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Abstract— Identifying driver behaviour and activities from
in-cabin video cameras (especially the distracting non-driving
activities), has been recently shown to be effective in enhancing
the safety and the driving experience in smart and partially-
automated vehicles. In the literature, the problem of video-
based driver activity recognition is often tackled by using tra-
ditional deep learning-based human-action recognition systems.
Despite their powerful capabilities, they seem not well-suited
for video-based driver activity recognition, due to their complex
and inefficient architecture that requires a huge amount of
computational resources. Additionally, given the similarities of
different non-driving activities that share the same pattern of
upper body movements (e.g. drinking versus eating), it makes
it harder for traditional human-action recognition systems to
pick up or differentiate between these subtle changes. Thus, in
this work we are proposing a novel framework based on an ef-
ficient spatio-temporal neural network architecture augmented
with an attention mechanism that can differentiate between
the subtle differences of similar non-driving activities. Our
framework has been evaluated on one of the largest benchmark
datasets for fine-grained recognition of driver activities and it
has outperformed the state-of-art approach by more than 4%
in the top-1 accuracy score with a boosting of 13× the run-time
speedup during the inference.

I. INTRODUCTION

According to a recent study [1], majority of traffic acci-
dents happening on US roads are caused by human errors.
Moreover, authors in [2] have shown that more than 36%
of those accidents are due to distracted drivers performing
secondary activities other than their primary activity (i.e.
driving). Thus, current semi-automated vehicles released by
OEM manufactures are complemented with driver-facing
cameras. As it was shown by authors in [3], [4], driver-facing
cameras will play a critical role in realising autonomy levels
2&3 as defined by the Society of Automotive Engineers
(SAE) [5]. In those autonomy levels, the driver is expected to
take control at any time when the automated system within
the vehicle is faced some challenging driving situations. So,
in such scenarios the automated system needs to make sure
that driver is not distracted by other secondary activities
before giving the control back to the driver [3], [6], [7].

Moreover, for achieving upper SAE autonomy levels
(L4&L5), identifying drivers/passengers activities in the
vehicle has another set of benefits rather than the safety
considerations in the lower autonomy levels such as the
driver-passenger interaction setup. For example the vehicle
could adjust its motion planning strategy to improve the

riding experience in cases when the passenger is eating,
drinking or reading.

Identifying drivers activities from video sequences is
closely related to the wider field of video-based human action
recognition, which has witnessed major advancements over
the past few years thanks to the rise of deep learning based
approaches [8], [9] and to the large video-based human ac-
tion datasets [9], [10]. In video-based human action recogni-
tion fields, the nature of actions is diverse and covers a wide
range of discriminative human actions that are commonly
performed by different human subjects [9], [11]. On the
other hand, driver activities (especially distracted non-driving
ones such as eating and drinking) are highly correlated as
they are performed by only one subject and usually involve
only the upper body of the human subject [12]. Additionally,
the modality of video-human action recognition field, is
mostly coming from RGB cameras only, whereas in driving
activities, it is commonly based on infrared cameras as it
is agnostic to illumination variations (such as sunny during
the day versus dark during the night time). Furthermore,
traditional deep learning based approaches [9], [13] in video-
based human action recognition field, are not designed with
real-time performance in mind, since they are more oriented
towards online recommendation systems applications. On the
other hand, for safety-critical applications such as driver
activity recognition, those conventional approaches are not
well-suited as the real-time performance is one of the essen-
tial requirements and characteristics.

Thus, in this work we are proposing a novel approach
entitled the Attention-Augmented Spatio-Temporal Network
(A2STNet) to address and account for the aforementioned
challenges and help developing a video-based driver activity
recognition system. Our proposed approach is an efficient
unique 3D convolutional neural network architecture, aug-
mented internally with an attention mechanism in order to
better capture the spatio-temporal dependency of different
driver activity classes from short video sequences in a real-
time manner.

The rest of the paper is organised as follows. An overview
of the related scientific work will be briefly discussed in
Section II. In Section III, the proposed approach and method-
ology will be covered. The experimental results and the
performance of the proposed approach will be provided in
Section IV, while Section V, concludes our paper and draws



insights on limitations and future perspectives of our work.

