture

Page 154 of
163

 Wu et al. Digital Transportation and Safety 2023, 2(2):150−163

state abstraction from Edge-General-control, the intelligent
communication between agents allows an agent to share the
learned strategies and the parameters from the cloud layer.
Deep neural networks[41] are the basic component in General-
MARL for generating control actions, communication informa-
tion, and so on. The structure of the algorithm architecture is
illustrated in Fig. 6.

 Edge-General-control
The Edge-General-control algorithm processes the traffic

surveillance video based on the target detection algorithm
YOLO[38], detecting the vehicles' location at the intersection.

As shown in Fig. 7, we apply an open-source vehicle image
dataset, i.e., BIT-Vehicle[42], to fine-tune the YOLO algorithm for
vehicle detection precisely. The center of each intersection is
the center point (0,0). We get the vehicle position from the
YOLO-based model and add two fully-connection (FC) layers for
fine-tuning. Then, we obtain the direction information accord-
ing to the vehicle's location and center position. Hence, traffic
state text is abstracted from the traffic surveillance video,
including the vehicle-id, type, direction, and timestamp for
passing vehicles.

Finally, we introduce the traffic flow prediction algorithm
GCN-GAN[40], which can predict the traffic flow and synchro-
nizes with the simulation environment in real-time (Algorithm 1).

 Fog-General-control
The Fog-General-control algorithm includes the Nash-MARL

module and the communication module to generate control
strategies for urban traffic signals.

X
U

Nash-MARL Module: The Nash-MARL Module is to obtain
Nash equilibrium for TSC without prior knowledge
dynamically[43]. It defines that is the traffic environment state
space for multi-intersection; is the joint action from agents to

A a ∈ A
ua ∈ U R

Agenti πi

Ri

tune transfer signal; is the action space of one agent ;
joint action is . is the reward or objective function. The
object of is to choose a proper strategy and to maxi-
mize the objective function .

π∗−i

Agent−i : Ri

(
x;πi;π∗−i

)Herein, the Bellman equation with Nash Equilibrium: firstly,
fix other agents' policies ; optimize the objective function of

:

R =max
u∈Ui

{
ri
(
x,u,π∗−i (x)

)
+γi E

x′∼p(·|x,u)

[
Ri

(
x′;π∗i,1;π∗−i,1

)]}
(2)

π∗i Agenti Agent−i

π∗i γ ∈ [0,1]

Agenti

Where is ' policy according to other agents'
action selection policies. and . The result of the
objective (reward) function is based on the policy selection for
participated each agent. It automatically generates its action
policy by considering the behavior of other agents. When the
behavior of other agents is stable, tries to optimize the
behavior of the objective function. All agents' policies could
achieve Nash equilibrium after iteration update.

Algorithm 1. Edge-General-control algorithm.

1: Input the video information of the traffic situation.
2: Capture one frame from the video: G
3: Use and fine-tune the YOLO to recognize all the vehicle's position
(x,y) and type in G.
4: for vehicle in G do
5: Obtain the direction of vehicles by judging the (x,y) from the
regions according the three regions predefined.
6: Record traffic state text information (vehicle -id, types, direction,
and the timestamp) into traffic state text T.
7: end for
8: Use GCN-GAN for traffic flow prediction to T.
9: Connect traffic flow prediction capability to the urban simulation
environment.

Cloud Computing Node

Fog Computing Node #2 Fog Computing Node #n

Parameters

Update
ParametersUpdate

Fog Computing Node #1

Edge Computing Node #1 Edge Computing Node #2 Edge Computing Node #n

Generate the Text
Info of Traffic Flow

Generate the Text
Info of Traffic Flow

Traffic Flow
Prediction

Traffic Flow
Prediction

Generate the Text
Info of Traffic Flow

Traffic Flow
Prediction

Intelligent
Communication

Intelligent
Communication

Playback
mechanism

Shared
Neural

Network

Value
Network

V(θV)

Policy
Network
π(θA)

Joint
State x

Intelligent
Communication

Fig. 6 The General-MARL is composed of three sub-algorithms based on different layers of the GCTCS architecture.

An integrated and cooperative architecture

Wu et al. Digital Transportation and Safety 2023, 2(2):150−163 Page 155 of 163

Q Agent−i
(
Q̂θi (x;u)

)
i∈N

Agent−i
(
V̂θi (x;u)

)
i∈N

u
x

In the design of the Nash-MARL Module, the computation of
the critic function (advantage) in deep reinforcement learning
might have positive (good) and negative (bad) reward results,
making the learning process efficiently. Thus, the Nash-MARL

module defines the function of an as ;

the estimate value function of is , wherein

is the union action, and is the union state.

Âθ (x;u) = Q̂θ (x;u)− V̂θ (x;u) (3)

θ

θ = (θV , θA) θV
V̂θV θA

π̂θA x’m xm

Lm (θ)

It employs the actor-critic model[44] as a framework. In the
actor-critic model, the actor is a policy function and the critic is
a value function. The parameter set into the value function
parameter set and the policy function parameter set

, where represents the model of the value func-
tion ; represents the parameters of the agent (partici-
pant) action selection policy . is the next state of . The
model samples M epochs. The object of the algorithm is to
minimize the loss of the sampled data and the Nash-Bellman
equation :

Lm (θ) =
1
M

∑M

m=1

∣∣∣∣∣∣V̂θ (xm)+ Âθ (xm;um)− r (xm;um)−γiV̂θ
(
x′m
)∣∣∣∣∣∣ (4)

ym = L̂ (y, θV , θA)The module defines for simplifying the
above expression.

ym =
∣∣∣∣∣∣V̂θV (xm)+ ÂθA (xm;um)− r (xm;um)−γiV̂θV

(
x′m
)∣∣∣∣∣∣2 (5)

Inspired by the deep Q-networks[7], the module also intro-

yt = (xt−1,u, xt)
xt−1 u

xt yt

duce a memory buffer (replay buffer) to store triples
, which represents the previous state of the envi-

ronment ; the union operation performed ; the next state
of the environment ; and the reward that passes through
this state. The module can use stochastic gradient descent
(SGD) to update the parameters after randomly selecting a
piece of memory data from the replay buffer. To improve the
action plan, the algorithm also employs ϵ-greedy exploration.

