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Abstract— We propose an enhancement to our previously
proposed novel model called Contextual Vision Transformer
(ViT) to address the problem of traffic accident risk forecasting.
This framework combines spatial and temporal information
using a data-driven approach. By treating the problem as a
computer vision task, we can predict traffic accident risk as
the next frame in a video sequence. Specificaly, we extend the
ViT network with a Static Map generation (named XViT) for
even better results on the Chicago dataset. Furthermore, we
propose a Coarse-Fine-Coarse transformer architecture as an
alternative approach to enhance traffic accident risk prediction.

Keywords: traffic accident risk; risk prediction; vision trans-
formers; deep learning

I. INTRODUCTION

Traffic accidents pose a significant impact on global health
and economics, with an upward trend in incidents particu-
larly notable in developing countries 16. The issue persists
with over 5 million accidents annually in the United States
alone 10, and 1.35 million fatalities worldwide in 2016 17.

Traditionally, traffic accident risk forecasting is viewed as
a time-series prediction task, requiring separate models to
handle spatial and temporal aspects. Despite initial Deep
Learning attempts to predict traffic accident risks, some
studies didn’t consider traffic flow or time-related factors
2. Subsequent research 11, 21, 22, 20, 15, 14 offered en-
hancements by incorporating additional contextual data like
air quality, weather, and the condition of roads.

This research on traffic accident risk prediction can offer
several benefits to different stakeholders involved in urban
planning and traffic management:

Traffic Management Authorities: The predictive insights
offered by this research can aid traffic management author-
ities in deploying resources effectively. If certain areas are
predicted to have a high risk of accidents at particular times,
they can arrange for additional traffic police deployment or
emergency medical services in those areas in advance. This
can lead to faster response times and potentially save lives
in the event of accidents.

Emergency Services: Predicting high-risk scenarios and
their potential locations can significantly enhance emergency
services’ readiness. Knowing when and where accidents are
likely to happen means ambulances, fire services, and police
can be strategically located to respond rapidly when needed.

This paper introduces a series of enhancements to our
previously proposed novel approach that relies on Vision
Transformers 4, 18 to forecast traffic accident risk. Our
approach leverages the spatio-temporal nature of the problem
and the influence of contextual information in a unified end-
to-end model. Specifically, we introduce the Coarse-Fine-
Coarse Transformer architecture and static map incorporation
into ViT architecture.

The code for the paper can be found by the following link:
https://github.com/Future-Mobility-Lab/
ViT-traffic-accident-risk

A. Related works

In this study, we compare a set of diverse models to predict
traffic accident risk. These models have shown effectiveness
in capturing spatial-temporal patterns on the task of traffic
accident risk prediction:

RNN-GRU 3: This model utilizes a variant of deep recur-
rent neural networks (RNN) known as the gated recurrent
unit (GRU). It approaches the traffic accident risk forecasting
problem by treating it as a time-series prediction task. The
model includes a hidden state that allows it to keep track
of long-term dependencies, making it particularly suited
for time-series prediction tasks such as traffic accident risk
forecasting.

SDCAE 1: The model is based on the stacked denoised
convolutional auto-encoder architecture. This model is able
to extract local spatial features from a city grid and, with
the autoencoder structure, it can learn a compressed repre-
sentation that captures the essential spatial patterns related
to traffic accident risks.

H-ConvLSTM 20: The model that combines deep con-
volution layers with RNN-based LSTM layers. It extracts
spatio-temporal features by using a sliding window over the
city’s grid cells. It relies on a sliding window approach over
the grid cells of the city to understand the variations in spatial
patterns over time.

GCN 19: The GCN model is a deep learning approach that
leverages graph convolutional neural networks. It represents
historical traffic accident data as a graph, allowing it to
capture long-term spatio-temporal dependencies. Nodes rep-
resent different locations and edges indicate spatial proximity
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or similarity, the model can uncover long-term connectivity-
based patterns.

GSNet 14: a recent model that incorporates GCN, LSTM,
and attention mechanisms to learn complex spatial-temporal
correlations in traffic accident risk. It combines the strengths
of graph convolution, recurrent modeling, and attention-
based mechanisms. Currently, GSNet is considered the state-
of-the-art method for the NYC and Chicago datasets.

