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Abstract— Evaluating disruptions in public transport (PT)
utilisation is challenging due to often stochastic traveller be-
haviour and missing data information on affected services. This
paper proposes a new approach for modelling PT patronage and
disruption impact using integrated data-driven modelling and
the Fourier transform technique.

Firstly, using tap-on and off information of smart-card data,
we estimate in-vehicle passenger numbers to integrate as well as
trips passing through the incident area. Secondly, considering
the PT patronage pattern as a periodic function, we employ the
Fourier transform to convert it into a sum of simpler trigono-
metric functions to filter out the one representing common
data noise successfully and generate an accurate profile for
a typical day. Thirdly, we introduce an enhanced sensitivity
test to improve the model’s ability to identify the impact of the
disruption. Finally, multiple impact measurement methods are
compared to capture the disruption impact.

The findings demonstrate the effectiveness of leveraging in-
vehicle count to maximise data volume and enhance impact
identification. The PT patronage pattern can be effectively
modelled using the Fourier transform. The utilisation of the
enhanced sensitivity test can effectively filter out unnecessary
trigonometric components, resulting in a refined model capable
of accurately identifying the impact of disruption.

Index Terms— Public transport; disruption analysis; smart-
card; patronage pattern modelling; Fourier transform.

I. INTRODUCTION

A. Background and motivation
In a multi-modal transport network, a road traffic dis-

ruption always extends beyond its own network. These
disruptions can affect related bus lines, train services, and,
subsequently, the overall transport network. The bus network
shares mobility rights with other road transport modes, and
is very sensitive to road traffic disruptions. If an incident
occurs on public transport (PT), passengers who are affected
by the disruption may seek alternative modes of transporta-
tion to continue their journeys. This increased demand for
alternative transport services can create unexpected changes
in the transportation system. When disruptions occur on
major transportation modes like trains, the consequences
can be significant. For example, in the case of a train
strike in London [1], the disruption in the train network can
lead to city-wide congestion and have a widespread impact
on commuters. With limited or no train services available,
hundreds and thousands of passengers are affected, and the
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demand for alternative travel modes, such as shared bicycles,
buses or subway services, increases dramatically [2], [3].

These unexpected changes in demand can strain the trans-
port network, especially if it exceeds the network’s capacity
to handle such disruptions. However, it is also essential to
consider scenarios where the impact is relatively small, such
as a localized disruption caused by a road accident or a
vehicle breakdown. These situations are more common in
daily life and may not have a city-wide influence, but they
could be one of the influence factors for unstable traffic [4].
This paper aims to tackle this issue by examining the daily
PT patronage profile and investigating the impact of road
incidents on this patronage pattern. By understanding the
daily movement of PT users in the network, we gain insights
for making informed decisions to enhance the PT service and
ease the cooperation between private vehicles and PT.

Analyzing the patronage pattern can guide improvements
in the supply of PT services, ensuring they align with
the needs and preferences of passengers. However, when
compared to the travel pattern analysis for private vehicles,
analysis regarding PT travel patterns has received relatively
less attention in the literature due to limited data availability
and modelling methods. To model the PT travel behaviour,
data collection can be carried out through various means,
such as census or surveys [5], smart-card data [6], or utilizing
the General Transit Feed Specification (GTFS) data [4].
Data-driven methods often rely on machine learning and
deep learning algorithms [7], [8], [9], [10], [11]. These
techniques utilize the available data to extract meaningful in-
sights and make accurate impact predictions [12], [13], [14],
and some of them will focus on also predicting how long
disruptions will last in the network [15], [16]. On the other
hand, simulation-based methods are commonly used in the
literature to estimate PT patronage patterns. These methods
involve creating simulations following assignment models
that replicate real-world scenarios, allowing researchers to
observe and analyze the change in behaviour and dynamics
of PT systems [4], [1], [14], [17], [18], [19] so that the
essential regarding the impact on the network can be captured
and modelled. Some propose as well optimisation techniques
under disruptions to ease impact [20].