Additionally, the idea of parallel space-time is incorporated to
enable the simultaneous execution in various environments. To
achieve a stable learning process, multiple explorations in
multiple environments would explore different policies and
accelerate the learning speed. The overall algorithm structure is
shown in Fig. 6. Further, the Nash-MARL algorithm process is
detailed in Algorithm 2.

Communication Module: The communication module
between agents allows an agent to share the learned strate-
gies with others based on the attention mechanism[45].

t t
Xt =
(
x1

t , · · · , xN
t

)
Ct =

(
c1

t , · · · ,cN
t

) (
Agent1, · · · ,AgentN

)
xt

The calculation steps in the communication module[14] at
time are shown in Fig. 8. At a time in the communication

module, the environment input is and the

corresponding communication information input is

. Multi-agents are able to

interact with each other. Each agent receives information from
receivers and transmitters internally. The receiver receives its
own environmental information and communication

YOLO

Fine-tuning

North

East

South

West (0,0)

Go Straight

Turn Left

Turn RightFC
 Layer

FC
 Layer

Fig. 7 The process of abstracting traffic information from the video to generate the text info from traffic flow. Detection of vehicles in the
three regions stands for different directions of passing vehicles

Algorithm 2. Nash-MARL Module.

1: B > 0 b = 1 M̂ > 0Init Episode , ; Minibatch Size , Game Step N

2: D θV θAInit Replay Buffer , and
3: repeat
4: x0 Reset, go to the
5: repeat

6: u← πθA (x) u Select or select randomly (e.g., ϵ-greedy)

7: yt = (xt−1,u, xt) Observe

8: yt D Store to Reply Buffer

9: Y = {yi}M̂i=1 Sampling from Replay Buffer:

10: 1
M+1
∑

y∈Y∪{yt}L̂ (y, θV , θA) θA θV Optimize fix update

11: 1
M+1
∑

y∈Y∪{yt}L̂ (y, θV , θA) θV θA Optimize fix update

12: t > N Until
13: b > BUntil

14: θV θAreturn and

Fig. 8 The communication process between agents in the
communication module.

An integrated and cooperative architecture

Page 156 of
163

 Wu et al. Digital Transportation and Safety 2023, 2(2):150−163

ct

(at+1,ct+1) t+1
information , and generates action and external interaction
information group at .

Agenti θi θi

θiS ender θiReceiver

In the communication module (as shown in Algorithm 3), the
parameter set of for each agent is . Furthermore, is

divided into the sender and receiver .

The parameters of the sending side and the receiving end are
optimized by the overall multi-agent objective function. The
parameter sets of the receiver and the sender are updated iter-
atively for each agent.

The Fog-General-control algorithm is illustrated as below
(Algorithm 4):

 Cloud-General-control
The Cloud-General-control algorithm deploys the Nash-

MARL module, the 'parallel universe' of the Nash-MARL algo-
rithm are fog nodes.

The Cloud-General-control Algorithm 5 is:

Algorithm 3. The communication module.

C01: Initialize the communication matrix of all agents

θiS ender θiReceiver2: Initialize the parameters of agent and
3: repeat

Agenti

Ĉt

4: Receiver of : use attention mechanism to generate
communication matric

Agenti ai
t+15: Sender of : chooses an action from policy selection

network, or randomly chooses an action (e.g., ϵ-greedy exploration)

Agenti

Ĉt : ci
t+1

6: Sender of : generate its own information through the
receiver's communication matrix

a1
t+1, · · · ,aN

t+1 Rt+1
Xt+1

7: Collect all the joint actions of Agent and execute the actions
, get the reward from the environment and next state

8: until End of Round Episode

θiS ender θiReceiver9: return and for each agent

Algorithm 4. Fog-General-control.

1: Apply the communication module:

C02: Initialize the communication matric of all fog computing node Agents

θiS ender θiReceiver3: Initialize the parameters and of the fog computing node Agents

θV θA θiV θiA4: Receive the global parameter sets and distributed by the cloud computing node and initialize the parameter sets and

B > 0 b = 1
−
M> 0 N5: Initialize the Episode , ; the minimum batch size Minibatch Size , the number of game steps

6: Apply the Nash-MARL Module:

D7: Initialize the memory record Replay Buffer
8: repeat
9: x0Reset the environment and enter the initial state
10: repeat

11: u← πθA (x) u Choose joint action or randomly choose joint action (e.g., ϵ-greedy exploration)

12: yt = (xt−1,u, xt) Observe the state-action-state triplet
13: D Store triples in the Replay Buffer

14: Y = {yi}Mi=1 Extract data from the Replay Buffer

15: Agenti Ĉt receiver uses Attention mechanism to generate communication matrix

16: ti ai
t+1 The strategy choice network of the Agent sender chooses an action , or randomly chooses action a (e.g., ϵ-greedy exploration)

17: Agenti ci
t+1 Ĉt The sender generates its own information through the communication matrix at the receiving end

18: ai
t+1, · · · ,aN

t+1 Rt+1 Xt+1 Collect the joint actions of all Agents, execute an action , get rewards and the next state from the environment

19: 1
M+1
∑

y∈Y∪{yt}L̂
(
y, θiV , θ

i
A,Ĉt

)
θiA θiV Optimization step , fixes updates

20: 1
M+1
∑

y∈Y∪{yt}L̂
(
y, θiV , θ

i
A,Ĉt

)
θiV θiA Optimization step , fixes updates

21: > Nuntil
b > B22: until

θiV θiA23: Return and

Algorithm 5. Cloud-General-control.

