

Training Physics-Informed Neural Networks via
Multi-Task Optimization for Traffic Density

Prediction
Bo Wang

Dept. of Computing Technologies
Swinburne University of Technology

Melbourne, Australia
bwang@swin.edu.au

Hussein Dia

Dept. of Civil and Construction
Engineering

Swinburne University of Technology
Melbourne, Australia

hdia@swin.edu.au

A. K. Qin
Dept. of Computing Technologies

Swinburne University of Technology
Melbourne, Australia

kqin@swin.edu.au

Adriana-Simona Mihaita
Data Science Institute

University of Technology Sydney
Sydney, Australia

adriana-simona.mihaita@uts.edu.au

Sajjad Shafiei
Dept. of Computing Technologies

Swinburne University of Technology
Melbourne, Australia
sshafiei@swin.edu.au

Hanna Grzybowska
Simulation Group,

Data 61|CSIRO
Sydney, Australia

hanna.grzybowska@data61.csiro.au

Abstract— Physics-informed neural networks (PINNs) are a
newly emerging research frontier in machine learning, which
incorporate certain physical laws that govern a given data set,
e.g., those described by partial differential equations (PDEs),
into the training of the neural network (NN) based on such a
data set. In PINNs, the NN acts as the solution approximator for
the PDE while the PDE acts as the prior knowledge to guide the
NN training, leading to the desired generalization performance
of the NN when facing the limited availability of training data.
However, training PINNs is a non-trivial task largely due to the
complexity of the loss composed of both NN and physical law
parts. In this work, we propose a new PINN training framework
based on the multi-task optimization (MTO) paradigm. Under
this framework, multiple auxiliary tasks are created and solved
together with the given (main) task, where the useful knowledge
from solving one task is transferred in an adaptive mode to assist
in solving some other tasks, aiming to uplift the performance of
solving the main task. We implement the proposed framework
and apply it to train the PINN for addressing the traffic density
prediction problem. Experimental results demonstrate that our
proposed training framework leads to significant performance
improvement in comparison to the traditional way of training
the PINN.

Keywords—Multi-task optimization, MTO, Physics-informed
neural network, PINN, Knowledge transfer

I. INTRODUCTION
The physical laws that govern the dynamics of a system

can often be described as partial differential equations (PDEs).
The solution to such PDEs allows the estimate of the system
state over time in the future. However, it is often challenging
to solve PDEs due to lack of analytical solutions. Compared to
traditional numerical solvers, PINNs [1] provide a new and
more efficient way of solving the PDE by approximating the
solution to the PDE via the neural network (NN) model while
incorporating certain PDE-related regularization terms as the
prior knowledge into the NN training. In this way, the training
of the NN can be guided by the physical laws which govern
the generation of the training data to avoid the need of a large
amount of training data by the NN to achieve the desired
generalization performance [2].

In recent years, PINNs have been successfully applied in a
variety of scientific and engineering scenarios, such as fluid
dynamics [3][4] and material engineering [5][6], which show

superiority over traditional PDE solvers. However, it is a more
challenging task for training PINNs than training traditional
NNs. Specifically, the loss function in the PINN is composed
of two parts, i.e., the NN loss (related to NN training errors)
and the PDE loss (related to PDE residuals), which may result
in inconsistent gradient directions for reducing each part in
different training stages. Because of the inherent magnitude
difference of these two parts and the variability of the training
data (for the NN loss) and the sampling data (for the PDE loss)
in terms of both quantity and quality, decreasing one part
during training is likely to lead to increase of another part. It
makes traditional gradient descent-based training techniques
very difficult (highly time-consuming) to converge.

Training NNs, particularly deep NNs (DNNs) [7], is by no
means trivial, which has attracted considerable research efforts
from the past till now. Among existing works, those based on
transfer learning have demonstrated excellence. Some of such
approaches [8][9] make use of the knowledge in certain forms
acquired from pre-trained models to assist in a given training
task. Others [10] create multiple auxiliary training tasks which
are somewhat relevant to a given training task, and solve them
together with the given (main) task while enabling knowledge
transfer across different task-solving processes such that the
given task can be better solved. In the light of the latter kind
of approaches, we propose a novel MTO-based PINN training
framework, where auxiliary PINN training tasks are created
and solved together with the main training task while enabling
cross-task knowledge transfer to improve on the performance
of solving the main task.

In our proposed MTO-based PINN training framework,
the auxiliary PINN training tasks can be designed from the
aspects of using different training data and solving different
tasks related to the main task, among others. The PINN models
utilized in multiple different tasks share the same architecture
except for the front (input) and/or end (output) layers, which
can accommodate the data and/or tasks of different properties.
Multiple PINNs are individually trained at the same time for
solving their own tasks during which network parameters from
the other PINNs can be used to help train any specific PINN
via a linear combination with learnable coefficients if a certain
knowledge transfer criterion is met.