In this research paper, we analyze the PT patronage
patterns using real smart-card data and compare the normal
versus incident circumstances in order to estimate the impact
on PT users. As an observation, the PT patronage appears to
have a daily repetitive occurrence, and we draw inspiration
from signal analysis principles. Therefore, we employ a
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Fourier transform function to fit the data and filter out
the noise, enabling us to model the underlying pattern of
PT patronage effectively. In the past, one study utilized
the method to model road traffic patterns by analyzing
traffic volumes derived from mobile data [21]. Another study
employed the graph Fourier transform (GFT) for a similar
purpose [22]. However, these studies primarily focused on
modelling private vehicle traffic and not public transport pa-
tronage. By establishing a robust model capable of accurately
representing traffic patterns, we take an additional step in our
research by not only modelling the PT patronage pattern but
also applying the model to identify the effects of incidents
on patronage.
B. Paper Contributions

To summarise, the main theoretical and methodological
contributions of this paper are the following:

• We introduce a novel method for dynamically modelling
PT patronage patterns by incorporating the Fourier
transformation to effectively reduce the influence of
noise and enhance the accuracy and reliability of the
model;

• We employ the frequency domain following the Fourier
transform to segregate the components of PT patronage
patterns, enabling us to identify and to isolate the
significant elements within these patterns;

• We apply a synergistic approach that combines analyti-
cal techniques with data-driven methods to identify the
impact of incidents on PT passengers;

• We perform the ability of multiple measuring met-
rics, such as: correlation measures (Pearson’s corre-
lation coefficient), distance measures (Chebyshev dis-
tance, Wasserstein metric, Minkowski difference and
Cosine similarity) and statistical tests (change, Percent-
age change and Symmetric percentage change);

• We propose a new application by integrating big data
resources, among which GTFS data, smart-card and
incident log data when excavating the information for
analysing the network vulnerability.

This paper is organised as follows. In Section II, the
dynamic PT patronage pattern model considering the Fourier
transform is discussed, and the details of incident impact
identification metrics are also included. The application of
the proposed methods to a real network is presented in
Section III, and the results of the case study are demon-
strated in Section IV, where detailed modelling processes
are demonstrated. Finally, the research conclusion and the
future directions are provided in Section V.

II. METHODOLOGY
A. Entity of PT patronage

1) Number of boarding and alighting: Given smart-card
data, we can produce the number of boarding and alighting
for each PT stop at each time spot or for each time interval,
in order to represent the PT patronage. Each record r in
the smart-card data, based on the availability for use in this
research, can be expressed as:

r(i,ui, j,u j,b,d), (1)

where each parameter in a record r represents the tap-on stop
i, tap-on time ui, tap-off stop j, tap-off time u j, the bus num-
ber b and the date of the recording d. To obtain the number of
boarding and alighting for a certain stop i, i ∈ {1 . . . I} during
a period of time (τ), we only need to count the number
of records, denoted as Nboarding

i (τa),a ∈ {1 . . .A}, where a
represents the ath time interval of a day, A is the total number
of time interval defined for a day; similarly, the number
of alighting at a specific stop during a time interval can
be expressed as Nalighting

j (τa)), j ∈ {1 . . . I}. The number of
boarding and alighting people under an impact of disruption
can be expressed as Nboarding′

i (τa) and Nalighting′
j (τa)). The

total number of boarding persons, counted during the time
interval τ can be denoted, according to Iverson bracket
notation, as:

Nboarding
i (τa) =

N

∑
n=1

[ui(n) ∈ τa], (2)

where ui(n) represent the nth tap-on time recorded in the data
set; if this time belongs to τa is true, then [ui(n) ∈ τa] is 1;
otherwise, this record is not counted.

Based on the given definition, we observe that the patron-
age data relying on boarding and alighting focuses on the
bus stops where passengers get on and off while ignoring the
passed stops along a trip. However, when it comes to trips
passing through an area affected by an incident with persons
already boarded at other stations, this counting method fails
to account for the actual number of passengers impacted.
Therefore, to accurately determine the number of disrupted
passengers specifically caused by the incident, an in-vehicle
passenger count is also necessary. This method allows us to
count the number of passengers affected within the impacted
area and provides a more precise measure of the disruption’s
impact.