II. RELATED WORK

Video-based Human Action Recognition: In the
literature, the video-based human action recognition task
is often tackled using various architectures of the famous
convolution neural networks (ConvNet). The design choices
for video-based human action recognition ConvNets models
are either using them as: a) a spatial feature extractor
(individually on each frame of the video sequences) and
average the classification scores across those frames [13],
b) feeding their extracted output features to a recurrent
neural network [14], [15] or c) extending its filters from
2D to 3D for end-to-end spatio-temporal modelling [9],
[16], [17]. End-to-end spatio-temporal techniques that rely
mainly on 3D ConvNet architectures [9], [11] were shown
to be achieving resilient results on large-scale human action
recognition datasets. However, the inherent complexity
(in terms of the number of parameters to be learned and
the computational requirements) associated with ConvNet
architectures when dealing with video sequences, renders
them unsuitable for real-time applications. Thus, more
efficient techniques/architectures have been introduced
recently. One of the well-performing efficient techniques
for end-to-end spatio-temporal architectures, is the temporal
shift module (TSM) proposed in [18] for efficient video
understanding. TSM was able to achieve a computationally
plausible end-to-end spatio-temporal architectures through
shifting part of the input channels of the video sequence
along the temporal dimension. As a result, of this simple yet
effective trick, TSM can be inserted into any 2D ConvNet
architecture to facilitate the information exchange among
neighbouring frames of the input video sequence. Another
efficient family of architectures named X3D, was recently
introduced in [19]. As the name implies, X3D progressively
expands any tiny 2D image classification architecture along
multiple network axes, in space, time, width and depth. The
strategy of the expansion is governed by a simple step-wise
network expansion approach that extends a single axis in
each step, such that a good accuracy to the complexity
trade-off is achieved. As a result of this strategy, X3D
was able to achieve comparable results when compared to
state-of-the-art (SOTA) techniques on one of the largest
data-sets for human action recognition.

Video-based Driver Activity Recognition: For a driver
activity recognition, the working principle of most of scien-
tific works in the literature is quite similar to the video-based
human action recognition task specially when it comes to
relying on the ConvNets architecture. The major difference
lies in the utilised input modalities; while almost all of the
human action recognition datasets are captured using RGB
cameras, the driver activity recognition is however captured
using either multi-modal cameras (such as IR, RGB and
depth) or mainly captured using IR/NIR like cameras. One
of the main reasons for that choice is that IR/NIR cameras
are illumination-invariant which make them more suitable

for realistic in-vehicle driving scenarios. Commonly, driver
activities can be broadly categorised into two categories: 1)
primary activities (changing lanes, braking, stopping, etc.)
and 2) secondary activities (such as drinking, eating, talking
on the phone, etc.).

In our work, we focus more on the secondary activities
given its importance as discussed in Section I. In the liter-
ature, the work around recognising the driver’s secondary
activity can be segmented into two classes, namely: a)
appearance-based approaches [20], [21] that work directly
on the raw frames of the video sequence and b) posture-
based approaches [22], [23] that work on extracted postures
of the driver. For the appearance-based approaches Martin
et al. [20], proposed an end-to-end Inflated 3D convolution
(I3D) model to classify 34 fine-grained secondary activities
of diversified drivers during naturalistic driving sessions. The
I3D model is an 3D extended version of the 2D ConvNet
architecture, Inception-V1 architecture [24]. Another recent
appearance-based approach was introduced in [21]. Their
approach was to classify the distracted activities of the
driver and it consists of 2D ConvNet architecture, ResNet-50,
which extracts spatial features from each frame separately,
followed by a self-attention layer, that lastly feeds the at-
tended features to the LSTM module for temporal modelling.
For the posture-based approaches, the authors in [22] have
proposed a model that detects typical distracting secondary
activities. Firstly, their model estimates the body posture of
the driver in the input video sequence, then the extracted
body poses (during the video) are passed to a recurrent
neural network model. Similarly, Tan et al. [23], proposed a
hybrid approach that utilises estimated driver body postures,
in addition to some extracted appearance features by using
I3D architectures with an attention mechanism ; the authors
claim that this approach helps to better classify different
secondary activities engaged by drivers.

III. PROPOSED METHODOLOGY

In this section, we first start with formulating the video-
based driver activity recognition problem. Secondly, we
present the details of our proposed framework (shown in Fig-
ure 1). Thirdly, we describe the architecture of our proposed
approach (A2STNet) and its implementation details.