1: Apply the Nash-MARL module:

θV θA T2: Initialize the global parameter sets and of the cloud computing center and the global counter
3: repeat

θiV = θV θ
i
A = θA4: Distributer global parameters to fog computing nodes ,

5: repeat

θV = θV +dθiV θA = θA+dθiA6: Update global parameters ,
7: until all fog computing nodes are traversed and collected

T ← T +18:
T > Tmax9: until

An integrated and cooperative architecture

Wu et al. Digital Transportation and Safety 2023, 2(2):150−163 Page 157 of 163

 Experiments

In this section, we apply General-MARL and baseline meth-
ods to the integrated and cooperative architecture GCTCS for
multi-intersection TSC. The experimental process ignores or
considers the situation of network bandwidth and network
delay, respectively.

 Dataset
The dataset from Lanzhou in China consists of two parts: (1)

the traffic network; and (2) the traffic flow. The traffic network
describes the traffic network, including lanes, roads, intersec-
tions, and signal phases. As shown in Fig. 9, there are 27 inter-
sections connecting 45 roads. All the traffic networks are simu-
lated in the simulation environment from our GCTCS. Various
and flexible TSC algorithms control each intersection's signal.
The distance between two intersections is two to four kilome-
ters (km). The speed limitation is 60 (km/h).

(t,u) t
u

The initial flow of incoming and outgoing vehicles at each
intersection is configured based on the real traffic flow data.
The traffic flow dataset contains vehicles travel information,
which is described as , where is the time that each vehicle
starts entering the traffic network and is the pre-planned
route from its original location to its destination.

 Parameter settings of General-MARL

 Cloud computing center

x x
x

π (x)

We deploy the Cloud-General-control algorithm in a Docker
environment[46], logically away from the intersections, and set
the communication delay from the cloud center to the fog
computing node to seconds in the simulation code (set = 0
second to sleep to ignore network delay; set = 10 seconds to
consider network delay). Then we set four hidden layers in the
network for policy network generation in the cloud
computing node with 40, 80, 80 and 80 nodes in each layer,
respectively. The network layers are activated and connected
through the activation function ReLU[47]; the main neural
network has three hidden layers, each containing 40 nodes. The
layers are activated and connected through ReLU. The learning
rate is set to 0.001.

 Fog computing node

x x
x

π (x)

We deploy the Fog-General-control algorithm in the Docker
environment and set it to be logically close to the intersection.
The delay from the intersection to the fog computing node is
set to second (set = 0 second to sleep to ignore network
delay; set = 1 second to consider network delay). Twenty
seven fog computing nodes are deployed in the environment.
The network for policy network generation in each node is
set with four hidden layers, with 40, 80, 80, and 40 nodes,
respectively. The layers are connected through ReLU activation,
and the main neural network has three hidden layers, each
containing 40 nodes. The layers are connected through ReLU
activation. The learning rate is set to 0.001.

 Edge computing node

x x
x

We deploy the Edge-General-Control algorithm in the Docker
environment at one intersection. The network delay from the
edge computing nodes to fog computing and vehicles are both
set to seconds (set = 0 second to sleep to ignore network
delay; set = 1 second to consider network delay).

 Initial traffic light period setting

gt rt

yt

The traffic control period is set to 60 s initially. The intervals
of the green, red and yellow lights are set as = 27 s, = 27 s,
and = 27 s, respectively.

 Vehicle simulation
According to the actual traffic flow forecasting algorithm, the

traffic flow is predicted every 15 min, and the vehicle simula-
tion is conducted at each intersection.

 Evaluation mechanism

Te =
∑I

i=1
∑M

m=1tm e ∈ E M
I

E I

In the simulation environment, the passing time of all vehi-
cles at each intersection in an Episode is recorded as

, wherein is the number of Episodes, is
the number of vehicles, and is the number of intersections. In
this configuration, we set = 1,000; = 27.

 Methods for comparison
Fixed-Time[25]: a policy gives a fixed cycle length with prede-

fined green time among all phases. The intervals of the green,
red and yellow signals are fixed as green and red are 27 s, and

Fig. 9 The illustration of topology map of real traffic intersection.

An integrated and cooperative architecture

Page 158 of
163

 Wu et al. Digital Transportation and Safety 2023, 2(2):150−163

the yellow is 6 s, which are the same as the initial intervals for
other methods for a fair comparison.

Q-learning[32]: a model-free reinforcement learning algo-
rithm to learn the value of an action in a particular traffic state
based on Q-learning[48], which leverages the advantage deep
neural network for addressing TSC problem. The algorithm can
be deployed on the Fog or Edge node with the same parame-
ters as shown in Table 1.

Nash-Q[49]: a model integrates Q-learning[48] and Nash Equi-
librium[50] for making agents learn a better cooperative strat-
egy, which can be deployed on the Fog node.

Nash-DQN[51]: a Deep-Q-learning methodology for model-
free learning of Nash Equilibrium for general-sum stochastic
games.

