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Abstract— Physics-informed neural networks (PINNs) are a 
newly emerging research frontier in machine learning, which 
incorporate certain physical laws that govern a given data set, 
e.g., those described by partial differential equations (PDEs), 
into the training of the neural network (NN) based on such a 
data set. In PINNs, the NN acts as the solution approximator for 
the PDE while the PDE acts as the prior knowledge to guide the 
NN training, leading to the desired generalization performance 
of the NN when facing the limited availability of training data. 
However, training PINNs is a non-trivial task largely due to the 
complexity of the loss composed of both NN and physical law 
parts. In this work, we propose a new PINN training framework 
based on the multi-task optimization (MTO) paradigm. Under 
this framework, multiple auxiliary tasks are created and solved 
together with the given (main) task, where the useful knowledge 
from solving one task is transferred in an adaptive mode to assist 
in solving some other tasks, aiming to uplift the performance of 
solving the main task. We implement the proposed framework 
and apply it to train the PINN for addressing the traffic density 
prediction problem. Experimental results demonstrate that our 
proposed training framework leads to significant performance 
improvement in comparison to the traditional way of training 
the PINN. 

Keywords—Multi-task optimization, MTO, Physics-informed 
neural network, PINN, Knowledge transfer 

I. INTRODUCTION 
The physical laws that govern the dynamics of a system 

can often be described as partial differential equations (PDEs). 
The solution to such PDEs allows the estimate of the system 
state over time in the future. However, it is often challenging 
to solve PDEs due to lack of analytical solutions. Compared to 
traditional numerical solvers, PINNs [1] provide a new and 
more efficient way of solving the PDE by approximating the 
solution to the PDE via the neural network (NN) model while 
incorporating certain PDE-related regularization terms as the 
prior knowledge into the NN training. In this way, the training 
of the NN can be guided by the physical laws which govern 
the generation of the training data to avoid the need of a large 
amount of training data by the NN to achieve the desired 
generalization performance [2]. 

In recent years, PINNs have been successfully applied in a 
variety of scientific and engineering scenarios, such as fluid 
dynamics [3][4] and material engineering [5][6], which show 

superiority over traditional PDE solvers. However, it is a more 
challenging task for training PINNs than training traditional 
NNs. Specifically, the loss function in the PINN is composed 
of two parts, i.e., the NN loss (related to NN training errors) 
and the PDE loss (related to PDE residuals), which may result 
in inconsistent gradient directions for reducing each part in 
different training stages. Because of the inherent magnitude 
difference of these two parts and the variability of the training 
data (for the NN loss) and the sampling data (for the PDE loss) 
in terms of both quantity and quality, decreasing one part 
during training is likely to lead to increase of another part. It 
makes traditional gradient descent-based training techniques 
very difficult (highly time-consuming) to converge. 

Training NNs, particularly deep NNs (DNNs) [7], is by no 
means trivial, which has attracted considerable research efforts 
from the past till now. Among existing works, those based on 
transfer learning have demonstrated excellence. Some of such 
approaches [8][9] make use of the knowledge in certain forms 
acquired from pre-trained models to assist in a given training 
task. Others [10] create multiple auxiliary training tasks which 
are somewhat relevant to a given training task, and solve them 
together with the given (main) task while enabling knowledge 
transfer across different task-solving processes such that the 
given task can be better solved. In the light of the latter kind 
of approaches, we propose a novel MTO-based PINN training 
framework, where auxiliary PINN training tasks are created 
and solved together with the main training task while enabling 
cross-task knowledge transfer to improve on the performance 
of solving the main task. 

In our proposed MTO-based PINN training framework, 
the auxiliary PINN training tasks can be designed from the 
aspects of using different training data and solving different 
tasks related to the main task, among others. The PINN models 
utilized in multiple different tasks share the same architecture 
except for the front (input) and/or end (output) layers, which 
can accommodate the data and/or tasks of different properties. 
Multiple PINNs are individually trained at the same time for 
solving their own tasks during which network parameters from 
the other PINNs can be used to help train any specific PINN 
via a linear combination with learnable coefficients if a certain 
knowledge transfer criterion is met. 
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We implement the proposed training framework and apply 
it to train the PINN model for traffic density prediction which 
is a promising application of PINNs, where auxiliary tasks are 
designed by considering both different training data and other 
different but relevant traffic state estimation (prediction) tasks. 
Experimental results show that our method can consistently 
improve over the traditional way of training the PINN across 
various kinds of auxiliary tasks. 