2) Number of in-vehicle passengers: Since we hold the
information around the time and location when passengers
got on/off the bus, we can define the number of in-vehicle
passengers for each time interval at each PT stop. For each
smart-card data record r, we are able to calculate the number
of time intervals (τ) through which this trip passes from the
start until the end:

K =
u j −ui

τ
,k ∈ 0 . . .K, (3)

For each τ passed by a trip, a passenger is counted at each
kth interval τk. K is estimated by rounding the number of τ

in order to improve processing accuracy. In our study, we
consider 15 minutes as the time interval, so if a record of
patronage starts at 8 am and ends at 9 am, instead of counting
this record by boarding time (interval 8:00-8:15) once, we
count it four times, for 8 am, 8:15, 8:30 and 8:45 slot to
represent that this passenger is inside the vehicle from 8 am
to 9 am.

According to the above definition, each record in the
smart-card data set has added another element regards to
the in-vehicle time, represented by υi,k, where k denotes the
kth time interval τ that this trip is passing through:

υi,k = ui + kτ. (4)
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Therefore, each record in the data set is updated by adding
an in-vehicle time υi,k which equals the ui, and K − 1 new
records are filled in the data set which corresponding to their
boarding location i, boarding time ui, in-vehicle time υi,k, PT
number b and date d, denoted as:

r(i,ui,υi,k,b,d). (5)
Following the definitions, the number of in-vehicle pas-

sengers becomes:

Nin−veh
i (τa) =

N

∑
n=1

[υi,k(n) ∈ τa]. (6)

B. Modelling PT patronage via the Fourier Transform

By taking into account the total number of passengers
onboard, it now becomes possible to identify the number
of affected passengers by comparing the change between a
travel pattern on the day of the incident and on a typical
day. To estimate the travel pattern, we require to use the
incident log data, including information regarding incident
time, duration, and location. In order to obtain the travel
pattern for a typical day, one can apply either the traditional
approach of averaging the patronage counts during non-
incident days, or the Fourier transform and filter out noises
from daily travel patterns.

In this work, we propose to use the Fourier Transform to
analyse time-dependent signals in the frequency domain; it
is a tool for decomposing a complex and repetitive behaviour
pattern by summing up the sines and cosines functions. This
concept can be adapted for the PT patronage estimation be-
cause such a patronage pattern is time-varying and repetitive
over a certain time, exhibited by distinct peaks during the
morning and afternoon periods. The seasonality enables the
patronage patterns to be predictable by using the discrete
Fourier transform function. According to [23], the frequency-
domain function following the discrete Fourier transform can
be expressed as:

f (τ) =
α0

2
+

H

∑
h=1

(Ah sin(hωτ +ϕh)+Bh cos(hωτ +ϕh)).

(7)
where Ah is given to describe the amplitude of the sine
function while Bh is the amplitude of the cosine function.
These two parameters indicate how much sine and cosine
functions should be included to estimate the function of
the travel pattern. ωτ indicates the frequency component
of the trigonometrical function and ϕh is the phase of the
trigonometrical function.

By decomposing the patronage pattern function into mul-
tiple sine and cosine waves, it becomes possible to convert
the data from the time domain to the frequency domain
and following this, capture the regularity exhibited on the
frequency scale. In the frequency domain, we have the
magnitude spectrum by frequency (or the power spectrum
in signal analysis). Those frequencies with significant mag-
nitudes are considered major frequencies, which indicate the
dominant power contained within the signal, while frequen-
cies with low magnitudes are treated as noise. Utilizing this
information, we can filter the useful data from noise data
based on magnitude. This is how we de-noise or approximate

any arbitrary function by summing up a determined set of
trigonometric functions.
C. Measurements of impact

There are several methods for measuring the impact of
the incident according to the change of patronage with and
without the incident. The options for measurement include
correlation measuring, such as Pearson’s correlation coeffi-
cient; the metrics related to distance, such as the Chebyshev
distance, the Wasserstein metric, the Minkowski difference
and Cosine similarity, as well as the statistical tests, such
as the change, the Percentage change and the Symmetric
percentage change.