MAAC[14]: a multi-agent auto communication (MAAC) algo-
rithm is an adaptive global TSC method based on MARL. MAAC
combines multi-agent auto communication protocol with

MARL, allowing an agent to communicate the learned strate-
gies with others for achieving global optimization in traffic
signal control. The intervals of the green, red and yellow signals
are fixed as the experiment settings.

 Experimental process
Each experiment consists of two parts: the first part ignores

the network delay and compares results with other TSC algo-
rithms; in the other part, network delay is considered.

 Ignoring network delay
The delays of edge computing, fog computing, and cloud

computing nodes in General-MARL are all set to 0 without
considering network latency. In the urban simulation environ-
ment, we input actual traffic data before configuring various TSC
algorithm models via the algorithm interface. Baseline methods
and the General-MARL algorithm are run in the simulation envi-
ronment. The traffic flow at each intersection is updated every 15
min. We record the waiting time of vehicles at each traffic inter-
section every minute (considered as an environmental feedback
reward) and conduct 1000 Episode (round) training.

As shown in Fig. 10, the training convergence effect of the
General-MARL algorithm is as good as the Nash-DQN algo-
rithm but does not perform the best.

 Considering network delay
In the case of considering network delay, the delays of the

edge computing, fog computing, and cloud computing nodes
in General-MARL are all set parameters according to the previ-
ous section. Then we configure the fixed duration as the traffic
signal time series as the previous setting. Q-learning (edge)
deploys the Q-learning algorithm on the fog computing node
to control the traffic lights, and the delay from the controlling
agent to the intersection is 1 s. There are 27 docker containers
deployed at 27 traffic intersections with Q-learning capabilities
to generate traffic flow controlling signals, respectively.

Q-learning (center) and DQN only use the cloud computing
center to collect the information at each intersection. They are
applied for overall control and generation of control

Table 1. List of parameters in this paper.

Module Parameters Description

Cloud
Computing
Center

x = 0|x = 10
20, 60, 60, 20

0.001

The delay from the cloud to the
fog node
The hidden layers in the
network
The learning rate

Fog
Computing
Node

x = 0|x = 1
20, 60, 60, 20

0.001

The delay from intersection to
the fog node
The hidden layers in the
network
The learning rate

Edge
Computing
Node

x = 0|x = 1 The delay from edge nodes to
fog node

Experiment
Settings

gt = rt = 27,yt = 6
15

E = 1,000
I = 27

l = 0.001
γ = 0.982

The initial intervals of the green,
red and yellow
The traffic flow prediction
period
The number of Episodes
The number of intersections
The learning rate
The discount rate

400

350

300

250

Av
er

ag
e_

w
ai

tin
g_

tim
e

200

150

100

0 200 400 600
Episode

800

Algorithm
Fixed-time
Q-learning (edge)
DQN
Nash-Q-learning

Nash-DQN
MAAC
General-MARL

A3C

1000

Fig. 10 Multi-intersection traffic signal control training process (without network delay).

An integrated and cooperative architecture

Wu et al. Digital Transportation and Safety 2023, 2(2):150−163 Page 159 of 163

commands for each intersection. The traffic flow prediction
algorithm then updates the traffic flow at each intersection
every 15 min (GCN-GAN). GCTCS records the waiting time of
vehicles at each intersection every minute (as an environmen-
tal feedback reward) and conducts the training with 1000
Episodes.

As shown in Fig. 11, the convergence speed of the General-
MARL is faster than Nash-DQN, and the training results outper-
form other baseline algorithms.

 Experimental results
The results of the experiment are also split into two parts: the

first part ignores network delay, and the second part considers
network delay.

 Ignoring network delay
After training in the simulation experiment in the previous

section, 500 episode tests were performed to generate the
experimental results, as shown in Table 2.

The experimental results show that, regarding the average
speed and average waiting time of vehicles at 27 intersections,
the General-MARL algorithm leads a similar performance as the
Nash-DQN algorithm. The performance of General-MARL is not
outstanding when network delay is ignored, but the overall
performance of General-MARL is better than other baseline
algorithms.

 Considering network delay
We conduct 500 episodes in the tests after training in the

simulation and collected the experimental results, as shown in
Table 3. Regarding the average waiting time at intersections,
the overall performance of General-MARL is the best, surpass-
ing all the other algorithms, and it shows an average decrease
of 18.3% waiting time compared to the baseline algorithms. As
for the average speed of vehicles at intersections, the General-
MARL algorithm increases the average speed by 10.2% when
network delay is considered. As shown in Table 4, the General-

450

400

350

300

250

Av
er

ag
e_

w
ai

tin
g_

tim
e

200

150

100

0 200 400 600
Episode

800

Algorithm
Fixed-time
Q-learning (edge)
DQN
Nash-Q-learning

Nash-DQN
MAAC
General-MARL

A3C

1000

Fig. 11 Multi-intersection traffic signal control training process (with network delay).

Table 2. Results of General-MARL and other algorithms (ignoring
network delay).

Method Average speed (km/h) Average waiting time (s)

Fixed-time 10.17 166.70
Q learning 18.43 135.62
DQN 20.10 112.24
A3C 24.12 90.73
Nash-Q 29.70 70.14
Nash-DQN 33.81 61.21
MAAC 27.39 80.21
General-MARL 31.22 62.87

Table 3. Results of the average speed and waiting time in each episode
(consider network delay).

Method Average speed (km/h) Average waiting time (s)

Fixed-time 10.15 166.71
Q learning(center) 21.69 182.75
Q learning(edge) 23.47 155.64
DQN 24.94 132.70
A3C 26.12 108.65
Nash-Q 28.32 105.55
Nash-DQN 30.86 106.37
MAAC 27.61 116.81
General-MARL 30.78 92.48

Table 4. Results of accumulated time and network delay in each episode
(consider network delay).