II. BACKGROUND 

A. PINNs in Traffic State Estimation 
 Traffic state estimation has gained much research attention 
in the field of transport engineering because it directly impacts 
many downstream applications, e.g., traffic control, incident 
management, and vehicle navigation. In recent years, traffic 
state estimation based on PINNs have been studied [11][12]. 
Most of such works utilize macroscopic traffic flow models to 
depict the physical laws in the PINN, which analyze the traffic 
in an aggregative manner without considering individual 
vehicles. The macroscopic models are based on the kinematic 
wave theory and typically treat a traffic flow as a fluid stream 
[13][14]. They can capture forward and backward shockwaves 
that occur when the traffic state varies through a section of the 
road. Several traffic flow models, such as  Lighthill-Whitham-
Richards (LWR) [13][14] and Aw-Rascle-Zhang (ARZ) [15], 
have been adopted to define the PDE component in the PINN. 
As for the NN component in the PINN, most of the existing 
works on PINN-based traffic state estimation employ a similar 
NN architecture as that employed in [2], i.e., one input layer, 
several hidden layers, and one output layer, where the “Tanh” 
activation function is usually utilized in the hidden layers. 
Compared to the NN model, the PINN model can significantly 
improve traffic prediction performance in the face of a limited 
number of training data [11][12]. 

B. MTO-based NN Training  
MTO [16][17] is a newly emerging research frontier in the 

field of optimization. It allows multiple relevant optimization 
tasks to be solved simultaneously and the knowledge acquired 
from solving one task is reused to help solve some other tasks 
via knowledge transfer so that the performance of solving each 
individual task gets improved.  

In recent years, many new MTO techniques [18][19][20] 
have been proposed and successfully applied in various fields 
[21]. One of the promising MTO application scenarios is to 
train NNs. It is well-known that training an NN corresponds to 
solve a complex non-convex optimization problem, prone to 
getting stuck into inferior local optima. To address this issue, 
the MTO-based NN training first creates multiple auxiliary 
training tasks relevant to the main training task. Then, both the 
main and auxiliary tasks are solved at the same time while 
allowing the knowledge obtained from one task-solving 
process, often in the form of promising network parameters, to 
assist in some other task-solving processes via knowledge 
transfer and reuse. As a result, the main training task can be 
better solved because the knowledge from relevant auxiliary 
tasks can help the main training task to jump out of its own 
inferior local optima. There exist different ways of creating 
auxiliary training tasks and the knowledge can be transferred 
and reused in different manners [10][22][23]. 

III. THE PROPOSED METHOD 
The MTO-based training paradigm for DNNs [10][22] has 

shown performance superiority over the traditional methods of 
training DNNs, where multiple auxiliary training tasks related 
to the given (main) training task are created and then solved 
together with the main task so that the useful knowledge from 
any individual task-solving process, e.g., network parameters, 
can be transferred and used to help solve some other training 
tasks, aiming to improve the performance of solving the main 
task. We extend this idea for training PINNs and choose traffic 
state prediction as the application scenario, where different 
traffic state variables that are somewhat related and multiple 
traffic data sets in different spatial and time zones are utilized 
for designing auxiliary tasks, relevant but different from the 
main task, to enable MTO-based training. In what follows, we 
will first introduce PINN’s formulation in traffic state 
prediction and then elaborate the MTO-based PINN training 
framework. 

A. Traffic PINNs 
Suppose the task is to estimate traffic state 𝑢𝑢 (e.g., traffic 

flow 𝑞𝑞, density 𝑘𝑘, and speed 𝑣𝑣.) over time 𝑡𝑡 within a time span 
of T (seconds) in the future along a road segment of length 𝐷𝐷 

(meters). The PINN model, as illustrated in Fig. 1 will take as 
inputs time 𝑡𝑡 and distance 𝑑𝑑  (with respect to the road origin) 
and output 𝑢𝑢� . Different from the traditional NN, PINN’s loss 
function 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 has two parts, i.e., 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑁𝑁𝑁𝑁   and 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃 . 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑁𝑁𝑁𝑁 is typically formulated as the mean squared error 
(MSE) between NN’s output 𝑢𝑢�  and the corresponding ground 
truth 𝑢𝑢 as follows: 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑀𝑀𝑀𝑀𝑃𝑃 =
1
𝑛𝑛𝑢𝑢