This work is supported by the Australian Research Council (ARC) under
Grant No. LP180100114 and DP200102611.

We implement the proposed training framework and apply
it to train the PINN model for traffic density prediction which
is a promising application of PINNs, where auxiliary tasks are
designed by considering both different training data and other
different but relevant traffic state estimation (prediction) tasks.
Experimental results show that our method can consistently
improve over the traditional way of training the PINN across
various kinds of auxiliary tasks.

II. BACKGROUND

A. PINNs in Traffic State Estimation
 Traffic state estimation has gained much research attention
in the field of transport engineering because it directly impacts
many downstream applications, e.g., traffic control, incident
management, and vehicle navigation. In recent years, traffic
state estimation based on PINNs have been studied [11][12].
Most of such works utilize macroscopic traffic flow models to
depict the physical laws in the PINN, which analyze the traffic
in an aggregative manner without considering individual
vehicles. The macroscopic models are based on the kinematic
wave theory and typically treat a traffic flow as a fluid stream
[13][14]. They can capture forward and backward shockwaves
that occur when the traffic state varies through a section of the
road. Several traffic flow models, such as Lighthill-Whitham-
Richards (LWR) [13][14] and Aw-Rascle-Zhang (ARZ) [15],
have been adopted to define the PDE component in the PINN.
As for the NN component in the PINN, most of the existing
works on PINN-based traffic state estimation employ a similar
NN architecture as that employed in [2], i.e., one input layer,
several hidden layers, and one output layer, where the “Tanh”
activation function is usually utilized in the hidden layers.
Compared to the NN model, the PINN model can significantly
improve traffic prediction performance in the face of a limited
number of training data [11][12].

B. MTO-based NN Training
MTO [16][17] is a newly emerging research frontier in the

field of optimization. It allows multiple relevant optimization
tasks to be solved simultaneously and the knowledge acquired
from solving one task is reused to help solve some other tasks
via knowledge transfer so that the performance of solving each
individual task gets improved.

In recent years, many new MTO techniques [18][19][20]
have been proposed and successfully applied in various fields
[21]. One of the promising MTO application scenarios is to
train NNs. It is well-known that training an NN corresponds to
solve a complex non-convex optimization problem, prone to
getting stuck into inferior local optima. To address this issue,
the MTO-based NN training first creates multiple auxiliary
training tasks relevant to the main training task. Then, both the
main and auxiliary tasks are solved at the same time while
allowing the knowledge obtained from one task-solving
process, often in the form of promising network parameters, to
assist in some other task-solving processes via knowledge
transfer and reuse. As a result, the main training task can be
better solved because the knowledge from relevant auxiliary
tasks can help the main training task to jump out of its own
inferior local optima. There exist different ways of creating
auxiliary training tasks and the knowledge can be transferred
and reused in different manners [10][22][23].

III. THE PROPOSED METHOD
The MTO-based training paradigm for DNNs [10][22] has

shown performance superiority over the traditional methods of
training DNNs, where multiple auxiliary training tasks related
to the given (main) training task are created and then solved
together with the main task so that the useful knowledge from
any individual task-solving process, e.g., network parameters,
can be transferred and used to help solve some other training
tasks, aiming to improve the performance of solving the main
task. We extend this idea for training PINNs and choose traffic
state prediction as the application scenario, where different
traffic state variables that are somewhat related and multiple
traffic data sets in different spatial and time zones are utilized
for designing auxiliary tasks, relevant but different from the
main task, to enable MTO-based training. In what follows, we
will first introduce PINN’s formulation in traffic state
prediction and then elaborate the MTO-based PINN training
framework.

A. Traffic PINNs
Suppose the task is to estimate traffic state 𝑢𝑢 (e.g., traffic

flow 𝑞𝑞, density 𝑘𝑘, and speed 𝑣𝑣.) over time 𝑡𝑡 within a time span
of T (seconds) in the future along a road segment of length 𝐷𝐷

(meters). The PINN model, as illustrated in Fig. 1 will take as
inputs time 𝑡𝑡 and distance 𝑑𝑑 (with respect to the road origin)
and output 𝑢𝑢� . Different from the traditional NN, PINN’s loss
function 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 has two parts, i.e., 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑁𝑁𝑁𝑁 and 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃 .

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑁𝑁𝑁𝑁 is typically formulated as the mean squared error
(MSE) between NN’s output 𝑢𝑢� and the corresponding ground
truth 𝑢𝑢 as follows:

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑀𝑀𝑀𝑀𝑃𝑃 =
1
𝑛𝑛𝑢𝑢

�|𝑢𝑢�(𝑑𝑑𝑖𝑖𝑢𝑢, 𝑡𝑡𝑖𝑖𝑢𝑢) − 𝑢𝑢𝑖𝑖𝑢𝑢|2
𝑛𝑛𝑢𝑢

𝑖𝑖=1

 (1)

where 𝑀𝑀𝑢𝑢 = {𝑑𝑑𝑖𝑖𝑢𝑢, 𝑡𝑡𝑖𝑖𝑢𝑢,𝑢𝑢𝑖𝑖𝑢𝑢|𝑖𝑖 = 1, …𝑛𝑛𝑢𝑢} represents a training set
with 𝑛𝑛𝑢𝑢 available training samples.

The definition of 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃 depends on the adopted PDE
that governs traffic dynamics. Suppose the residual function
of the PDE is denoted as 𝑓𝑓(𝑑𝑑, 𝑡𝑡,𝑢𝑢). 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃 is formulated as:

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃 =
1
𝑛𝑛𝑓𝑓
��𝑓𝑓�𝑑𝑑𝑖𝑖

𝑓𝑓 , 𝑡𝑡𝑖𝑖
𝑓𝑓 ,𝑢𝑢�𝑖𝑖

𝑓𝑓��
2

𝑛𝑛𝑓𝑓

𝑖𝑖=1

 (2)

where 𝑀𝑀𝑓𝑓 = {𝑑𝑑𝑖𝑖
𝑓𝑓 , 𝑡𝑡𝑖𝑖

𝑓𝑓 ,𝑢𝑢�𝑖𝑖
𝑓𝑓|𝑖𝑖 = 1, … 𝑛𝑛𝑓𝑓} is a set of 𝑛𝑛𝑓𝑓 randomly

sampled 𝑑𝑑 and 𝑡𝑡 from [0,𝐷𝐷] and [0,𝑇𝑇], respectively and the
corresponding NN’s outputs when they are fed into the NN as
inputs.

Fig. 1. A simple illustration of the PINN model.

Following previous studies [13][14][24], we will employ
Greenshields’s LWR traffic flow model which can provide a
macroscopic way for describing the evolution of traffic density
𝑘𝑘 on a road network. It is based on an assumption that traffic
density is a continuous function with respect to space and time,
where traffic flow 𝑞𝑞 is defined as the product of traffic density
𝑘𝑘 and local traffic speed 𝑣𝑣 [13][14]. Th model is underpinned
by the following PDE:
𝜕𝜕𝑞𝑞
𝜕𝜕𝑑𝑑

+
𝜕𝜕𝑘𝑘
𝜕𝜕𝑡𝑡

= 0 (3)

𝑞𝑞 = 𝑘𝑘 × 𝑣𝑣 (4)

𝑣𝑣 = 𝑣𝑣𝑓𝑓 �1 −
𝑘𝑘
𝑘𝑘𝑗𝑗
�

(5)

where 𝑣𝑣𝑓𝑓 and 𝑘𝑘𝑗𝑗 represent the free flow speed and the jammed
density, respectively. From this PDE, we define the residual
function with respect to density k or speed v as follows:

𝑓𝑓(𝑑𝑑, 𝑡𝑡, 𝑘𝑘) = 𝑣𝑣𝑓𝑓
𝜕𝜕𝑘𝑘
𝜕𝜕𝑑𝑑

− 2
𝑣𝑣𝑓𝑓
𝑘𝑘𝑗𝑗
𝜕𝜕𝑘𝑘
𝜕𝜕𝑑𝑑

𝑘𝑘 +
𝜕𝜕𝑘𝑘
𝜕𝜕𝑡𝑡

 (6)

𝑓𝑓(𝑑𝑑, 𝑡𝑡, 𝑣𝑣) =
𝜕𝜕𝑣𝑣
𝜕𝜕𝑑𝑑

𝑘𝑘𝑗𝑗 − 2
𝑘𝑘𝑗𝑗
𝑣𝑣𝑓𝑓
𝜕𝜕𝑣𝑣
𝜕𝜕𝑑𝑑

𝑣𝑣 −
𝑘𝑘𝑗𝑗
𝑣𝑣𝑓𝑓
𝜕𝜕𝑣𝑣
𝜕𝜕𝑡𝑡

 (7)

Depending on the considered prediction task (density or
speed), one of the above will be used as 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃 in the PINN.
Therefore, the overall loss of the PINN is defined as:

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑁𝑁𝑁𝑁 + 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃 (8)

 By combining the PDE-based traffic flow model and the
data-driven NN model, the PINN model may rely on merely a
limited amount of training data to obtain accurate prediction
of traffic states. It aligns well with real-world scenarios where
traffic sensors are often sparsely deployed.