C-ViT12: an our previously proposed baseline SoTA
model 12, an example of application of Computer Vision
model to non-vision task of accident risk prediction. The
model utilizes a transformer-based architecture to predict
traffic accident risk. It consists of three components: his-
torical risk map encoding, historical contextual information
encoding, and a transformer encoder. The historical risk maps
are divided into image patches, which are individually passed
through a linear embedding layer. The contextual information
is encoded using a linear embedding layer. The transformer
encoder, with its self-attention mechanism, captures global
contextual dependencies across different patches, thereby
enhancing the accuracy of future accident risk prediction.
Compared to the existing state-of-the-art GSNet model, C-
ViT demonstrated competitive performance while offering a
more computationally efficient solution.

II. METHODOLOGY

Grid Representation: We model a specified city region,
determined by latitude and longitude bounds, as a uniform
grid. This grid comprises I rows and J columns, with each
cell being identical in size.

Traffic Accident Risk: The risk of traffic accidents at time
t for a specific grid cell i, designated Y i

t , is quantified as the
cumulative weighted sum of various types of traffic incidents
that have transpired in that cell. Based on the classification
provided in 14, traffic accidents are divided into three types,
each assigned a specific weight: minor accidents are given
a weight of 1, accidents causing injuries have a weight of
2, and fatal accidents receive a weight of 3. As an example,
let’s consider a grid cell that has seen two fatal accidents,
one accident causing injuries, and four minor accidents. The
cumulative traffic accident risk for this grid cell would then
be calculated as (2×3)+(1×2)+(4×1) = 10.

Problem Formulation: We redefine the traffic accident
prediction problem from a standard time-series prediction
task to an image regression task. We interpret the series of
historical traffic accident risk maps, Z1:T where Z ∈ RI×J

spans the time frame [1 : T ], as an image X with a resolution
of I×J and T channels. This image, combined with historical
contextual data C1:T , is input into our C-ViT model to
generate a forecast of the accident risk map for the next
hour, ŶT+1, with Y ∈ RI×J .

The Contextual Vision Transformer (C-ViT) - is optimized
for traffic accident risk forecasting and consists of the
following steps:

Historical Risk Map Encoding: This component takes
in historical risk maps and encodes them into a sequence

of ’patch embeddings’ (as illustrated in Fig. 1), equally-
sized image patches, each of which is processed individually
through a linear patch embedding layer. These patches are
created by dividing a unified single image of the city’s grid
into sub-spatial regions. To each of these patch embeddings,
an additional ’regression token’ and position embeddings are
added. The regression token acts as an image representation
while position embeddings provide sequence order informa-
tion, both crucial for processing by the transformer encoder.

1 2 3

654

7 8 9

Linear Patch Embedding

Fig. 1. Historical risk map encoding: we take a unified image X , divide it
into equally-sized patches, and feed these patches individually into a linear
patch embedding layer.

Historical Contextual Information Encoding: This mod-
ule processes key contextual features, such as the time of day,
the day of the week, whether it’s a holiday, weather condi-
tions, temperature, and traffic inflow/outflow. These features
are encoded using a linear embedding layer of dimension
’D’. The output from this module is then fused with the
output from the transformer encoder via a concatenation
operation 14.

Transformer Encoder: This core unit of the C-ViT model
features six layers, each composed of self-attention heads
13 and feed-forward fully connected sub-layers. Inside the
encoder, multi-head self-attention processes the query, key,
and value vectors based on their dot product, followed by
softmax function application for determining their weights.
This operation enables the model to handle complex spatial-
temporal correlations within the data, improving accident risk
predictions. In this paper, we propose two modifications to
this architecture: 1) Addition of learnable Static Maps each
of which concatenated either to accident risk map or attention
layer to improve prediction performance.

A. Datasets

In our study, we utilize two publicly accessible real-
world datasets for forecasting traffic accident risk: NYC1

and Chicago2.
The NYC dataset, reported from January 1, 2013, to

December 31, 2013, consists of about 147K accidents,
173,179K taxi trips, 15,625 points of interest (POIs), 8,760
weather reports, and data about a road network consisting of

1https://opendata.cityofnewyork.us/
2https://data.cityofchicago.org/
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103K segments. An additional feature unique to this dataset
is its Point of Interest (POI) data, which provides information
about specific locations like residences, schools, cultural fa-
cilities, recreation spots, social services, transportation hubs,
and commercial centers.