1) Change: A common method to identify the impact
of disruptive events on road networks is to simply calculate
the change of patronage with and without disruptions. As
described in Eq. (6) and Eq. (7), in this paper, the number
of counts is calculated based on the average typical day of
the week. Therefore, the change due to a disruption event
for each time interval t can be expressed as:

Ichange(N,N′) = N −N′, (8)
where N represents a set of patronage counts for a typical
day and N′ for the incident day.

2) Percentage change and symmetric percentage
change: To avoid the problems triggered by the value for
the disrupted situation being zero, we adopt the symmetric
percentage change, as well, which is given as Eq. (10).

IPchange(N,N′) =
N −N

′

N +λ
×100%, (9)

where λ is a smoothing factor used to avoid computing
problems when dividing by zero.

IPchange(N,N′) =
N −N

′

N+N′

2

×100%, (10)

By using the symmetric percentage change, the result that
approaches either 2 or -2 means that there is no similarity
between the two data sets, while if the result ranges to zero,
it indicates that these two data sets have high similarity.

3) Cosine similarity: The Cosine similarity is reflected by
the Cosine distance, which is the dot product of the number
of in-vehicle passengers affected by an incident N

′
and the

number of counts for a typical day, as:

ICosine(N,N′) =
N ·N′

∥N∥∥N′∥
=

∑
m
m=1 NmN′

M√
∑

M
m=1 Nm

2
√

∑
M
m=1 N′

m
2
,

(11)
4) Chebyshev distance: Chebyshev distance is defined

as the maximum distance along any coordinate dimension
which measures the greatest discrepancy in values between
the corresponding coordinates of the vectors being compared:

IChebyshev(N,N′) = max
m

(|Nm −N
′
m|), (12)

5) Wasserstein distance: The metric serves as a distance
function defined between probability distributions on a given
metric space. N and N′ are two measures on a metric space
R×R; the Wasserstein distance between these two measures
is defined as the integration of the distance between any two
matched points times the amount of the mass of moving from
one point to another. Thus Wasserstein distance is given by:
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IWasserstein(N,N′) = in fπ∈Γ(N,N′)

∫
R×R

|N −N′|dπ(N,N′),

(13)
where π is the joint probability measure on R×R with
marginals N and N′.

6) Minkowski difference:
IMinkowski(N,N′) = ∥N −N′∥p== (∑ |N −N′|p)1/p, (14)

where p is the order of the norm of the difference between
N and N′. When p = 1, the Minkowski distance is the same
as the Manhattan distance, while p = 2, such distance is the
same as the Euclidean distance. The value of p is 3 in this
paper based on the experiment’s comparison result.

7) Pearsons correlation coefficient (PCC): PCC is a way
of quantitatively measuring the linear correlation; it assesses
the extent to which changes in one variable are associated
with corresponding changes in another variable, both in terms
of direction and magnitude.

IPCC(N,N′) =
∑(nm −n)((n′m −n′)√

∑((nm −n)2 ∑(n′m −n′)2
. (15)

III. CASE STUDY
A. Network characteristics

Fig. 1. Map of the Sydney M2 area showing road and PT networks.
The study focuses on the zones in the North-West region

of Sydney, encompassing the M2 motorway and comprising
significant residential and commercial sectors. The geograph-
ical extent of this area, depicted in Fig. 1, aligns with the
boundaries defined by the Statistical Area Level 2 (SA2) [24]
in digital mapping, where there are 79 bus lines consisting
of 3,799 bus stops.

B. Sample of a hypothesised incident
To evaluate the feasibility of metrics on identifying the

impact of patronage patterns due to the traffic disruption,
we consider comparing the modelled typical profile with
a hypothesised incident one and reflecting the impact by
metrics as mentioned in Section II-C.