B. MTO-based PINN Training
Our proposed MTO-based PINN training framework starts

with the design of auxiliary training tasks relevant to the main
training task. In this work, the main task is defined as training
a PINN for traffic density prediction based on a training set

with known traffic density. Considering that traffic density
and speed are inherently related, auxiliary tasks can be
designed as training a PINN with the exact same architecture
for traffic density prediction based on a different training set
with known traffic density, training a PINN with the nearly
same architecture (except for the output layer) for traffic speed
prediction based on the same training set with known traffic
speed, and training a PINN with the nearly same architecture
(except for the output layer) for traffic speed prediction based
on a different training set with known traffic speed, among
others.

The main and auxiliary training tasks will be individually
solved at the same time. In the process of solving any task,
when a certain knowledge transfer criterion is met, an MTO
module will be triggered for incorporating the knowledge (in
the form of network parameters) acquired from the other tasks.
The training process for any task will be terminated when the
pre-defined maximum number of training epochs is reached.
In this work, we adopt an adaptive MTO triggering strategy.
Specifically, if the best training loss value obtained so far
cannot be improved by a decent amount (e.g., a pre-defined
percentage of the best loss value obtained so far) over a period
of S consecutive training epochs, so-called MTO triggering
window size, the MTO module will be triggered.

Suppose the MTO module is triggered for Task k (k ∈ {1,
…, 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡}) at epoch i. The current network parameters from
Task k will be linearly combined with those from the other
𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 1 tasks in a layer-wise manner to generate the new
network parameters for Task k. The combination coefficients
𝜶𝜶𝑡𝑡 = {𝑎𝑎𝑖𝑖𝑗𝑗𝑡𝑡 |𝑖𝑖 = 1, … ,𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 , 𝑗𝑗 = 1, … ,𝑁𝑁𝑙𝑙𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙 − 1, 𝑎𝑎𝑖𝑖𝑗𝑗𝑡𝑡 ∈ 𝑅𝑅}

will be learned via solving Task k with respect to 𝜶𝜶𝑡𝑡 while the
original network parameters from all tasks are kept frozen. As
such, the knowledge from the other tasks can be adaptively
transferred into Task k. Notably, the last (output) layer of the
NN is not involved in the knowledge transfer process because
the parameters in that layer are very task-specific and thus less
suitable for cross-task knowledge transfer. After 𝜶𝜶𝑡𝑡 is learned
for a pre-specified number of training epochs, the new network
parameters created upon it will be compared with the original

Fig. 2. The basic working principle of the proposed MTO-based training framework.

(pre-MTO) network parameters in terms of the corresponding
training loss values. The network parameters with the smaller
loss value will enter epoch i+1, and meanwhile the period of S
consecutive training epochs will be re-counted from scratch.

In this work, we choose to employ only one auxiliary task
for simplicity. Fig. 2 illustrates the basic working principle of
the proposed framework with 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡=2 as well as the involved
MTO module.

IV. EXPERIMENTS

A. Data Description
We employ the US Highway 101 data set from the Next
Generation Simulation (NGSIM) program for our study. The
area of study for data collection spans around 640 meters and
comprises five main lanes. The data set contains traffic data
captured during a 45-min period in the morning peak, where
the raw data have been aggregated every five seconds. We
utilize the traffic density, speed, and flow information in the
study area and exclude the initial and final road sections from
our analysis due to incomplete data.

Fig. 3. The spatiotemporal distribution of normalized traffic density for the
area in the US 101 data set which is considered in this work.

Fig. 3 illustrates the distribution of normalized traffic density
(via the min and max density values in the entire study area)
with respect to distance d (from the road origin) and time t (in
the 45-min period) for the area in the US 101 data set which is
considered in this work. It illustrates multiple shockwaves,
indicating the traffic congestion propagation on the freeway.
We assume that in practice traffic data are only available in a
few locations on the road due to the sparsely deployed traffic
sensors. To evaluate the utility of the PINN in this scenario,

we create two training sets from the whole data set. Data set A
comprises the data from sensors located at d = 4, 8, 12, 16, 20,
and 24 meters, respectively at time stamps in [0, 5, 10, …,
2695], and data set B contains the data from sensors located at
d = 8, 92, 128, 292, and 408 meters, respectively at time
stamps in [0, 5, 10, …, 2695]. In contrast, data set B covers a
wider study area than A. In the two training sets, both distance
and time are employed as the inputs, and either traffic density
or speed can be adopted as the output. The test set for
measuring the prediction performance of the PINN contains
the data from sensors located at d ∈ [4, 8, 12, …, 408],
respectively at time stamps in [0, 5, 10, …, 2695].

B. Task Design
The main task in this work is defined as training a PINN

for making traffic density prediction based on a training set
with known traffic density, i.e., Density (A) or Density (B).

The auxiliary tasks in this work are designed to be one of
the following three training tasks:
• training a PINN with the same architecture as that used in

the main task for traffic density prediction but based on a
different training set (from the main task) with known
traffic density, i.e., Density (B) or Density (A).