The Chicago dataset, reported from February 1, 2016, to
September 30, 2016, contains approximately 44K accidents,
1,744K taxi trips, 5,832 weather reports, and data about a
road network comprising 56K segments.

Both datasets include historical traffic accidents and taxi
trips data. The traffic accident data provides details about
time, date, location (latitude and longitude), the number of
causalities, weather condition (clear, cloudy, rainy, snowy, or
mist), temperature, and road segment data (i.e., road length,
width, and type). The taxi trip data, which includes location
and times of pick-up and drop-offs, is utilized to compute
the inflow/outflow of traffic condition in each area.

B. Baselines and Experiment Setup

In our study, we have followed a set of comprehensive
steps for data pre-processing and have detailed the imple-
mentation of our proposed enahncement to C-ViT model.
These steps ensure the validity of our research while facili-
tating comparison with previous studies. The specific steps of
data preprocessing, and the parameters of the C-ViT model,
are presented in the following table (Table I).

To assess the our model’s performance, we used three key
metrics commonly applied in traffic accident risk prediction:
root mean squared error (RMSE), Recall, and mean average
precision (MAP) 9, 14. RMSE measures the square root of
the average of squared differences between the predicted and
actual risk values. Recall calculates the fraction of actual
accident-prone cells that were correctly identified by the
model. MAP is the average of Precision achieved at the grid
cell level. Metrics defined as follows:

RMSE =

√
1
N

N

∑
n=1

(
Yn − Ŷn

)2
, (1)

Recall =
1
N

N

∑
n=1

Hn ∩An

|At |
, (2)

MAP =
1
N

N

∑
n=1

∑
|At |
j=1 PR( j)×REC( j)

|An|
, (3)

where N is the total number of samples to be evaluated,
Yn,Ŷn are the ground truth and the predicted risk values for
all grid cells of sample n respectively. An corresponds to the
set of grid cells of sample n that have an actual/true traffic
accident risk values. Hn corresponds to the set of grid cells
within An with the highest traffic accident risk values.

III. COARSE-FINE-COARSE VISUAL TRANSFORMER
(CFC-VIT)

One of the issues to solve in the topic of accident risk
prediction is the zero-inflated issue - the imbalance between
the amount of non-zero and zero accident risk cells. This
issue can be resolved by using a comparison mask or

TABLE I
SETUP FOR X-VIT MODEL AND PREPROCESSING PROCEDURES

Processing Step / Implemen-
tation Detail

Specification

Datasets NYC, Chicago
Grid Representation Each city map divided into

grid cells of 2KM×2KM
Accident Grouping All accidents in each grid cell

grouped based on location and
duration time

Data Split Training: 60%, Validation:
20%, Testing: 20%

Overlapping Accident Control No overlapping accidents
based on time

Data Standardization Mean and standard deviation
normalization

Traffic Accidents Periodicity 1 hour
Historical Traffic Risk Map
Size

7×20×20

Historical Accident Risks 7 (most recent accident risks
in past 3 hours + past accident
risks in the last 4 weeks)

Prediction Horizon of Traffic
Accident Risk

1 (next hour)

Dimension (D) of Linear
Patch Embedding

64

Dimension (D) of Position
Embedding Layer

64

Dimension (D) of Linear Em-
bedding Layer of the Histori-
cal Contextual Encoder

64

Resolution of Input Patches
(P) to the Patch Embedding
Layer

5

Number of Self-Attention
Heads

8

Dimension of the Final Output
Fully Connected Layer

128

Optimization Function Weighted Mean-Squared Er-
ror (MSE)

Loss Weighting Procedure Focal loss
Risk Value Classes 0, 1, 2, ≥3
Loss Function Weights 0.05, 0.2, 0.25, 0.5
Training Epochs 200
Optimizer Adam
Learning Rate 0.003
Batch Size 32

variations of focal loss 14. Another issue, which is usually
ingnored is the fine granularity of accident risk map. For
example, in the grid representation, cells can be separated
and of minimal 1x1 cell size (see Fig. 2).