�|𝑢𝑢�(𝑑𝑑𝑖𝑖𝑢𝑢, 𝑡𝑡𝑖𝑖𝑢𝑢) − 𝑢𝑢𝑖𝑖𝑢𝑢|2
𝑛𝑛𝑢𝑢

𝑖𝑖=1

 (1) 

where 𝑀𝑀𝑢𝑢 = {𝑑𝑑𝑖𝑖𝑢𝑢, 𝑡𝑡𝑖𝑖𝑢𝑢,𝑢𝑢𝑖𝑖𝑢𝑢|𝑖𝑖 = 1, …𝑛𝑛𝑢𝑢} represents a training set 
with 𝑛𝑛𝑢𝑢 available training samples. 

The definition of  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃   depends on the adopted PDE 
that governs traffic dynamics. Suppose the residual function 
of the PDE is denoted as 𝑓𝑓(𝑑𝑑, 𝑡𝑡,𝑢𝑢). 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃  is formulated as: 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃 =
1
𝑛𝑛𝑓𝑓
��𝑓𝑓�𝑑𝑑𝑖𝑖

𝑓𝑓 , 𝑡𝑡𝑖𝑖
𝑓𝑓 ,𝑢𝑢�𝑖𝑖

𝑓𝑓��
2

𝑛𝑛𝑓𝑓

𝑖𝑖=1

 (2) 

where 𝑀𝑀𝑓𝑓 = {𝑑𝑑𝑖𝑖
𝑓𝑓 , 𝑡𝑡𝑖𝑖

𝑓𝑓 ,𝑢𝑢�𝑖𝑖
𝑓𝑓|𝑖𝑖 = 1, … 𝑛𝑛𝑓𝑓} is a set of 𝑛𝑛𝑓𝑓  randomly 

sampled 𝑑𝑑 and 𝑡𝑡 from [0,𝐷𝐷] and [0,𝑇𝑇], respectively and the 
corresponding NN’s outputs when they are fed into the NN as 
inputs. 

 
Fig. 1. A simple illustration of the PINN model. 



Following previous studies [13][14][24], we will employ 
Greenshields’s LWR traffic flow model which can provide a 
macroscopic way for describing the evolution of traffic density 
𝑘𝑘 on a road network. It is based on an assumption that traffic 
density is a continuous function with respect to space and time, 
where traffic flow 𝑞𝑞 is defined as the product of traffic density 
𝑘𝑘 and local traffic speed 𝑣𝑣 [13][14]. Th model is underpinned 
by the following PDE: 
𝜕𝜕𝑞𝑞
𝜕𝜕𝑑𝑑

+
𝜕𝜕𝑘𝑘
𝜕𝜕𝑡𝑡

= 0 (3) 

𝑞𝑞 = 𝑘𝑘 × 𝑣𝑣 (4) 

𝑣𝑣 = 𝑣𝑣𝑓𝑓 �1 −
𝑘𝑘
𝑘𝑘𝑗𝑗
� 

(5) 

where 𝑣𝑣𝑓𝑓 and 𝑘𝑘𝑗𝑗 represent the free flow speed and the jammed 
density, respectively. From this PDE, we define the residual 
function with respect to density k or speed v as follows: 

𝑓𝑓(𝑑𝑑, 𝑡𝑡, 𝑘𝑘) = 𝑣𝑣𝑓𝑓
𝜕𝜕𝑘𝑘
𝜕𝜕𝑑𝑑

− 2
𝑣𝑣𝑓𝑓
𝑘𝑘𝑗𝑗
𝜕𝜕𝑘𝑘
𝜕𝜕𝑑𝑑

𝑘𝑘 +
𝜕𝜕𝑘𝑘
𝜕𝜕𝑡𝑡

 (6) 

𝑓𝑓(𝑑𝑑, 𝑡𝑡, 𝑣𝑣) =
𝜕𝜕𝑣𝑣
𝜕𝜕𝑑𝑑

𝑘𝑘𝑗𝑗 − 2
𝑘𝑘𝑗𝑗
𝑣𝑣𝑓𝑓
𝜕𝜕𝑣𝑣
𝜕𝜕𝑑𝑑

𝑣𝑣 −
𝑘𝑘𝑗𝑗
𝑣𝑣𝑓𝑓
𝜕𝜕𝑣𝑣
𝜕𝜕𝑡𝑡

 (7) 