A. Problem Formulation

While formulating for the video-based driver activity
recognition, we cast the problem as a classification task;
more specifically, when given an input of a short sequence
video vi, the objective is to get a prediction label ŷi that
corresponds to the relevant activity taken by the driver in
the video while matching the ground-truth label yi as much
as possible. In order to do so, we learn a proxy function F
that maps the input vi to the predicted ŷi by minimising the
following Softmax cross-entropy loss function:

L(Θ) =−
k

∑
i=1

yi log(ŷi) (1)
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Fig. 1. Our proposed A2STNet framework. The spatio-temporal backbone module consists mainly of a number of 3D bottleneck (BN) units NB which
are grouped by NS stages.

B. Attention-Augmented Spatio-Temporal Network

Given previous encouraging results of the end-to-end
spatio-temporal techniques based on 3D ConvNet architec-
tures for human action recognition (as discussed in Sec-
tion II), we propose a similar but enhanced paradigm as it
can be trained in an end-to-end fashion without the need to
firstly extract features first and then utilise LSTM modelling.
Rather than facing the huge requirements of traditional 3D
ConvNet architectures (in terms of parameters and computa-
tional time) such as those based on 3D ResNet architectures
or Inflated 3D architectures, we are proposing a novel
Attention-Augmented Spatio-Temporal Network (A2STNet)
framework.

In our A2STNet framework, we build it around a unique
spatio-temporal backbone module based on an efficient 3D
ConvNet architecture which is inspired by the the 2D Con-
vNet architecture, ShuffleNet [25]. ShuffleNet is an efficient
2D ConvNet architecture which is used mainly for image
classification tasks on mobile devices. As it can be shown
from Fig. 1, our A2STNet framework starts with a 3D
convolution layer (3D Conv) followed by a 3D Max pooling
layer before continuing with the spatio-temporal backbone
module. Inside our spatio-temporal backbone module, we
model the input video sequence both spatially and temporally
over the duration time of the input video. The spatio-temporal
backbone module consists mainly of a number of 3D bottle-
neck units NB which are grouped by NS stages. At the start
of each stage, the first 3D bottleneck unit is applied with
spatio-temporal down-sampling to reduce the computational
costs. For each stage and within the 3D bottleneck units,
the number of output channels are kept the same. However,
for each subsequent stage, the output channels are doubled
and the spatial and depth dimensions are reduced to half.
Each 3D bottleneck unit internally contains four types of
operations (as shown in Figure 2) such as: a) 3D point-wise
group convolution (3D GConv), b) channel shuffle, c) 3D
depth-wise convolution (3D DWConv) and d) 3D channel
attention. For each 3D bottleneck unit, the parameter NG is
the group number that dictates the sparsity of connection for
3D GConv layers. As it was shown in [26], [27], we utilise

both the 3D GConv and the 3D DWConv layers to help
and automatically extract meaningful feature representations
without the computational cost of traditional convolution
layers. While 3D GConv layers in each 3D bottleneck unit
can provide efficient representation features, however when
they are performed repeatedly they can limit the number
of channels of the input frames which, in return, blocks
the information flow between the channel groups, which
eventually reduce the overall accuracy of the model. Thus,
the channel shuffle operation exits to help mitigating this
effect by allowing the group convolution to obtain the input
data from different groups.

As it was shown in [25], the channel shuffle can firstly
divide the channels in each group from the feature maps
generated from the previous 3D GConv layer into a number
of subgroups, and secondly, feed each group in the subse-
quent layer with shuffled subgroups from previous layer.

The final operation inside our 3D bottleneck unit, is the
3D channel attention layer which, as the name implies is
an attention mechanism. This novel attention mechanism
is inspired by the ECANet strategy introduced in [28] for
2D ConvNet architectures. In our implementation of the
channel attention mechanism, we exploit the fact that the
flow of information between channel groups inside each
3D bottleneck unit has been enriched by using channel
shuffle operations. Thus, we utilise the proposed 3D channel
attention mechanism in order to make the model to efficiently
pay more attention to the non-linear local cross-channel
interactions that happen between channels throughout the
whole duration of the input video sequence; this aspect was
recently shown to be valuable in enhancing the performance
of ConvNet-based architectures [28].