The hypothesised incident scenario is created following
the details of a real incident (as introduced in Section III-C
below). However, rather than directly comparing the day of
the incident with a modelled typical day, we measured the
difference in passenger count during the incident duration.
We then incorporated this change into the patronage of the
modelled typical day, effectively creating a hypothesis day
of the incident. The details of the disruption are designed
to mirror the scenario presented in Section III-C, with a
start time of 2017-04-05 at 10:03:59 and a duration of 50
minutes. To simplify the modelling process, we approximate

the time unit to 15 minutes. This makes the hypothesised
incident start from 10:00:00 (time interval 40) until 10:45
(time interval 43). During the disruption, the impact man-
ifests as an increase in patronage, with 2,397 additional
passengers distributed across three 15-minute intervals (927,
790 and 680 passengers, respectively). To assess the impact,
we manually adjust the count within the modelled typical
day scenario for each time index interval. This allows us
to observe the resulting changes reflected in the impact
measuring metrics.

C. Sample of a real incident
In order to measure the impact of an incident, the sample

incidents selected from the incident log data set should
follow the considerations:

• such incident duration is long enough to be able to
display the impacts through the PT patronage;

• such incident is away from the PT-only lane; because
the impact on patronage for an isolated PT could be
minor [4];

• such incidents should be located in prominent residen-
tial and commercial sectors considering the uneven dis-
tribution of patronage data. A sufficiently large dataset
of patronage is necessary to ensure a discernible impact;

• such an incident possesses a substantial potential to
impact PT patronage significantly.

Consequently, one sample for this case study is given as
follows:

• Start time: 2017-04-05 10:03:59
• Duration: 50 min
• Type: Bus Breakdown

In this research, we have selected and tested multiple sample
incidents to ensure that our findings are applicable to a wide
range of scenarios. However, for the purpose of showcasing
the results and the limited space, we specifically selected this
particular incident in this paper. More data analysis results
can be found in supplementary material [25]. All results
displayed in the following sections correspond to this sample
incident.

IV. RESULTS AND DISCUSSION
A. Profiling a typical day patronage pattern using the real
data

To capture the count pattern for a typical day, we explore
two methods. The first method involves calculating the
average of multiple non-incident days, where the day of
the week matches that of the incident. This approach takes
into account the observation that different days of the week
exhibit distinct patronage patterns, as shown in Fig. 3. In the
case of an incident occurring on Thursday, 5 April 2017, we
gather the remaining non-incident Thursdays in April 2017
and compute the average count for each day. As mentioned
in Section II-A, to optimize data input and streamline data
processing, we have chosen to calculate the total number of
in-vehicle passengers at each PT stop instead of separately
considering boarding and alighting counts.

This approach effectively doubles the data size by incor-
porating the combined number of tap-on and tap-off events,
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as depicted in the three plots in Fig. 2. This consolidation
simplifies the analysis while maximizing the available data
as follows: a) Fig. 2 demonstrates the number of in-vehicle
passengers with and without an incident, where the red
dash line in the figure highlights the duration of the sample
incident. Comparing this figure with b) and c) in Fig. 2,
which is generated by using the number of boarding and
alighting, we observe that the total number of in-vehicle
count on a typical day is 17,779 and that on the incident day
is 18,014, whereas the sum of count for tap-on on a typical
day is 9,310, and on the incident day is 9,565; additionally,
the tap-off on a typical day is 11,224, and the number of tap-
off on the incident day is 11,342. This comparison highlights
that if we would utilize only the original tap-on data then we
would have approximately 47% of trips being ignored when
compared to using the in-vehicle passenger count. Similarly,
when using the original tap-off data, approximately 37% of
trips are overlooked.

Fig. 2. Patronage on a typical (non-incident) versus incident day by a)
in-vehicle passengers, b) tap-on passengers, c) tap-off passengers.

B. Modelling a typical day patronage pattern using the
Fourier transform

All sub-figures in Fig. 2 present challenges in distinguish-
ing between a typical profile and an incident profile. Despite
observing numerous fluctuations and variations between the
two profiles in both figures, it remains challenging to discern
which changes are specifically attributed to the incident
under investigation. This difficulty comes from the complex
nature of the system, making it hard to ascertain the impact
of the incident on the PT patronage pattern. The complexity
of the system necessitates the purification of patterns by
removing unnecessary noise. This requirement motivates the
application of the Fourier transform, as it allows for the
decomposition of complex patterns into individual simple
and determined components. By examining the performance
of each component separately, we can approximate the
incident’s impact as noise within the seasonal travel pattern.