Method Accumulated time (s) Network delay (s) Delay rate

Fixed-time 38827.5 0.0 0.0%
Q learning(center) 45448.0 10809.7 23.8%
Q learning(edge) 35789.3 6522.9 18.2%
DQN 33789.9 8997.2 26.6%
A3C 31340.4 7792.1 24.9%
Nash-Q 30940.5 7536.9 24.4%
Nash-DQN 31994.6 7937.7 24.8%
MAAC 28940.7 6552.1 22.6%
General-MARL 26912.7 3264.5 12.2%

An integrated and cooperative architecture

Page 160 of
163

 Wu et al. Digital Transportation and Safety 2023, 2(2):150−163

MARL algorithm fully exceeds the baseline algorithms and
other algorithms in terms of the accumulated waiting time of
vehicles, network delay time, and delay rate indicators. The
delay rate is reduced by 7.4%. Furthermore, the General- MARL
algorithm optimizes each intersection to a certain extent, as
shown in Table 5.

 Overall analysis
The analysis of experimental results reveals that network

delay has a significant impact on the actual application effect of
the TSC algorithm. Although General-MARL showed good
performance even when network delay was ignored, imple-
mentation of the method in urban TSC should take into
account the influence of network latency for industrial deploy-
ment.

With the consideration of network delay, the General-MARL
fully surpasses the baseline algorithms on average vehicle
speed at intersection, average vehicle waiting time, vehicle
cumulative waiting time, network delay time, and the indica-
tors of delay rate. The average speed of vehicles increases by
23.2%, and the network latency decreases by 11.7%, as shown
in Fig.12.

 Conclusions

In this paper, we proposed an integrated and cooperative IoT
architecture GCTCS and the General-MARL algorithm for multi-
intersection traffic signal control. The results from the proposed
framework and algorithm showed that the average speed of
vehicles was increased by 23.2%, and the network latency was

Table 5. Results of average waiting time at each intersection in each
episode (considering network delay).

ID Fixed-
time Q-edge DQN A3C Nash-Q Nash-

DQN MAAC General

1 175.27 161.96 136.93 110.89 109.34 111.21 124.69 96.81
2 188.35 172.68 145.58 116.43 115.88 119.02 130.73 105.46
3 155.28 145.58 123.71 102.43 99.35 99.27 120.99 83.59
4 197.72 180.36 151.78 120.39 120.57 124.61 133.34 111.66
5 155.23 145.54 123.68 102.41 99.32 99.24 116.97 83.56
6 168.97 156.8 132.76 108.22 106.19 107.45 122.26 92.64
7 157.68 147.55 125.30 103.44 100.55 100.7 107.91 85.18
8 161.32 150.53 127.70 104.98 102.37 102.88 119.31 87.58
9 185.23 170.13 143.52 115.11 114.32 109.88 128.53 103.40

10 176.47 162.95 137.72 111.40 109.94 111.92 115.15 97.60
11 161.21 150.44 127.63 104.94 102.31 102.81 119.28 87.51
12 125.96 121.55 104.32 90.01 104.30 81.77 105.69 64.20
13 131.62 126.19 108.06 92.41 87.52 85.15 117.87 67.94
14 169.15 156.95 132.88 108.30 106.28 107.55 122.33 92.76
15 175.52 180.84 152.16 120.64 109.47 124.96 40.06 112.04
16 132.47 126.89 108.62 92.77 87.94 85.65 108.20 68.50
17 164.12 152.83 129.56 87.56 103.77 104.55 113.46 89.44
18 166.87 155.08 131.38 107.33 105.14 106.19 121.45 91.26
19 150.39 141.57 120.48 100.36 96.90 96.35 115.11 80.36
20 177.77 164.01 138.58 111.95 110.59 112.70 125.65 98.46
21 153.63 144.23 122.62 101.73 98.52 98.29 96.35 82.50
22 167.54 155.63 131.82 107.62 105.48 106.59 121.71 91.70
23 177.62 163.89 162.05 157.98 110.52 112.61 139.54 121.93
24 186.84 171.45 144.58 115.79 115.13 118.11 129.15 104.46
25 175.36 162.04 136.99 110.93 109.39 111.26 128.73 96.87
26 175.23 161.93 136.90 110.87 109.32 111.18 124.67 96.78
27 188.35 172.68 145.58 116.43 115.88 119.02 104.64 102.77

Fixed-time

Average Passing Speed (km/h)
30 175

150

125

100

75

50

25

10000
40000

30000

20000

10000

0

8000

6000

4000

2000

0

0

25

20

15

10

5

0

AverageWaitingTime (second)

Network Delay Time (second)Cumulative Waiting Time (second)

Q-center

Q-edge

DQN
Nash-Q

A3C
Nash-DQN

MAAC
General-MARL

Fixed-time

Q-center

Q-edge

DQN
Nash-Q

A3C
Nash-DQN

MAAC
General-MARL

Fixed-time

Q-center

Q-edge

DQN
Nash-Q

A3C
Nash-DQN

MAAC
General-MARL

Fixed-time

Q-center

Q-edge

DQN
Nash-Q

A3C
Nash-DQN

MAAC
General-MARL

Fig. 12 Comparative results among different algorithms.

An integrated and cooperative architecture

Wu et al. Digital Transportation and Safety 2023, 2(2):150−163 Page 161 of 163

reduced by 11.7%, when compared with baseline algorithms.
Our results proved that the application of MARL in urban traffic
signal control needs to consider multiple factors, including the
simulation environment, algorithm process, deployment archi-
tecture, and network delay. The results also validated the best
performance of the proposed General-MARL. Therefore, GCTCS
and General-MARL showed great potential in practical applica-
tions and theoretical contributions for multi-intersection traffic
signal control with large-scale deployment in real road networks.