Depending on the considered prediction task (density or 
speed), one of the above will be used as 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃  in the PINN. 
Therefore, the overall  loss of the PINN is defined as: 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑁𝑁𝑁𝑁 + 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃  (8) 

 By combining the PDE-based traffic flow model and the 
data-driven NN model, the PINN model may rely on merely a 
limited amount of training data to obtain accurate prediction 
of traffic states. It aligns well with real-world scenarios where 
traffic sensors are often sparsely deployed. 

B. MTO-based PINN Training 
Our proposed MTO-based PINN training framework starts 

with the design of auxiliary training tasks relevant to the main 
training task. In this work, the main task is defined as training 
a PINN for traffic density prediction based on a training set 

with known traffic density. Considering that traffic density 
and speed are inherently related, auxiliary tasks can be 
designed as training a PINN with the exact same architecture 
for traffic density prediction based on a different training set 
with known traffic density, training a PINN with the nearly 
same architecture (except for the output layer) for traffic speed 
prediction based on the same training set with known traffic 
speed, and training a PINN with the nearly same architecture 
(except for the output layer) for traffic speed prediction based 
on a different training set with known traffic speed, among 
others.  

The main and auxiliary training tasks will be individually 
solved at the same time. In the process of solving any task, 
when a certain knowledge transfer criterion is met, an MTO 
module will be triggered for incorporating the knowledge (in 
the form of network parameters) acquired from the other tasks. 
The training process for any task will be terminated when the 
pre-defined maximum number of training epochs is reached. 
In this work, we adopt an adaptive MTO triggering strategy. 
Specifically, if the best training loss value obtained so far 
cannot be improved by a decent amount (e.g., a pre-defined 
percentage of the best loss value obtained so far) over a period 
of S consecutive training epochs, so-called MTO triggering 
window size, the MTO module will be triggered. 

Suppose the MTO module is triggered for Task k (k ∈ {1, 
…, 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡}) at epoch i. The current network parameters from 
Task k will be linearly combined with those from the other 
𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 − 1 tasks in a layer-wise manner to generate the new 
network parameters for Task k. The combination coefficients   
𝜶𝜶𝑡𝑡 = {𝑎𝑎𝑖𝑖𝑗𝑗𝑡𝑡 |𝑖𝑖 = 1, … ,𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 , 𝑗𝑗 = 1, … ,𝑁𝑁𝑙𝑙𝑡𝑡𝑙𝑙𝑙𝑙𝑙𝑙 − 1, 𝑎𝑎𝑖𝑖𝑗𝑗𝑡𝑡 ∈ 𝑅𝑅} 

will be learned via solving Task k with respect to 𝜶𝜶𝑡𝑡 while the 
original network parameters from all tasks are kept frozen. As 
such, the knowledge from the other tasks can be adaptively 
transferred into Task k. Notably, the last (output) layer of the 
NN is not involved in the knowledge transfer process because 
the parameters in that layer are very task-specific and thus less 
suitable for cross-task knowledge transfer. After 𝜶𝜶𝑡𝑡 is learned 
for a pre-specified number of training epochs, the new network 
parameters created upon it will be compared with the original 

 
Fig. 2. The basic working principle of the proposed MTO-based training framework. 



(pre-MTO) network parameters in terms of the corresponding 
training loss values. The network parameters with the smaller 
loss value will enter epoch i+1, and meanwhile the period of S 
consecutive training epochs will be re-counted from scratch. 

In this work, we choose to employ only one auxiliary task 
for simplicity. Fig. 2 illustrates the basic working principle of 
the proposed framework with 𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡=2 as well as the involved 
MTO module. 

IV. EXPERIMENTS 

A. Data Description 
We employ the US Highway 101 data set from the Next 
Generation Simulation (NGSIM) program for our study. The 
area of study for data collection spans around 640 meters and 
comprises five main lanes. The data set contains traffic data 
captured during a 45-min period in the morning peak, where 
the raw data have been aggregated every five seconds. We 
utilize the traffic density, speed, and flow information in the 
study area and exclude the initial and final road sections from 
our analysis due to incomplete data. 
 