Current computer vision methods applied to the task of
accident risk prediction produce ‘blurred’ results due to
intrinisic limitations of convolution network architectures 7,
5. To resolve this issue we propose an alternative approach
which consists of up-scaling the patches before the em-
bedding to allow fine-grained processing by internal layers
of transformer, and then down-scaling embedding to match
the original output shape 3. Up-scaling may be a necessary
step in the of use of asymmetric convolutional networks
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TABLE II
PERFORMANCE EVALUATION OF OUR C-VIT MODEL AGAINST A NUMBER OF BASELINE APPROACHES FROM THE LITERATURE OVER THE NYC AND

CHICAGO DATASETS.

Dataset NYC Chicago

Model RMSE ↓ Recall ↑ MAP ↑ RMSE ↓ Recall ↑ MAP ↑
RNN-GRU 3 8.3375 28.09% 0.1228 12.6482 17.83% 0.0664

SDCAE 1 7.9774 30.81% 0.1594 11.3382 18.78% 0.0753
H-ConvLSTM 20 7.9731 30.42% 0.1454 11.3033 18.43% 0.0716

GCN 19 7.7358 31.78% 0.1623 11.0835 18.95% 0.0805
GSNet 14 7.6151 33.16% 0.1787 11.3726 19.92% 0.0822

C-ViT (previous) 7.0053 33.86% 0.1875 9.4456 20.93% 0.0980
SARM-ViT (new) 7.05 33.72% 0.19 9.01 22.24% 0.11
CFC-ViT (new) 6.81 32.15% 0.1838 8.62 19.38% 0.08
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Fig. 2. Example of GSNet predictions (after training for 2 epochs, when the best performance is observed): a) Actual map of the accident occurrence b)
Predicted map of the accident occurrence.

for segmentation to increase the detailization of results 8
since there are no upscaling layers at the final part of the
asymmetric network. We upscale patches before the embed-
ding to perform fine-grained processing of these patches. The
dimensionality of embedding is also increased proportionally
to the patch size; processed embedding then downscaled by
the same rate. This allows the network to form intermediate
results of higher dimensionality, which when down-scaled,
will produce more fine-grained image.

Results for the Chicago data set show a significant im-
provement in the RMSE metric results both for 2x and
4x scale factors (see Table III where the RMSE is 8.62
as compared to 9.45 translating in a 8.78% improvement).
There is an inverse dependence observed between the scale
factor and the Recall or MAP metrics: the increase in the
scale factor lowers RMSE but MAP and recall also decrease.
However, given the robustness of the RMSE metric, the
improvement is consistent.

Results for the NYC data set show that the prediction
performance can increase at a specific scale factor (2x) and
decrease at different scale factor (4x) (see Table IV. These
results suggest that the optimal scale factor for each data
set can exist, which leads to a deciated optimization task
of finding the optimal scale factor value. Results both for
NYC and Chicago data sets show a non-linear dependency
between the RMSE, the MAP (mean average precision)

or Recall metrics. These metrics are intended for different
purposes (RMSE for the regression, MAP and Recall for
the classification results) and therefore can produce different
results based on the characteristics of the predicted values.

Overall, our new proposed CFC-ViT approach shows an
improvement in the RMSE results, but these results and other
metrics depend on the scale factor parameter. The optimal
scale factor can vary for each data set and can be found using
other optimization techniques.

IV. APPLICATION OF THE STATIC MAP GENERATION

The use of Attention layers is a computer vision technique
which implies an estimation of attention maps from different
images. Since each image may have different areas of
attention, the attention map is generated for every case of pre-
diction (which we can call the dynamic attention estimation).
But in the case of accident risk prediction, we predict on the
same area each time. Therefore, we can use the statically
generated attention map (static attention estimation). We
evaluate multiple scenarios of combining dynamic (DA) and
static attention (SA) estimations using varying combination
operations. To further utilise the advantage of a non-volatile
area, we also try to generate the Static Accident Risk Map
(S-ARM) so our network needs to predict the offset of
the accident risk (relative accident risk) from the statically
generated risk map values instead of predicting the absolute
accident risk values. Therefore, another contribution of this
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Fig. 3. Coarse-Fine-Coarse Transformer

TABLE III
PERFORMANCE EVALUATION OF OUR CFC-VIT MODEL ON CHICAGO DATA SET

RMSE Recall MAP HFT-RMSE HFT-Recall HFT-MAP Data set CFC Scale factors

0 8.62 19.38 0.08 6.48 19.89 0.09 chicago 4x, 0.25x
1 9.24 18.84 0.06 6.85 20.85 0.07 chicago 2x, 0.5x
– – – – – – – – –
- 9.45 20.93 0.098 7.035 21.95 0.125 chicago 1x,baseline (multi-epoch)