In traffic signal control, not only the vehicles' but also the
pedestrians' behaviours[52], such as crossing times and waiting
times are affected. In future studies, pedestrians will be
included to cover all the road users at intersections. We will be
able to further validate our proposed methodology based on
real-life case studies because we have been invited by one city
from China to deploy our GCTCS and algorithm in a test area.

Acknowledgments

This work is supported by the National Natural Science Foun-
dation of China (Grant Nos. 61673150, 11622538). We acknowl-
edge the Science Strength Promotion Programme of UESTC,
Chengdu, China.

Conflict of interest

The authors declare that they have no conflict of interest. Bo
Du and Jun Shen are the Editorial Board members of Digital
Transportation and Safety. They were blinded from reviewing or
making decisions on the manuscript. The article was subject to
the journal's standard procedures, with peer-review handled
independently of these Editorial Board members and their
research groups.

Dates

Received 15 April 2023; Accepted 16 June 2023; Published
online 29 June 2023

References

Zhao D, Dai Y, Zhang Z. 2011. Computational intelligence in urban
traffic signal control: A survey. IEEE Transactions on Systems, Man,
and Cybernetics, Part C (Applications and Reviews) 42:485−94

1.

Ng V, Kim HM. 2021. Autonomous vehicles and smart cities: A case
study of Singapore. In Smart cities for technological and social
innovation, eds. Kim HM, Sabri S, Kent A. USA: Academic
Press, Elsevier. pp. 265–287. https://doi.org/10.1016/B978-0-12-
818886-6.00014-9

2.

Sheng MS, Sreenivasan AV, Sharp B, Du B. 2021. Well-to-wheel
analysis of greenhouse gas emissions and energy consumption for
electric vehicles: A comparative study in Oceania. Energy Policy
158:112552

3.

Harris N, Shealy T, Klotz L. 2016. Choice architecture as a way to
encourage a whole systems design perspective for more sustain-
able infrastructure. Sustainability 9(1):54

4.

Afrin T, Yodo N. 2020. A survey of road traffic congestion measures
towards a sustainable and resilient transportation system. Sustain-
ability 12(11):4660

5.

Lee WH, Chiu CY. 2020. Design and implementation of a smart traf-
fic signal control system for smart city applications. Sensors
20(2):508

6.

Mnih V, Kavukcuoglu K, Silver D, Graves A, Antonoglou I, et al.
2013. Playing atari with deep reinforcement learning. arXiv
Preprint

7.

Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A, et al.
2017. Mastering the game of go without human knowledge.
Nature 550:354−59

8.

Berner C, Brockman G, Chan B, Cheung V, Dębiak P, et al. 2019.
Dota 2 with large scale deep reinforcement learning. arXiv Preprint

9.

Telikani A, Tahmassebi A, Banzhaf W, Gandomi AH. 2022. Evolu-
tionary machine learning: A survey. ACM Computing Surveys (CSUR)
54(8):1−35

10.

Abdulhai B, Pringle R, Karakoulas GJ. 2003. Reinforcement learn-
ing for true adaptive traffic signal control. Journal of Transporta-
tion Engineering 129(3):278−85

11.

Wang X, Ke L, Qiao Z, Chai X. 2020. Large-scale traffic signal control
using a novel multiagent reinforcement learning. IEEE Transac-
tions on Cybernetics 51(1):174−87

12.

Wang T, Liang T, Li J, Zhang W, Zhang Y, et al. 2020. Adaptive traf-
fic signal control using distributed MARL and federated learning.
2020 IEEE 20th International Conference on Communication Technol-
ogy (ICCT), Nanning, China, 28-31 October 2020. USA: IEEE. pp.
1242−48. https://doi.org/10.1109/ICCT50939.2020.9295660

13.

Wu Q, Wu J, Shen J, Yong B, Zhou Q. 2020. An edge based multi-
agent auto communication method for traffic light control. Sensors
20(15):4291

14.

Ben-Akiva M, Koutsopoulos HN, Toledo T, Yang Q, Choudhury CF,
et al. 2010. Traffic simulation with MITSIMLab. In Fundamentals of
traffic simulation, ed. Barceló J. New York: Springer. pp. 233−68.
https://doi.org/10.1007/978-1-4419-6142-6_6

15.

Krajzewicz D. 2010. Traffic simulation with SUMO – simulation of
urban mobility. In Fundamentals of traffic simulation, ed. Barceló J.
New York: Springer. pp. 269−93. https://doi.org/10.1007/978-1-
4419-6142-6_7

16.

Zhang H, Feng S, Liu C, Ding Y, Zhu Y, et al. 2019. Cityflow: A multi-
agent reinforcement learning environment for large scale city traf-
fic scenario. WWW '19: The world wide web conference, San Fran-
cisco, CA, USA, 2019. New York, NY, USA: Association for Comput-
ing Machinery. pp. 3620−24. https://doi.org/10.1145/3308558.
3314139

17.

Jang K, Vinitsky E, Chalaki B, Remer B, Beaver L, et al. 2019. Simula-
tion to scaled city: zero-shot policy transfer for traffic control via
autonomous vehicles. ICCPS '19: Proceedings of the 10th ACM/IEEE
International Conference on Cyber-Physical Systems, Montreal
Quebec Canada, April 16−18, 2019. pp. 291−300. c>. pp. 291−300.
https://doi.org/10.1145/3302509.3313784

18.