• training a PINN with the nearly same architecture (except
for the output layer) as that used in the main task for traffic
speed prediction and based on the same training set (as the
main task) with known traffic speed, i.e., Speed (A) or
Speed (B), and

• training a PINN with the nearly same architecture (except
for the output layer) as that used in the main task for traffic
speed prediction but based on a different training set (from
the main task) with known traffic speed, i.e., Speed (B) or
Speed (A).

C. Experimental Settings
The NN component of all the PINN models used in our

experiments adopts the same architecture as that employed in
[11][12], i.e., a fully connected feedforward NN with one
input, eight hidden, and one output layers. For training, we set
batch size as 1024, and employ the Lamb optimizer [25] for
training both network parameters and layer-wise weights (in
the MTO module). The maximum number of training epochs
for training the PINN is set to 4,000 and the MTO-triggering
window size S is set to 50 with the improvement percentage
set to 0.01 (of the best training loss obtained so far). Also, the

TABLE I. COMPARISON OF THE PROPOSED TRAINING METHOD USING EACH OF THE THREE DIFFERENCE AUXILIARY TASKS WITH THE TRADITIONAL TRAINING
METHOD ON TWO TRAINING SETS A AND B IN TERMS OF THE MEAN AND STANDARD DEIVATION OF THE LOSS VALUES ON THE TRAINING SET AND THE MAPE

VALUES ON THE TEST SET OVER 10 RUNS. THE STATISTICAL T-TEST AT THE SIGNIFICANCE LEVEL OF 0.05 IS PERFORMED TO COMPARE THE PROPOSED AND
TRADITONAL METHODS WITH THE PROPOSED METHOD HIGHLIGHTED IN BOLD IF ITS PERFORMANCE IS STASITICALLY BETTER.

 Main Task Auxiliary Task Training Set Test Set
Method Task (Data) PDE Task (Data) PDE Loss MAPE
NN Density (A) -- -- -- 11.385 ± 0.612 1.279 ± 0.058
PINN Density (A) LWR -- -- 14.734 ± 0.647 0.357 ± 0.004
PINN+MTO Density (A) LWR Density (B) LWR 12.958 ± 0.769 0.252 ± 0.039
PINN+MTO Density (A) LWR Speed (A) LWR 12.936 ± 0.981 0.247 ± 0.017
PINN+MTO Density (A) LWR Speed (B) LWR 12.486 ± 0.698 0.260 ± 0.033
NN Density (B) -- -- -- 10.479 ± 0.930 0.298 ± 0.046
PINN Density (B) LWR -- -- 15.971 ± 0.881 0.171 ± 0.004
PINN+MTO Density (B) LWR Density (A) LWR 15.181 ± 0.289 0.169 ± 0.002
PINN+MTO Density (B) LWR Speed (A) LWR 14.882 ± 0.303 0.166 ± 0.001
PINN+MTO Density (B) LWR Speed (B) LWR 15.071 ± 0.948 0.167 ± 0.003

maximum number of training epochs for learning layer-wise
weights in MTO is set to 200. Each method in comparison is
executed for 10 independent runs.

For performance evaluation, we employ the training loss
of the PINN model to evaluate the training performance, and
the mean absolute percentage error (MAPE) on the test set to
measure PINN’s generalization performance. We perform the
statistical t-test at the significance level of 0.05 to compare the
10-run results of any two methods under consideration.

D. Overall Comparision
We compare the proposed PINN training method with the

traditional PINN training method for learning the same PINN
model (for traffic density prediction) by using training sets A
and B, respectively. Therefore, the main task is either Density
(A) or Density (B). The auxiliary task adopted in the proposed
training method is Density (B), Speed (A) or Speed (B) with
respect to main task Density (A), and Density (A), Speed (A)
or Speed (B) with respect to main task Density (B). Further,
we perform a comparison with the NN-only counterpart of the
PINN model to reveal the utility of the PINN.

The experimental results are reported in Table I. It can be
observed that the proposed MTO-based PINN training method
consistently outperforms the traditional PINN training method
in terms of both the loss on the training set and the MAPE on
the test set for all three auxiliary tasks on both training sets A
and B. Among three adopted auxiliary tasks, the speed task on
a different training set outperforms the other two in terms of
the eventually obtained training loss on both training sets. In
addition, although the NN model can be trained to achieve the
much better training loss, the corresponding MAPE on the test
set is worse, implying overfitting and thus poor generalization.