 
Fig. 3. The spatiotemporal distribution of normalized traffic density for the 
area in the US 101 data set which is considered in this work. 

Fig. 3 illustrates the distribution of normalized traffic density 
(via the min and max density values in the entire study area) 
with respect to distance d (from the road origin) and time t (in 
the 45-min period) for the area in the US 101 data set which is 
considered in this work. It illustrates multiple shockwaves, 
indicating the traffic congestion propagation on the freeway. 
We assume that in practice traffic data are only available in a 
few locations on the road due to the sparsely deployed traffic 
sensors. To evaluate the utility of the PINN in this scenario, 

we create two training sets from the whole data set. Data set A 
comprises the data from sensors located at d = 4, 8, 12, 16, 20, 
and 24 meters, respectively at time stamps in [0, 5, 10, …, 
2695], and data set B contains the data from sensors located at 
d = 8, 92, 128, 292, and 408 meters, respectively at time 
stamps in [0, 5, 10, …, 2695]. In contrast, data set B covers a 
wider study area than A. In the two training sets, both distance 
and time are employed as the inputs, and either traffic density 
or speed can be adopted as the output. The test set for 
measuring the prediction performance of the PINN contains 
the data from sensors located at d ∈  [4, 8, 12, …, 408], 
respectively at time stamps in [0, 5, 10, …, 2695]. 

B. Task Design 
The main task in this work is defined as training a PINN 

for making traffic density prediction based on a training set 
with known traffic density, i.e., Density (A) or Density (B). 

The auxiliary tasks in this work are designed to be one of 
the following three training tasks: 
• training a PINN with the same architecture as that used in 

the main task for traffic density prediction but based on a 
different training set (from the main task) with known 
traffic density, i.e., Density (B) or Density (A). 

• training a PINN with the nearly same architecture (except 
for the output layer) as that used in the main task for traffic 
speed prediction and based on the same training set (as the 
main task) with known traffic speed, i.e., Speed (A) or 
Speed (B), and 

• training a PINN with the nearly same architecture (except 
for the output layer) as that used in the main task for traffic 
speed prediction but based on a different training set (from 
the main task) with known traffic speed, i.e., Speed (B) or 
Speed (A). 

C. Experimental Settings 
The NN component of all the PINN models used in our 

experiments adopts the same architecture as that employed in 
[11][12], i.e., a fully connected feedforward NN with one 
input, eight hidden, and one output layers. For training, we set 
batch size as 1024, and employ the Lamb optimizer [25] for 
training both network parameters and layer-wise weights (in 
the MTO module). The maximum number of training epochs 
for training the PINN is set to 4,000 and the MTO-triggering 
window size S is set to 50 with the improvement percentage 
set to 0.01 (of the best training loss obtained so far). Also, the 

TABLE I. COMPARISON OF THE PROPOSED TRAINING METHOD USING EACH OF THE THREE DIFFERENCE AUXILIARY TASKS WITH THE TRADITIONAL TRAINING 
METHOD ON TWO TRAINING SETS A AND B IN TERMS OF THE MEAN AND STANDARD DEIVATION OF THE LOSS VALUES ON THE TRAINING SET AND THE MAPE 

VALUES ON THE TEST SET OVER 10 RUNS. THE STATISTICAL T-TEST AT THE SIGNIFICANCE LEVEL OF 0.05 IS PERFORMED TO COMPARE THE PROPOSED AND 
TRADITONAL METHODS WITH THE PROPOSED METHOD HIGHLIGHTED IN BOLD IF ITS PERFORMANCE IS STASITICALLY BETTER. 