Wei H, Zheng G, Yao H, Li Z. 2018. Intellilight: A reinforcement
learning approach for intelligent traffic light control. IKDD '18:
Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, London United Kingdom,
August 1923, 2018. New York, United States: Association for
Computing Machinery. pp. 2496−505.ry. pp. 2496−505.
https://doi.org/10.1145/3219819.3220096

19.

Liang X, Du X, Wang G, Han Z. 2019. A deep reinforcement learn-
ing network for traffic light cycle control. IEEE Transactions on
Vehicular Technology 68(2):1243−53

20.

Wu Q, Shen J, Yong B, Wu J, Li F, et al. 2019. Smart fog based work-
flow for traffic control networks. Future Generation Computer
Systems 97:825−35

21.

Huo Y, Tao Q, Hu J. 2020. Cooperative control for multi-intersec-
tion traffic signal based on deep reinforcement learning and imita-
tion learning. IEEE Access 8:199573−85

22.

Yang S, Yang B. 2021. A semi-decentralized feudal multi-agent
learned-goal algorithm for multi-intersection traffic signal control.
Knowledge-Based Systems 213:106708

23.

An integrated and cooperative architecture

Page 162 of
163

 Wu et al. Digital Transportation and Safety 2023, 2(2):150−163

https://doi.org/10.1109/TSMCC.2011.2161577
https://doi.org/10.1109/TSMCC.2011.2161577
https://doi.org/10.1016/B978-0-12-818886-6.00014-9
https://doi.org/10.1016/B978-0-12-818886-6.00014-9
https://doi.org/10.1016/j.enpol.2021.112552
https://doi.org/10.3390/su9010054
https://doi.org/10.3390/su12114660
https://doi.org/10.3390/su12114660
https://doi.org/10.3390/s20020508
https://doi.org/10.48550/arXiv.1312.5602
https://doi.org/10.1038/nature24270
https://doi.org/10.48550/arXiv.1912.06680
https://doi.org/10.1145/3467477
https://doi.org/10.1061/(ASCE)0733-947X(2003)129:3(278)
https://doi.org/10.1061/(ASCE)0733-947X(2003)129:3(278)
https://doi.org/10.1061/(ASCE)0733-947X(2003)129:3(278)
https://doi.org/10.1109/TCYB.2020.3015811
https://doi.org/10.1109/TCYB.2020.3015811
https://doi.org/10.1109/TCYB.2020.3015811
https://doi.org/10.1109/ICCT50939.2020.9295660
https://doi.org/10.3390/s20154291
https://doi.org/10.1007/978-1-4419-6142-6_6
https://doi.org/10.1007/978-1-4419-6142-6_7
https://doi.org/10.1007/978-1-4419-6142-6_7
https://doi.org/10.1145/3308558.3314139
https://doi.org/10.1145/3308558.3314139
https://doi.org/10.1145/3302509.3313784
https://doi.org/10.1145/3219819.3220096
https://doi.org/10.1109/TVT.2018.2890726
https://doi.org/10.1109/TVT.2018.2890726
https://doi.org/10.1016/j.future.2019.02.058
https://doi.org/10.1016/j.future.2019.02.058
https://doi.org/10.1109/ACCESS.2020.3034419
https://doi.org/10.1016/j.knosys.2020.106708

Yang S, Yang B, Kang Z, Deng L. 2021. IHG-MA: Inductive heteroge-
neous graph multi-agent reinforcement learning for multi-inter-
section traffic signal control. Neural networks 139:265−77

24.

Webster FV. 1958. Traffic signal settings. Technical report. Road
Research Technique Paper No. 39. Road Research Laboratory,
London.

25.

Cools, S. B. ; Gershenson, C. and D’Hooghe, B. 2013. Self-organiz-
ing traffic lights: A realistic simulation. In Advances in applied self-
organizing systems, ed. Prokopenko M. London: Springer. pp.
45−55. https://doi.org/10.1007/978-1-4471-5113-5_3

26.

Hunt PB, Robertson DI, Bretherton RD, Royle MC. 1982. The SCOOT
on-line traffic signal optimisation technique. Traffic Engineering &
Control 23(4):190−92

27.

Sun X, Yin Y. 2018. A simulation study on max pressure control of
signalized intersections. Transportation research record
2672(18):117−27

28.

Li L, Lv Y, Wang F. 2016. Traffic signal timing via deep reinforce-
ment learning. IEEE/CAA Journal of Automatica Sinica 3(3):247−54

29.

El-Tantawy S, Abdulhai B, Abdelgawad H. 2014. Design of rein-
forcement learning parameters for seamless application of adap-
tive traffic signal control. Journal of Intelligent Transportation
Systems 18(3):227−45

30.

Rasheed F, Yau KLA, Low YC. 2020. Deep reinforcement learning
for traffic signal control under disturbances: A case study on
Sunway city, Malaysia. Future Generation Computer Systems
109:431−45

31.

Park S, Han E, Park S, Jeong H, Yun I. 2021. Deep Q-network-based
traffic signal control models. Plos One 16(9):e0256405

32.

Lownes NE, Machemehl RB. 2006. VISSIM: a multi-parameter sensi-
tivity analysis. Proceedings of the 2006 Winter Simulation Confer-
ence, Monterey, CA, USA, December 3-6, 2006. pp. 1406-13. IEEE.
https://doi.org/10.1109/WSC.2006.323241

33.

Cameron GDB, Duncan GID. 1996. PARAMICS—Parallel micro-
scopic simulation of road traffic. The Journal of Supercomputing
10:25−53

34.