We accomplish the 3D channel attention via three con-
secutive layers, namely a 3D global average pooling (GAP)
layer, 1D convolution layers and a sigmoid layer σ . The
combination of those layers constitutes the 3D channel
attention module that can capture local dependencies across
all the channels. Given an input extracted feature maps
X ∈ RC×D×L×L from the preceding 3D GConv layer, our
3D channel attention module firstly aggregates those features
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Fig. 2. The building blocks of the spatio-temporal backbone module of
our proposed A2STNet framework.

into z via the 3D GAP layer according to the following
equation:

zc = GAP(X) =
1

D×L×L

L

∑
i, j=1

xc,d,i, j (2)

where D and L corresponds to the depth of the feature maps
and its spatial resolution. This acts as an automatic feature
descriptor that defines the characterisation of each channel
in the input feature maps.

Then, given the obtained channel-wise GAP features, they
are passed to a 1-D convolution layer to model the local
inter-channel dependencies by taking into account k local
neighbor channels; this acts as the kernel size for the 1-
D convolution layer. Since the number of channels across
our whole A2STNet framework is not fixed within each 3D
bottleneck unit, we dynamically choose the kernel size k by
using a mapping function of the channel dimension C during
the training of our framework similar to [28]. As a result, the
weights for our 3D channel attention module can be obtained
by combining linear interactions between each channel and
its k neighbors according to the following equation:

ωc = σ

[
k

∑
j=1

w jz j
c

]
,z j

c ∈ Ω
k
c (3)

here σ is the sigmoid function and Ωk
c corresponds to the

list of k neighbor channels in the vicinity of the zc channel.
At the end of our 3D bottleneck unit after the 3D channel

attention module, an element-wise addition operation is per-
formed (in case there is no spatio-temporal down-sampling
involved, i.e. stride is 1) between the attended feature maps
X̂ and original input feature maps to the 3D bottleneck unit.
In case when the spatio-temporal down-sampling is enabled
(i.e. stride is 2), then instead of an element-wise addition
operation, a concatenation operation ⊕ will be performed
between the attended feature maps and the original input
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Fig. 3. Distribution of samples per each activity of the total 34 fine-grained
activities in Drive&Act dataset [20].

feature maps after feeding them to a 3D average pooling
layer with stride of 2. Finally our A2STNet framework (as
shown in Fig. 1) ends with a 3D average pooling layer
followed by a fully connected layer for the classifier.

IV. EXPERIMENTS

In this section, we will first introduce the dataset we
utilised for training and evaluating our proposed A2STNet
framework. Then, we will present the setup and implemen-
tation details of our experiments. Finally, we report the
results of our experiments and compare it against baseline
approaches from the literature.

A. Dataset

In order to validate the performance our proposed
A2STNet framework, we will be utilising one of the largest
benchmarks for fine-grained categorization of driver activ-
ities, the Drive&Act dataset [20]. This dataset consists of
twelve hours (with more than 9 million frames) of fine-
grained non-driving distracting driving activities in realistic
car environments. The dataset is captured by 3 different
sensor modalities, namely RGB, near-infrared and depth
cameras from 6 different views. The dataset involved a total
of 15 driver subjects (4 females and 11 males). The driver
subjects inside a realistic car simulator during the data col-
lection was instructed to perform 12 non-driving distracting
tasks. The captured videos of the subject drivers performing
those tasks were further annotated by the start/end times of
each of the 14 fine-grained activities, and this resulted in
a total of 34 fine-grained activities. The full list of the 34
activities along with the sample distribution per each activity
in the dataset can be shown in Fig. 3. The average duration
for each sample per activity is roughly 3 seconds.