E. Ablation Study

a) MTO Triggering Strategy

In this work, we adopt an adaptive strategy for triggering
the MTO module, where the MTO is triggered whenever the
best training loss value obtained so far cannot be improved by
1% over S consecutive epochs. To validate its effectiveness,
we compare it with a fixed triggering strategy which regularly
triggers the MTO module every 50 training epochs. Table II
reports the comparison results of these two strategies in terms
of their eventually obtained training loss values with respect
to three different auxiliary tasks and two different training sets.
We perform the statistical t-test at the significance level of
0.05 to compare these two strategies and highlight in bold the
best one (with the minimum mean loss value over 10 runs) and
also another if it is statistically similar to the best. It can be
observed that the adaptive strategy consistently performs best
across all the comparison scenarios. It is noteworthy that the
adaptive strategy typically triggers the MTO module less often
than the fixed strategy when using the same MTO triggering
window size. For example, when the triggering window size
is set to 50 and the total number of training epochs is set to
4,000, as employed in this work, the MTO triggering times for
adaptive and fixed strategies are 60 and 80, respectively. It
implies that the adaptive strategy may potentially reduce the
computational cost by reducing MTO execution times.

Fig. 4 illustrates the convergence curves of the training loss
with respect to the proposed training methods equipped with

the adaptive and fixed MTO triggering strategies and the
traditional training method without MTO, respectively. It can
be observed that regularly triggering the MTO module may
result in the worse performance than the traditional training
method. By using the adaptive strategy, MTO is not triggered
in the beginning stage of training, but gradually and adaptively
triggered to make performance improvement once the training
process is stuck, as evidenced by the distribution of triggering
points displayed in Fig. 4.

TABLE II. COMPARISION OF THE TRAINING LOSS (MEAN AND STANDARD
DEVIATION OVER 10 RUNS) WHEN USING TWO DIFFERENT MTO TRIGGERING

STRATEGIES IN THE PROPOSED METHODS WITH DIFFERENT AUXILLARY
TASKS ON TWO TRAINING SETS. THE STATISTICAL T-TEST AT THE

SIGNIFICANCE LEVEL OF 0.05 IS PERFORMED TO COMPARE THE TWO
STRATEGIES WITH THE STATISTICALLY BEST ONE(S) HIGHLIGHTED IN BOLD.

Main (Data) | Auxiliary (Data) Fixed Adaptive
 Density (A) | Density (B) 13.143 ± 0.775 12.958 ± 0.769
 Density (A) | Speed (A) 13.473 ± 0.671 12.936 ± 0.981
 Density (A) | Speed (B) 13.435 ± 0.776 12.486 ± 0.698
 Density (B) | Density (A) 15.258 ± 0.816 15.181 ± 0.289
 Density (B) | Speed (A) 15.643 ± 0.382 14.882 ± 0.303
 Density (B) | Speed (B) 16.756 ± 1.060 15.071 ± 0.948

Fig. 4. Training loss convergence curves for the proposed training method
with the adaptive or fixed MTO triggering strategy and the traditional
training method, where the main and auxiliary tasks are Density (B) and
Speed (A), respectively. Training epochs at which MTO is triggered when
using the adaptive strategy are denoted by yellow dots.

b) Layer-wise Weight Initialization in the MTO Module

In the MTO module, layer-wise weights 𝜶𝜶𝑡𝑡 , k = 1, …,
𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 are learned based on the training data to enable cross-
task knowledge transfer. To investigate the sensitivity of the
weight learning to initialization, typically suffered by the NN
training, we evaluate several different initial layer-wise weight
settings. Suppose 𝜶𝜶1 and 𝜶𝜶2 are the main and auxiliary tasks
under consideration.

Table III shows the comparison results among five initial
weight settings, where the four pairs of numbers refer to the
same initial weight value for all the layers in the corresponding
task, e.g., (1.0, 0.0) denotes the initial weight value of 1.0 for
all layers in the main task and 0.0 for all layers in the auxiliary
task; Xavier [7] refers to the uniformly random initialization.
It can be observed that initialization sensitivity is not severe,
though among the five compared settings, the best performer
is (1.0, 0.0). In fact, this setting inherently allows for the fine-
tuning of network parameters for the main task by making use
of the network parameters from auxiliary tasks, and thus avoid
the dramatic parameter update which may lead to performance
degradation.

F. Parameter Sensitivity Analysis
 As discussed previously, the adaptive MTO triggering
strategy plays an essential role in the proposed PINN training
framework, where the MTO triggering window size S is a key
parameter involved. In this section, we conduct a parameter
sensitivity analysis on S with respect to the performance of the
proposed training method. Specifically, we evaluate the total
number of times that the MTO module gets triggered during
the entire training period and the eventually obtained training
loss values over 10 runs as the MTO triggering window size
varies from 10 to 120 at the step size of 10 for the proposed
method equipped with each of the three different auxiliary
tasks on training set A. The results are illustrated in Fig. 5,
which indicate that when the window size increases, the total
number of MTO triggering times decreases and the training

performance (in terms of the loss) fluctuates and accordingly
the best window sizes, based on the training performance, for
different auxiliary tasks are not same. In this work, we choose
to use the window size of 50 in all experiments considering the
overall performance across different auxiliary tasks.