Fox A, Griffith R, Joseph A, Katz R, Konwinski A, et al. 2009. Above
the clouds: A berkeley view of cloud computing. Technical Report
No. UCB/EECS-2009-28. University of California at Berkeley, USA.
www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html

35.

Bagchi S, Siddiqui MB, Wood P, Zhang H. 2019. Dependability in
edge computing. Communications of the ACM 63(1):58−66

36.

Sutton RS, Barto AG. 2018. Reinforcement learning: An introduction.
Cambridge, MA: MIT press.

37.

Bochkovskiy A, Wang CY, Liao HYM. 2020. Yolov4: Optimal speed
and accuracy of object detection. arXiv Preprint

38.

Telikani A, Shen J, Yang J, Wang P. 2022. Industrial IoT intrusion
detection via evolutionary cost-sensitive learning and fog comput-
ing. IEEE Internet of Things Journal 9(22):23260−71

39.

Zhang L, Wu J, Shen J, Chen M, Wang R, et al. 2021. SATP-GAN:
Self-attention based generative adversarial network for traffic flow
prediction. Transportmetrica B: Transport Dynamics 9(1):552−68

40.

Goodfellow I, Bengio Y, Courville A. 2016. Deep learning.
Cambridge, Massachusetts (MA): MIT press.

41.

Dong Z, Wu Y, Pei M, Jia Y. 2015. Vehicle type classification using a
semisupervised convolutional neural network. IEEE transactions on
intelligent transportation systems 16(4):2247−56

42.

Wu Q, Wu J, Shen J, Du B, Telikani A, et al. 2022. Distributed agent-
based deep reinforcement learning for large scale traffic signal
control. Knowledge-Based Systems 241:108304

43.

Mnih V, Badia AP, Mirza M, Graves A, Lillicrap T, et al. 2016. Asyn-
chronous methods for deep reinforcement learning. Proceedings of
The 33rd International Conference on Machine Learning (ICML), New
York, USA, 2016. New York, USA: PMLR. pp. 1928−37.

44.

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, et al. 2017.
Attention is all you need. Advances in neural information process-
ing systems. Proceedings of the 31st International Conference on
Neural Information Processing Systems (NIPS). pp.6000–10

45.

Merkel D. 2014. Docker: lightweight linux containers for consis-
tent development and deployment. Linux Journal 239(2):2

46.

Agarap AF. 2018. Deep learning using rectified linear units (relu).
arXiv Preprint

47.

Watkins CJCH. 1989. Learning from delayed rewards. PhD Thesis.
University of Cambridge, England

48.

Hu J, Wellman MP. 2003. Nash Q-learning for general-sum stochas-
tic games. Journal of Machine Learning Research 4(Nov):1039−69

49.

Nash JF Jr. 1950. Equilibrium points in n-person games. PNAS
36(1):48−49

50.

Casgrain, P.; Ning, B. and Jaimungal, S. 2022. Deep Q-learning for
Nash equilibria: Nash-DQN. Applied Mathematical Finance
29(1):62−78

51.

Du B, Zhang C, Shen J, Zheng Z. 2021. A dynamic sensitivity model
for unidirectional pedestrian flow with overtaking behaviour and
its application on social distancing's impact during COVID-19. IEEE
Transactions on Intelligent Transportation Systems 23(8):10404−17

52.

Copyright: © 2023 by the author(s). Published by
Maximum Academic Press, Fayetteville, GA. This

article is an open access article distributed under Creative
Commons Attribution License (CC BY 4.0), visit https://creative-
commons.org/licenses/by/4.0/.

An integrated and cooperative architecture

Wu et al. Digital Transportation and Safety 2023, 2(2):150−163 Page 163 of 163

https://doi.org/10.1016/j.neunet.2021.03.015
https://doi.org/10.1007/978-1-4471-5113-5_3
https://doi.org/10.1177/0361198118786840
https://doi.org/10.1109/JAS.2016.7508798
https://doi.org/10.1080/15472450.2013.810991
https://doi.org/10.1080/15472450.2013.810991
https://doi.org/10.1016/j.future.2020.03.065
https://doi.org/10.1371/journal.pone.0256405
https://doi.org/10.1007/BF00128098
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html
https://doi.org/10.1145/3362068
https://doi.org/10.48550/arXiv.2004.10934
https://doi.org/10.1109/JIOT.2022.3188224
https://doi.org/10.1080/21680566.2021.1916646
https://doi.org/10.1109/TITS.2015.2402438
https://doi.org/10.1109/TITS.2015.2402438
https://doi.org/10.1016/j.knosys.2022.108304
https://doi.org/10.48550/arXiv.1803.08375
https://doi.org/10.1073/pnas.36.1.48
https://doi.org/10.1080/1350486X.2022.2136727
https://doi.org/10.1109/TITS.2021.3093714
https://doi.org/10.1109/TITS.2021.3093714
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

	Introduction
	Related Work
	Conventional methods for TSC
	RL based methods for TSC
	Single intersection control
	Multi intersection control

	Preliminary
	Traffic simulation environment
	Traffic computing structure
	Problem definition

	Methodology
	Architecture
	The functions of each layer
	The module of traffic simulation environment

	General-MARL
	Edge-General-control
	Fog-General-control
	Cloud-General-control

	Experiments
	Dataset
	Parameter settings of General-MARL
	Cloud computing center
	Fog computing node
	Edge computing node
	Initial traffic light period setting
	Vehicle simulation
	Evaluation mechanism

	Methods for comparison
	Experimental process
	Ignoring network delay
	Considering network delay

	Experimental results
	Ignoring network delay
	Considering network delay

	Overall analysis

	Conclusions
	References