B. Setup and Training Details

The first step in our setup is the data preparation. For
this part, we relied on the creators of the Drive&Act dataset
and their official data split. They have randomly divided the
dataset into 3 splits and for each split they further divided
it into three sub-splits (for training, validation and testing),
while taking into account that each sub-split does not overlap



videos/activities of the same subject. In our experiments, we
utilised the near-infrared modality rather than RGB because
it is illumination-invariant which makes it more suitable for
realistic in-vehicle driving scenarios and to conform with
the compared baseline approaches. Regarding the imple-
mentation details of our proposed A2STNet framework in
the experiments, the number of stages NS of our spatio-
temporal backbone module was empirically set to 3. For
each stage, the number of 3D bottleneck units NB is not
fixed, similarly to the work in [25]. In total, our A2STNet
framework contains 16 3D bottleneck units with a number
of groups NG for each 3D GConv layer of 3 and it is divided
on each stage as follows: first stage has 4, second stage has
8 and third stage has 4. Additionally, for each stage, the first
3D bottleneck unit is applied with stride of 2 similarly to
the work of to [25]. In order to conform with the baseline
approaches in the literature, the length of the input video
sequence to our framework is 64 consecutive frames that
are selected uniformly of each activity sample; for each
frame a random cropping of 224×224 is performed during
training phase. On the other hand, during the testing phase
the random cropping is replaced with center cropping with
the same resolution similarly to the setup in [20]. We trained
our framework for 250 epochs with pre-trained weights on
the Kinetics dataset [9] by using a stochastic gradient descent
(SGD) optimiser with an initial learning rate, momentum and
weight decay of 0.04, 0.9 and 0.001 respectively.

C. Results and Discussion

By using the Drive&Act dataset [20], we have trained
and evaluated the performance of our proposed framework
on it. In Table I, we report the results of our proposed
approach on both the validation and the testing splits of
the Drive&Act dataset, according to the commonly utilised
evaluation metrics for the problem we are tackling which is
the top-1 average per-class accuracy. Additionally, since our
proposed approach is targeted for real-time domain applica-
tions, we have added another two evaluation metrics, namely
the number of model parameters and the number of FLOPs.
The number of model parameters describes how efficient is
a given model during the training phase; more explicitly, the
lower the number of parameters required to be optimised for
a given model, the more efficient it is. Similarly, the FLOPs
dictates the number of floating point operations required by
a given model to provide a prediction on one sample input
during the inference phase. As a result, FLOPs can act as
a proxy of measuring the real-time performance of a given
model, since if a given model requires a higher number of
FLOPs, then this translates in higher prediction times on a
given sample input.

Furthermore, we have compared our proposed approach
against a number of baseline approaches from the literature.
We have categorised those approaches into three main cat-
egories: 1) approaches that rely on pre-processed features
from the raw videos (commonly pose and contextual), which
we refer as ‘Features’ in Table I, 2) approaches that work
directly on raw video data in an end-to-end fashion and we

refer to them as ‘E2E’ and 3) approaches that work directly
on the raw video data, but are more efficient and suitable for
real-time performance than the aforementioned categories,
which we refer to as ‘Efficient E2E’. The total 8 baseline
approaches are as follow:

• Three-Stream [30]: This approach relies on an esti-
mated body pose features of the driver over time. The
pose features are divided into three streams and for each
stream its corresponding features are fed to two LSTM
layers. The first stream concatenates the 13-body joints
of driver’s body over short time sequence. The second
stream models the spatial dependency between the body
joints over time using graph-based techniques. The last
stream takes the distance between the head and hand
of the driver and the surface of any object within the
car-interior.

• BPAI-Net [23]: This recent approach combines esti-
mated body posture features with raw video frames
which are fed to graph convolution neural network and
I3D network respectively. The output from the two
networks are fused together with a spatial attention
mechanism to better classify driver actions. To the best
of our knowledge, this approach is currently the SOTA
technique on the Drive&Act dataset.

• C3D [8]: This approach is based on the first 3D
ConvNet architecture introduced for end-to-end video
understanding tasks. The model consists of eight 3D
convolution layers (with kernel filters of size 3×3×3)
interleaved with five pooling layers and ended with two
fully connected layers.

• P3D ResNet [29]: This approach stimulates 3D con-
volution layers (3×3×3) by having two convolution
layer one on the spatial axis (3×3×1) and the other
on the temporal axis (1×1×3). They extend the ResNet
architecture according to the aforementioned formula-
tion, specially the residual connections to classify driver
actions from short sequence videos.

• I3D Net [20]: This approach is utilising the famous
inflated 3D ConvNet architecture for video activity
recognition that was first introduced in [9]. This ap-
proach was utilised by the Drive&Act creators as their
best performing baseline approach.

• CTA-Net [21]: This approach relies on the 2D ConvNet
architecture ResNet-50; more specifically on its first 5
convolution layers to extract the spatial features from
each frame separately of the input video sequence,
followed by a self-attention layer, that lastly feed the
attended features to an LSTM model.