V. CONCLUSIONS AND FUTURE WORK
 We proposed a novel PINN training framework based on
MTO. In this framework, one or more auxiliary training tasks
are created and solved together with the main training task so
that solving auxiliary tasks may help better solve the main task
via knowledge transfer, where an MTO module is designed to
enable knowledge transfer. We applied the proposed method
to train the PINN for traffic density prediction, where different
auxiliary tasks were designed and evaluated. Compared to the
traditional PINN training method, our proposed MTO-based
method demonstrated the performance advantages in terms of
both training and testing. Our future work includes evaluation
of the proposed method by using more than one auxiliary tasks
and extending its application to the other traffic problems and
non-traffic scenarios. We will also study how to better balance
the two loss parts in an adaptive manner based on the strategies
proposed in our previous works [26][27] to facilitate training.

REFERENCES
[1] G. E. Karniadakis, et al., "Physics-informed machine learning," Nature

Reviews Physics, vol. 3, no. 6, pp. 422-440, 2021.
[2] M. Raissi, P. Perdikaris, and G. E. Karniadakis, "Physics-informed

neural networks: A deep learning framework for solving forward and
inverse problems involving nonlinear partial differential equations,"
Journal of Computational Physics, vol. 378, pp. 686-707, 2019.

[3] M. Raissi, A. Yazdani, and G. E. Karniadakis, "Hidden fluid
mechanics: Learning velocity and pressure fields from flow
visualizations," Science, vol. 367, no. 6481, pp. 1026-1030, 2020.

[4] K. Duraisamy, G. Iaccarino, and H. Xiao, "Turbulence modeling in the
age of data," Annual Review of Fluid Mechanics, vol. 51, pp. 357-377,
2019.

[5] K. Shukla, et al., "Physics-informed neural network for ultrasound
nondestructive quantification of surface breaking cracks," Journal of
Nondestructive Evaluation, vol. 39, article no. 61, 2020.

[6] L. Lu, et al., "Extraction of mechanical properties of materials through
deep learning from instrumented indentation," Proceedings of the
National Academy of Sciences, vol. 117, no. 13, pp. 7052-7062, 2020.

[7] X. Glorot and Y. Bengio, "Understanding the difficulty of training deep
feedforward neural networks," Proc. of the 13th International
Conference on Artificial Intelligence and Statistics (AISTATS), Chia
Laguna Resort, Sardinia, Italy, May 13-15, 2010.

[8] G. Hinton, O. Vinyals, and J. Dean, "Distilling the knowledge in a
neural network," Proc. of the NIPS 2014 Deep Learning Workshop,
2015.

[9] J. Gou, B. Yu, S. J. Maybank, and D. Tao, "Knowledge distillation: A
survey," International Journal of Computer Vision, vol. 129, pp. 1789-
1819, 2021.

[10] B. Zhang, A. K. Qin, H. Pan, and T. Sellis, "A novel DNN training
framework via data sampling and multi-task optimization," Proc. of the
2020 IEEE International Joint Conference on Neural Networks (IJCNN
2020), 2020.

TABLE III. COMPARISION OF THE TRAINING LOSS (MEAN AND STANDARD DEVIATION OVER 10 RUNS) WHEN USING FIVE DIFFERENT WAYS OF
INITIALIZING LAYER-WISE WEIGHTS IN THE PROPOSED METHODS WITH DIFFERENT AUXILLARY TASKS ON TWO TRAINING SETS. THE STATISTICAL T-

TEST AT THE SIGNIFICANCE LEVEL OF 0.05 IS PERFORMED TO COMPARE THE INITIALIZATION METHOD WITH THE BEST MEAN LOSS VALUE
(HIGHLIGHTED IN BOLD) WITH EACH OF THE REST, WHERE THE CO-WINNER(S) ARE ALSO HIGHLIGHTED IN BOLD.

 (𝜶𝜶1,𝜶𝜶2)
Main (Data) | Auxiliary (Data) (1.0, 0.0) (0. 7, 0.3) (0. 5, 0.5) (0. 0, 1.0) Xavier [7]
Density (A) | Density (B) 12.958 ± 0.769 13.014 ± 0.787 12.432 ± 0.999 13.004 ± 0.567 13.255 ± 0.459
Density (A) | Speed (A) 12.936 ± 0.981 13.404 ± 0.495 13.349 ± 0.475 13.165 ± 0.801 13.609 ± 0.919
Density (A) | Speed (B) 12.486 ± 0.698 12.917 ± 0.806 13.603 ± 0.600 13.090 ± 1.287 12.965 ± 0.957
Density (B) | Density (A) 15.181 ± 0.289 15.067 ± 0.387 15.268 ± 0.617 15.530 ± 0.282 15.402 ± 0.533
Density (B) | Speed (A) 14.882 ± 0.303 15.263 ± 0.590 16.097 ± 0.484 15.767 ± 0.345 15.526 ± 0.277
Density (B) | Speed (B) 15.071 ± 0.948 15.884 ± 0.409 15.119 ± 0.345 15.703 ± 0.424 15.264 ± 0.284

Fig. 5. Comparison of the total number of times for triggering the MTO
module during the entire training period and the distribution of training
loss values over 10 runs as the MTO triggering window size varies from
10 to 120 at the step size of 10 (horizontal axis), for the proposed training
method using each of the three different auxiliary tasks on training set A.