Fig. 3. Weekly time domain depicted using real smart-card data.

For the specific incident under consideration, we collect
a week of data encompassing the incident day and apply
the Fourier transform to convert the time domain into the
frequency domain. After removing the noise components in

the frequency domain, we reverse the denoised frequency
domain back to the time domain to form the profile for
a typical day. From this denoised time domain, we select
the travel pattern for Thursday as our representative pattern.
According to the weekly travel pattern depicted in Fig. 3, we
only select the data for Monday to Friday. These weekdays
show a similar pattern, which makes them suitable for our
analytical purposes. To better visualise the tendency in the
plot, we convert the date and time information into date-
time-index (α) by 15 minutes.

Frequency domain: After applying the analytical process
outlined in Section II-B, we convert the seasonal time domain
into the frequency domain. The frequency domain represen-
tation is depicted in Fig. 4, with the left plot showcasing the
overall magnitude spectrum and the right plot specifically
highlighting the dominant components. In this representation,
a frequency of 1/15 minutes is utilized, implying that each
frequency value corresponds to the number of occurrences of
a repeating event within a 15-minute interval. The properties
for the top three components (highlighted by the red dots
in the right sub-plot of Fig. 4) are displayed in Table I and
processed by adding period information to make the data
more understandable.

Fig. 4. Frequency domain representation.
Period and seasonality: To enhance comprehension, we

convert the frequencies to periods (see Table I) by taking
the reciprocal of the frequency, represented in hours and
days. Each period value means the duration of time of
one cycle in a repeating event. This conversion facilitates
a clearer understanding of the data. The highest magnitude

TABLE I
SAMPLES OF THE FOURIER TRANSFORM OUTCOMES.

No. FFT result Mag Freq ( 1
15 min) Pd (h) Pd (d)

1 53423-104789j 245 0.031 8 0.33
2 -70066+86141j 231 0.021 12 0.50
3 -98011+41997j 222 0.010 24 1.00

Notes: FFT result is the Fourier transform outcome, in complex value;
Mag is magnitude; Freq is frequency per 15 minutes; Pd(h) is period by
hour; Pd(d) is period by day.

(given as the first row of data shown in Table I matching
the highest bar in the right figure of Fig. 4), representing
the most notable seasonal patterns, exhibits a period of 8
hours (in Table I), indicating that this event repeats every 8
hours, aligning with the off-peak hours. The second highest
magnitude corresponds to a period of 12 hours, reflecting
the morning and afternoon peaks that repeat every half
day. The event with the third highest magnitude repeats
daily (repeated every 24 hours), suggesting it captures the
overarching function that describes the seasonality of the
patronage pattern throughout the day.

Decomposition of travel pattern: The Fourier transform,
as defined in Section II-B, involves transforming a function
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into a series of increasing high-frequency periodic functions.
In the context of PT travel patterns, we can decompose
the pattern into repetitive sub-functions. By examining the
periods obtained through the Fourier transform, as shown in
Table I, we can match the period information to the actual
seasonality. At this stage, we can effectively filter out the
noise and capture the dominant characteristics of the travel
pattern. In other words, the Fourier transform allows us to
isolate and analyze the significant ingredients of the PT
travel pattern while disregarding irrelevant fluctuations or
noise. Fig. 5 demonstrates the major frequency components
in the PT patronage pattern plotted by sines and cosines.
We can observe that the periodic peaks of each sub-function

Fig. 5. Top three frequency components in weekly PT patronage pattern.

align with the count pattern depicted by the actual count
data (represented by the blue wave in Fig. 5). The orange
wave, with a period of 8 hours, corresponds to three off-
peak periods in the time domain representation (blue wave).
The green wave, with a period of 12 hours, matches two
peak hour periods. Lastly, the red wave, with a period
of 24 hours, captures the day and night periodicity. This
alignment demonstrates how the sub-functions derived from
the Fourier transform effectively capture the characteristic
patterns present in the actual count data.

Fig. 6. Time domain by reverse Fourier transform considers top three
components.