TABLE IV
PERFORMANCE EVALUATION OF OUR CFC-VIT MODEL ON NYC DATA SET

RMSE Recall MAP HFT-RMSE HFT-Recall HFT-MAP Data set CFC Scale factors

0 7.09 33.17 0.1808 6.45 33.90 0.1751 NYC 4x, 0.25x
1 6.81 32.15 0.1838 6.14 33.24 0.176 NYC 2x, 0.5x
– – – – – – – – –
- 7.0053 33.86 0.1875 6.2658 34.46 0.1802 NYC 1x, baseline (multi-epoch)

work is to further combine the Predicted Offset Accident
Risk Map (PO-ARM) with the Static Accident Risk Map
(S-ARM) (see Fig. 4).

A. Pipeline description

The generalisation performance of the Transformer model
can be greatly improved by using one-epoch training 6.
Therefore we use results obtained from one-epoch training
in further scenarios. Other parameters of the setup are the
same as in Section II-B.

B. Description of combination operations

The use of static map generation at the beginning of
the attention layer as well as near the network output can
remove the necessity for the network to predict the absolute
risk values (static map is assumed to act as a static image
and network is required to predict the relative risk from the

one in a static map). We test multiple different approaches
to achieve the benefit of using the static map generation.
Different constraint functions can be used to limit the range
of values observed from the static map. Also, the actual
static map can be combined differently with the final and
the intermediate network values.

Combination operations for the attention layer that we
have considered:

1) None - using only the original pipeline structure with
no static map,

2) tanh(map)+x - the static map is bounded by the tanh
function in order to obtain the static map values dis-
tribution between (-1,+1), combined with layer input
values,

3) tanh(map)*x - the same as above, but combined using
a multiplication operation,

4) map - we use the static map instead of the attention
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Fig. 4. The building blocks of our proposed XViT model with Static Map Generation

layer inputs,
5) map + x - we combine the static map with the attention

layer inputs using the “plus (+)” operation,
6) sigmoid(map)+x - static map values are distributed

between (0,+1) and are further combined with the at-
tention layer inputs by using the “plus (+0)” operation
(a linear offset combination),

7) sigmoid(map)*x - the same as above, but combined
using the “multiplication (*)” operation.

Combination operations for the network output that we
have implemented:

1) tanh(map)+x in which the static map values (map)
are combined with the intermediate predictions (trans-
former output - x),

2) sigmoid(map)+x - same as above, but using sigmoid
as a static map constraining function,

3) tanh(map)*x - tanh is used as a static map constraining
function, and the static map values (map) are combined
with the intermediate predictions by using the “multi-
plication (*)” operation,

4) sigmoid(map)*x -
5) head(map+non) - the static map values combined with

the non-risk features and passed through the feed
forward neural network,

6) head(map)+head2(x+non) - the static map is passed
through a separate feed forward neural network, while
other predictions together with the non-risk features
are passed through the second network of the same
structure,

7) head(map)*head(x) - the accident features are passed
through the same network as the static map values and
then combined using the “multiplication (*)” operation,

8) head(non)+head(x) - the non-risk features and the
accident risk features are passed through the same
network, and then combined using the plus operation,

9) None (head(x+non))- this is the original ViT imple-
mentation.

The constraint functions (tanh and sigmoid) are tested with
the assumption that values close to the actual normalised
accident risk values will be observed right after the network
parameter initialisation. Due to the variation, we name this
derivative model an XViT model.

C. S-ARM results

The results for the Chicago and NYC data sets are
provided in Tables V-VI. The results are also provided for
the high-frequency hours (HFT) - meaning the RMSE errors
obtained only when using the HFT hours when more traffic
is normally expected in the city. The use of the static map
generation didn’t show an improvement on the NYC data set.
In fact, the results are a bit worse but closely realted to the
baseline (7.05 RMSE for the best combination vs 7.00 RMSE
using original baseline multi-epoch approach); however we
observe that there is an improvement in the recall results for
the high-frequency hours (34.84 for the best combination
vs 34.25 when using the multi-epoch baseline). But results
forthe Chicago data set show a very significant improvement
across all the metrics (e.g. from 9.45 to 9.01 in RMSE, from
20.93 to 22.24 in Recall, from 21.95 to 23.46 in HFT-Recall).
More than that, the 1-epoch training also shows a significant
improvement in case of the baseline ViT structure (from 9.45
to 9.25 RMSE, from 20.93 to 21.77 Recall, from 7.035 to
6.93 in HFT-RMSE).