[11] R. Shi, Z. Mo, K. Huang, X. Di, and Q. Du, "A physics-informed deep
learning paradigm for traffic state and fundamental diagram
estimation," IEEE Transactions on Intelligent Transportation Systems,
vol. 23, no. 8, pp. 11688-11698, 2021.

[12] A. J. Huang and S. Agarwal, "Physics-informed deep learning for
traffic state estimation: Illustrations with LWR and CTM Models,"
IEEE Open Journal of Intelligent Transportation Systems, vol. 3, pp.
503-518, 2022.

[13] M. J. Lighthill and G. B. Whitham, "On kinematic waves I. Flood
movement in long rivers," Proc. of the Royal Society of London Series
A, Mathematical and Physical Sciences, vol. 229, no. 1178, pp. 281-
316, 1955.

[14] M. J. Lighthill and G. B. Whitham, "On kinematic waves II. A theory
of traffic flow on long crowded roads," Proc. of the Royal Society of
London Series A, Mathematical and Physical Sciences, vol. 229, no.
1178, pp. 317-345, 1955.

[15] A. Aw and M. Rascle, "Resurrection of "second order" models of traffic
flow," SIAM Journal on Applied Mathematics, vol. 60, no. 3, pp. 916-
938, 2000.

[16] K. Swersky, J. Snoek, and R. P. Adams, "Multi-task Bayesian
optimization," Proc. of the 2013 Advances in Neural Information
Processing Systems (NIPS), 2013.

[17] A. Gupta, Y.-S. Ong, and L. Feng, "Multifactorial evolution: toward
evolutionary multitasking," IEEE Transactions on Evolutionary
Computation, vol. 20, no. 3, pp. 343-357, 2015.

[18] R.-T. Liaw and C.-K. Ting, "Evolutionary many-tasking based on
biocoenosis through symbiosis: A framework and benchmark
problems," Proc. of the 2017 IEEE Congress on Evolutionary
Computation (CEC), Donostia-San Sebastián, Spain, Jun. 5-8, 2017.

[19] H. Song, A. K. Qin, P.-W. Tsai, and J. J. Liang, "Multitasking multi-
swarm optimization," Proc. of the 2019 IEEE Congress on
Evolutionary Computation (CEC), 2019, Wellington, New Zealand,
Jun. 10-13, 2019.

[20] H. Xu, A. K. Qin, and S. Y. Xia, "Evolutionary multitask optimization
with adaptive knowledge transfer," IEEE Transactions on Evolutionary
Computation, vol. 26, no. 2, pp. 290-303, 2021.

[21] E. Osaba, J. Del Ser, A. D. Martinez, and A. Hussain, "Evolutionary
multitask optimization: A methodological overview, challenges, and
future research directions," Cognitive Computation, vol. 14, no. 3, pp.
927-954, 2022.

[22] H. Song, A. K. Qin, and C. G. Yan, "Multi-task optimization based co-
training for electricity consumption prediction," Proc. of the 2022 IEEE
International Joint Conference on Neural Networks (IJCNN), Padua,
Italy, July 18-23, 2022.

[23] R. Chandra, A. Gupta, Y.-S. Ong, and C.-K. Goh, "Evolutionary multi-
task learning for modular knowledge representation in neural
networks," Neural Processing Letters, vol. 47, issue 3, pp. 993–1009,
2018.

[24] N. H. Gartner, C. J. Messer, and A. Rathi, "Traffic flow theory - a state-
of-the-art report: Revised monograph on traffic flow theory," online
access via https://rosap.ntl.bts.gov/view/dot/35775, 2002.

[25] Y. You et al., "Large batch optimization for deep learning: Training
BERT in 76 minutes," Proc. of the 2020 International Conference on
Learning Representations (ICLR), Addis Ababa, Ethiopia, Apr. 26-30,
2020.

[26] A. K. Qin, P. N. Suganthan, and M. Loog, “Uncorrelated
heteroscedastic LDA based on the weighted pairwise Chernoff
criterion,” Pattern Recognition, vol. 38, no. 4, pp. 613–616, 2005.

[27] A. K. Qin and P. N. Suganthan, "Initialization insensitive LVQ
algorithmbased on cost-function adaptation," Pattern Recognition, vol.
38, no. 5, pp. 773–776, 2005.