Given that the components derived from the Fourier expan-
sion exhibit harmonic frequencies, phases, and amplitudes,
we can cumulatively combine them to construct the desired
approximate function, as shown in Fig. 6. In the time-
domain representation, the yellow line represents the pattern
considering only the top component (No.1 in Table I);
incorporating the top two components results in the result
plotted in green, while considering all three top components
yields the red line in the time-domain representation.

Fig. 7. Sensitivity test
for modelling using various
frequency components, re-
flected by MAE.

As we incorporate additional
components and transform the fre-
quency domain back to the time
domain using the inverse Fourier
transform, the modelled pattern in-
creasingly aligns with the original
pattern. This is proved by results
in Fig. 7.

Filtered time domain rep-
resentations: Upon transform-
ing the time-domain representation
into a frequency-domain one, we

have broken down the travel pattern into several periodical

functions. Our next step is to determine which periodic func-
tions should be incorporated to construct a modelled travel
pattern that is not only clean in structure but also accurately
reflects the tendency of patronage pattern. Therefore, we
conduct a sensitivity test to evaluate the impact of different
periodic functions on the model performance. The outcome
of the sensitivity test is presented in Fig. 7, which extends
the findings presented in Fig. 6. This figure illustrates the
modelling performance ranging from incorporating the top
component to including all 70 components.

In Fig. 7, we can observe that adding more component
functions during the modelling process leads to a reduction
in mean absolute error (MAE), which indicates an improved
model performance. Notably, the curve shows a deeper slope
within the range of 0 to 10 compared to that between
20 and 30 and further. This implies that the advantages
gained by including less than 10 components are insufficient
while including more than 30 components appears to be
unnecessary. So the ideal range should be between 10 to
20.

Fig. 8. Time domain by reverse Fourier transform considers top 15
components.

Consequently, at this stage, we consider the repetitive
components and their meaning in the real world to determine
whether the frequency/period should be included, as the
explanation for Table I. And we decided to model the PT
patronage pattern by using the top 15 components while ex-
cluding the remaining components. To showcase the efficacy
of our modelling approach, we employ the inverse Fourier
transform to generate a time-domain representation of the
model, as depicted in Fig. 8.

Nevertheless, given that the primary objective of this paper
is to assess the impacts of disruptions on the PT patronage
pattern, we must consider if the modelled typical profile can
reflect the impacts effectively. To this end, we enhance the
sensitivity test by including a similarity test between the
modelled typical and incident profiles; the detailed expla-
nation can be found in Section IV-C.2.

Fig. 9. Performance of metrics considers a hypothesised incident profile.

C. Incident impact measurement
1) Measure the impact of the hypothesised incident:

Through the application of a hypothesized incident, we are
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able to control the level of noise (variables), enabling us to
assess the performance of the metric directly.

The presented Fig. 9 illustrates the outcomes of all metrics
(as shown in Section II-C) employed to evaluate the resem-
blance between the profile of the modelled typical day (using
15th significant periodic components) and the incident day.
In this figure, we can observe that all metrics perform well
when identifying the change in patronage.

2) Measure impact using real incidents: However, when
measuring the change using data with noises (measur-
ing the impact using real incident and modelled typical
profile), the count change Fig. 10-a) and symmetric per-
centage change Fig. 10-b) follow the flow of the peak
and off-peak hours; the percentage change, Cosine similar-
ity Fig. 10-c) and Pearson’s correlation Fig. 10-b) prove
to be less effective as they closely align with the large
percentage change. In contrast, distance measurements in
Fig. 10-d) exhibit better performance. Out of the Chebyshev

Fig. 10. Performance of metrics considers the real incident profile.
distance, Wasserstein distance, and Minkowski difference
metrics, the Chebyshev distance yields a more straightfor-
ward shape that effectively illustrates the observed trend.
Consequently, we solely present the results utilizing the
Chebyshev distance in the subsequent visual representations.

Fig. 11. Enhanced sensitivity test for mod-
elling using various frequency components,
reflected by Chebyshev distance.

As mentioned in
the last paragraph
of Section IV-B, it
is crucial to assess
the ability of the
modelled profile to
capture the impact
accurately. This ap-

proach enables us to determine the optimal combination of
components that can effectively represent the PT patronage
pattern for a typical day so that we are able to encapsulate
the influence of a real-life incident effectively.