         Main Task       Auxiliary Task  Training Set     Test Set 
Method Task (Data) PDE Task (Data) PDE        Loss     MAPE 
NN Density (A) -- -- -- 11.385 ± 0.612 1.279 ± 0.058 
PINN Density (A) LWR -- -- 14.734 ± 0.647 0.357 ± 0.004 
PINN+MTO Density (A) LWR Density (B) LWR 12.958 ± 0.769 0.252 ± 0.039 
PINN+MTO Density (A) LWR Speed (A) LWR 12.936 ± 0.981 0.247 ± 0.017 
PINN+MTO Density (A) LWR Speed (B) LWR 12.486 ± 0.698 0.260 ± 0.033 
NN Density (B) -- -- -- 10.479 ± 0.930 0.298 ± 0.046 
PINN Density (B) LWR -- -- 15.971 ± 0.881 0.171 ± 0.004 
PINN+MTO Density (B) LWR Density (A) LWR 15.181 ± 0.289 0.169 ± 0.002 
PINN+MTO Density (B) LWR Speed (A) LWR 14.882 ± 0.303 0.166 ± 0.001 
PINN+MTO Density (B) LWR Speed (B) LWR 15.071 ± 0.948 0.167 ± 0.003 

 



maximum number of training epochs for learning layer-wise 
weights in MTO is set to 200. Each method in comparison is 
executed for 10 independent runs. 

For performance evaluation, we employ the training loss 
of the PINN model to evaluate the training performance, and 
the mean absolute percentage error (MAPE) on the test set to 
measure PINN’s generalization performance. We perform the 
statistical t-test at the significance level of 0.05 to compare the 
10-run results of any two methods under consideration. 

D. Overall Comparision 
We compare the proposed PINN training method with the 

traditional PINN training method for learning the same PINN 
model (for traffic density prediction) by using training sets A 
and B, respectively. Therefore, the main task is either Density 
(A) or Density (B). The auxiliary task adopted in the proposed 
training method is Density (B), Speed (A) or Speed (B) with 
respect to main task Density (A), and Density (A), Speed (A) 
or Speed (B) with respect to main task Density (B). Further, 
we perform a comparison with the NN-only counterpart of the 
PINN model to reveal the utility of the PINN. 

The experimental results are reported in Table I. It can be 
observed that the proposed MTO-based PINN training method 
consistently outperforms the traditional PINN training method 
in terms of both the loss on the training set and the MAPE on 
the test set for all three auxiliary tasks on both training sets A 
and B. Among three adopted auxiliary tasks, the speed task on 
a different training set outperforms the other two in terms of 
the eventually obtained training loss on both training sets. In 
addition, although the NN model can be trained to achieve the 
much better training loss, the corresponding MAPE on the test 
set is worse, implying overfitting and thus poor generalization. 

E. Ablation Study 

a) MTO Triggering Strategy 

In this work, we adopt an adaptive strategy for triggering 
the MTO module, where the MTO is triggered whenever the 
best training loss value obtained so far cannot be improved by 
1% over S consecutive epochs. To validate its effectiveness, 
we compare it with a fixed triggering strategy which regularly 
triggers the MTO module every 50 training epochs. Table II 
reports the comparison results of these two strategies in terms 
of their eventually obtained training loss values with respect 
to three different auxiliary tasks and two different training sets. 
We perform the statistical t-test at the significance level of 
0.05 to compare these two strategies and highlight in bold the 
best one (with the minimum mean loss value over 10 runs) and 
also another if it is statistically similar to the best. It can be 
observed that the adaptive strategy consistently performs best 
across all the comparison scenarios. It is noteworthy that the 
adaptive strategy typically triggers the MTO module less often 
than the fixed strategy when using the same MTO triggering 
window size. For example, when the triggering window size 
is set to 50 and the total number of training epochs is set to 
4,000, as employed in this work, the MTO triggering times for 
adaptive and fixed strategies are 60 and 80, respectively. It 
implies that the adaptive strategy may potentially reduce the 
computational cost by reducing MTO execution times. 

Fig. 4 illustrates the convergence curves of the training loss 
with respect to the proposed training methods equipped with 

the adaptive and fixed MTO triggering strategies and the 
traditional training method without MTO, respectively. It can 
be observed that regularly triggering the MTO module may 
result in the worse performance than the traditional training 
method. By using the adaptive strategy, MTO is not triggered 
in the beginning stage of training, but gradually and adaptively 
triggered to make performance improvement once the training 
process is stuck, as evidenced by the distribution of triggering 
points displayed in Fig. 4. 

TABLE II. COMPARISION OF THE TRAINING LOSS (MEAN AND STANDARD 
DEVIATION OVER 10 RUNS) WHEN USING TWO DIFFERENT MTO TRIGGERING 

STRATEGIES IN THE PROPOSED METHODS WITH  DIFFERENT AUXILLARY 
TASKS ON TWO TRAINING SETS. THE STATISTICAL T-TEST AT THE 

SIGNIFICANCE LEVEL OF 0.05 IS PERFORMED TO COMPARE THE TWO 
STRATEGIES WITH THE STATISTICALLY BEST ONE(S) HIGHLIGHTED IN BOLD. 