This slight reduction in the model performance in case of
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TABLE V
PERFORMANCE EVALUATION OF OUR XVIT MODEL FOR A NUMBER OF COMBINATION OPERATIONS ON NYC DATA SET. TOP 7 RESULTS.

RMSE Recall MAP HFT-RMSE HFT-Recall HFT-MAP Data set S-ARM Combination Operations

0 7.05 33.72 0.19 6.46 34.84 0.18 nyc tanh(map)*x, tanh(map)+x
1 7.07 33.49 0.19 6.48 34.43 0.18 nyc sigmoid(map)+x, sigmoid(map)+x
2 7.10 33.21 0.19 6.50 33.87 0.18 nyc sigmoid(map)+x, head(map)+head(x)
3 7.10 33.57 0.19 6.50 34.15 0.18 nyc sigmoid(map)+x, tanh(map)+x
4 7.11 33.26 0.19 6.49 33.76 0.18 nyc none, tanh(map)*x
5 7.11 33.38 0.19 6.52 34.53 0.19 nyc sigmoid(map)*x, tanh(map)+x
6 7.11 33.39 0.19 6.52 34.71 0.18 nyc tanh(map)*x, sigmoid(map)+x
7 7.11 33.85 0.19 6.50 34.81 0.19 nyc sigmoid(map)*x, tanh(map)*x
– – – – – – – – –
- 7.25 33.39 0.19 6.53 34.25 0.19 nyc baseline (1-epoch)
- 7.0053 33.86 0.1875 6.2658 34.46 0.1802 nyc baseline (multi-epoch)

the NYC data set and significant improvement in case of the
Chicago data set can be interpreted through the concept of
local optima and data set size. There may be multiple local
optima for the accident risk approximation across historical
accident risk records (e.g. multiple average risk maps for
different months). This optima can have an ability to show a
good approximation of the accident risk, but since the road
networks and the city structures change over time, different
local optima can appear over time as well. So finding just one
static accident map may not be optimal for a large data set,
but may show benefit in the case of small data set (Chicago
has just 44K accident records in comparison to 147K for
NYC attributing to 1 full year of records and these are
mostly short-time accidents in Chicago - just 8 months). We
conclude that there is evidence that the proposed method and
the use of multiple static maps can be a topic of the future
research which can bring improvement over large data sets.

Another important observation is that the same set of
combination operations gives the best results in the case of
the ViT network with a generated static map: ”tanh(map)*x”
in the attention layer and ”tanh(map)+x” near the network
output. This not only signifies the use of the constraint
function tanh, but also shows where to use each combination
operator (addition and multiplication). We also observe that
the use of non-risk features is not present among the top 20
results for NYC data set (see Table V), while for the Chicago
data set it is present in 9 combinations out of 20, which may
indicate the difference in quality of these features in both
data sets.

V. CONCLUSION

In this work, we propose a series of enhancements to
our previously proposed approach for the task of traffic
accident risk forecasting. In our approach we formulated the
problem as an image regression problem and introduced a
unique contextual vision transformer network (C-ViT) that
can efficiently model the traffic accident risk forecasting task
from both spatial and temporal perspectives. The proposed
approach and its enhancements have been evaluated on
two publicly available data sets for the traffic accident risk
problem. The combination of static accident risk map with

the ViT model (XVit) provides an even more significant
improvement over the previous method in case of the New-
York data set, thus establishing the new SoTA in the study
area. The operation combination method has a potential
for improvement (e.g. more different combination methods
and constraint functions can be tested). Improvements in
results obtained in the current research can also highlight
the applicability of vision transformers for non-visual tasks.
The Coarse-Fine-Coarse Visual Transformer (CFC-Vit) ar-
chitecture allows for fine-grained processing of the accident
risk map and introduces an additional scale factor parameter
which affects (and may improve) the prediction performance.
Overall, the use of visual transformers and its variations
for traffic accident risk prediction outperforms previously
used approaches. Further applications of image and video
processing methods may provide further improved results
and open alternative approaches for the task of accident risk
prediction.
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