The result is displayed in Fig. 11 following metrics of
Chebyshev distance. It is apparent that incorporating the top
three components yields the most satisfactory outcome. How-
ever, upon visualising the measurement results over time,
as depicted in Fig. 12-a), we notice substantial disparities
during peak hours in the morning and afternoon. Thus, solely
accounting for the similarity between an ordinary day and an
incident day might not be adequate to best encapsulate the
disruption’s effect on the PT patronage pattern; this implies
that the model generated using the top three components
may not necessarily be the most optimal choice for impact
identification purposes.

Fig. 12 displays a series of snapshots that show the perfor-
mance of identifying the disruption impacts. Each snapshot
indicates the performance of adding a different number of
frequency domain components when modelling; the model
performance is reflected by the Chebyshev distance (green
line). For example, Fig. 12-a) shows the result when adding
the top three components, where the similarity of a typical
(blue line) and incident (orange line) day is evaluated by
the Chebyshev distance. The red dash lines highlighted the
incident duration. However, it is difficult to discern any
noticeable differences during the incident in this sub-figure.
Instead, the peak measurements are predominantly evident
during the morning and afternoon peak hours.

When we include a greater number of components in
the modelling of the typical day, for instance, as shown in
Fig. 12-c), where the top 11 components are considered,
we can observe a distinct sub-peak during the incident
duration (as indicated by the two red dashed lines). However,
it’s important to note that the peak measurements persist
during the morning and afternoon peak hours, which can be
attributed to the significant flow and substantial fluctuations
that typically occur during these times.

The observed performance trend in Fig. 12 aligns with
the findings presented in Fig. 11. When incorporating the
top three components, the model primarily captures the
characteristics of the morning and afternoon peaks. However,
by including the top 11 components, the model is able to
capture not only the impact during peak hours but also the
concurrent noise resulting from the incident. Furthermore,
as more components are added, the model’s performance
remains relatively stable.

V. CONCLUSION
The proposed method in this paper aims to dynamically

model the PT patronage patterns and identify the impacts of
road incidents on PT users. The proposed method applies
the Fourier transform to decompose complex patterns into
distinct waves; this allows the dominant components of
the patronage pattern to be capturable and used as the
reference (typical) profile for traffic analysis. One specific
application showcased in this paper is impact identification.
The presence of peak hours makes it challenging to capture
the current incident impacts accurately. However, through an
enhanced sensitivity test that considers the performance of
impact identification, we can improve the modelling ability
of the typical day. This improvement enables us to capture
the current impact effectively. Multiple sample incidents
are tested using this method, and the results obtained are
robust. However, due to word limitations, only the results of
one sample incident are presented in this paper. More data
analysis results can be found in supplementary material [25].

The proposed modelling method allows us to identify
the optimal typical profile. As for future directions, further
exploration can focus on decomposing the patterns and
effectively identifying the noise generated by disruptions,
such as recurring congestion or incidents. This would allow
for quantifying the impacts of these disruptions by using
wave functions, for example. Additionally, the model has
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Fig. 12. Performance of real incident impact detection by including the nth frequency domain components: a) 3th, b) 6th, c) 11th, d) 15th, e) 18th, f) 30th.
the potential to be expanded to incorporate spatial analysis.
By introducing an additional spatial dimension, it becomes
possible to capture the evolution of impacts based on lo-
cation. This extension would provide valuable insights into
the spatial dynamics of disruptions and their effects on PT
patronage patterns.
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[10] T. Wen, A.-S. Mihăiţă, H. Nguyen, C. Cai, and F. Chen,
“Integrated incident decision-support using traffic simulation and
data-driven models,” Transportation Research Record, vol. 2672,
no. 42, pp. 247–256, 2018. [Online]. Available: https://doi.org/10.
1177/0361198118782270

[11] A. Grigorev, A. Mihaita, S. K, and M. Picardi, “Traffic incident
duration prediction via a deep learning framework for text descrip-
tion encoding,” in Proc. of the IEEE Intelligent Transport Systems
Conference 2022, Macao, China, 2022.
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