Main (Data) | Auxiliary (Data)    Fixed     Adaptive 
 Density (A) | Density (B) 13.143 ± 0.775 12.958 ± 0.769 
 Density (A) | Speed (A) 13.473 ± 0.671 12.936 ± 0.981 
 Density (A) | Speed (B) 13.435 ± 0.776 12.486 ± 0.698 
 Density (B) | Density (A) 15.258 ± 0.816 15.181 ± 0.289 
 Density (B) | Speed (A) 15.643 ± 0.382 14.882 ± 0.303 
 Density (B) | Speed (B) 16.756 ± 1.060 15.071 ± 0.948 

 

 
Fig. 4. Training loss convergence curves for the proposed training method 
with the adaptive or fixed MTO triggering strategy and the traditional 
training method, where the main and auxiliary tasks are Density (B) and 
Speed (A), respectively. Training epochs at which MTO is triggered when 
using the adaptive strategy are denoted by yellow dots. 

b) Layer-wise Weight Initialization in the MTO Module 

In the MTO module, layer-wise weights 𝜶𝜶𝑡𝑡 , k = 1, …, 
𝑁𝑁𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 are learned based on the training data to enable cross-
task knowledge transfer. To investigate the sensitivity of the 
weight learning to initialization, typically suffered by the NN 
training, we evaluate several different initial layer-wise weight 
settings. Suppose 𝜶𝜶1 and 𝜶𝜶2 are the main and auxiliary tasks 
under consideration. 

Table III shows the comparison results among five initial 
weight settings, where the four pairs of numbers refer to the 
same initial weight value for all the layers in the corresponding 
task, e.g., (1.0, 0.0) denotes the initial weight value of 1.0 for 
all layers in the main task and 0.0 for all layers in the auxiliary 
task; Xavier [7] refers to the uniformly random initialization. 
It can be observed that initialization sensitivity is not severe, 
though among the five compared settings, the best performer 
is (1.0, 0.0). In fact, this setting inherently allows for the fine-
tuning of network parameters for the main task by making use 
of the network parameters from auxiliary tasks, and thus avoid 
the dramatic parameter update which may lead to performance 
degradation. 

 



F. Parameter Sensitivity Analysis 
 As discussed previously, the adaptive MTO triggering 
strategy plays an essential role in the proposed PINN training 
framework, where the MTO triggering window size S is a key 
parameter involved. In this section, we conduct a parameter 
sensitivity analysis on S with respect to the performance of the 
proposed training method. Specifically, we evaluate the total 
number of times that the MTO module gets triggered during 
the entire training period and the eventually obtained training 
loss values over 10 runs as the MTO triggering window size 
varies from 10 to 120 at the step size of 10 for the proposed 
method equipped with each of the three different auxiliary 
tasks on training set A. The results are illustrated in Fig. 5, 
which indicate that when the window size increases, the total 
number of MTO triggering times decreases and the training 

performance (in terms of the loss) fluctuates and accordingly 
the best window sizes, based on the training performance, for 
different auxiliary tasks are not same. In this work, we choose 
to use the window size of 50 in all experiments considering the 
overall performance across different auxiliary tasks.  

V. CONCLUSIONS AND FUTURE WORK 
 We proposed a novel PINN training framework based on 
MTO. In this framework, one or more auxiliary training tasks 
are created and solved together with the main training task so 
that solving auxiliary tasks may help better solve the main task 
via knowledge transfer, where an MTO module is designed to 
enable knowledge transfer. We applied the proposed method 
to train the PINN for traffic density prediction, where different 
auxiliary tasks were designed and evaluated. Compared to the 
traditional PINN training method, our proposed MTO-based 
method demonstrated the performance advantages in terms of 
both training and testing. Our future work includes evaluation 
of the proposed method by using more than one auxiliary tasks 
and extending its application to the other traffic problems and 
non-traffic scenarios. We will also study how to better balance 
the two loss parts in an adaptive manner based on the strategies 
proposed in our previous works [26][27] to facilitate training. 
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