• TSM [18]: This approach is an efficient technique
which modifies the 2D ConvNet architecture ResNet-
50 by adding the temporal shift module (TSM) which
moves the feature map of an input video sequence along
the temporal dimension.

• X3D-L [19]: This approach is an efficient end-to-end
technique which progressively expands tiny 2D image
classification architecture based on residual blocks along



TABLE I
THE PERFORMANCE OF OUR A2STNET FRAMEWORK IN COMPARISON TO OTHER BASELINE APPROACHES OVER THE VALIDATION AND TESTING

SPLITS OF THE DRIVE&ACT DATASET [20]. * THE ‘-’ DENOTES MISSING REPORTED SCORES AND/OR UNAVAILABILITY OF PUBLIC IMPLEMENTATION

TO REPRODUCE RESULTS.

Type Model Validation* (%) Test (%) #Parameters* (M) FLOPs* (G)
Features Three-Stream [22] 55.67 46.95 - -

BPAI-Net [23] - 67.83 13.2 112.5
E2E C3D [8] 49.54 43.41 78.1 33.16

P3D ResNet [29] 55.04 45.32 65.7 145.6
I3D Net [20] 69.57 63.64 12.7 111.3
CTA-Net [21] 72.42 65.25 - -

Efficient E2E TSM [18] - 61.77 24.3 32.90
X3D-L [19] 62.89 55.71 6.08 18.37
A2STNet (ours) 78.88 72.45 6.64 8.44

TABLE II
ABLATION STUDY OF THE 3D-CAM MODULE ON THE DRIVE&ACT

DATASET.

Model Validation (%) Test (%)
A2STNet w/o 3D-CAM 76.40 69.41
A2STNet 78.88 72.45

multiple network axes, in space, time, width and depth.
There are a number of variants for the X3D architecture
introduced in [19]; as the name implies we utilise the
same X3D-L variant with the only modification of the
input shape of the video sequence to be 64×224×224.

As it can be shown from Table I, our proposed A2STNet
has achieved the highest top-1 accuracy scores over both
the validation and the testing split of the Drive&Act dataset.
Also, it has outperformed all the Efficient E2E approaches
in terms of the combined accuracy, efficiency (number of
parameters) and real-time performance (GFLOPs). Moreover,
our model only requires 8.44 GFLOPs, while the clos-
est efficient E2E approach, requires considerably a larger
number of GFLOPs (18.37) while requires a slightly lower
number of parameters (6.08) when compared to our model.
Thus, this make our approach more accurate and suitable
for real-time performance which facilitates its deployment
and integration with the current systems within intelligent
vehicles. Furthermore, our approach has overtaken the BPAI-
Net approach (which is the current SOTA technique on the
Drive&Act dataset) with an improvement of more than 4% in
accuracy and a significant lower numbers of GFLOPs which
is 13 times lower than state of art techniques.

In order to further evaluate the performance and novelty of
our proposed framework, in Table II, we provide our ablation
study which validates the novelty of the proposed 3D channel
attention module inside our A2STNet framework. To this
end, we have trained our A2STNet framework without the
3D channel attention module (3D-CAM), to check whether it
would influence the accuracy of the overall approach on the

Drive&Act dataset. As it can be seen from Table II, the 3D-
CAM is indeed making a difference in the performance of
our proposed A2STNet framework given that it has improved
accuracy score on both the validation and the testing split by
more than 2% in comparison to the case without 3D-CAM.

V. CONCLUSION AND FUTURE WORK

In this work we have introduced a novel framework for
the task of diver activity recognition from in-cab video
cameras. Our framework consists of a main backbone spatio-
temporal module that, given an input video sequence of the
driver, it can recognise 34 fine-grained non-driving activities.
Moreover, our framework is internally augmented with an
efficient attention mechanism that can accurately identify
and differentiate between similar driver activities such as
drinking vs eating. In our experiments, we have evaluated the
performance of our proposed framework on the Drive&Act
dataset, a large scale benchmark dataset for fine-grained
recognition of driver activities. The results have shown the
resilience and the competitiveness of our proposed approach
in comparison to baseline approaches from the literature.
Our proposed framework has achieved a score of 72.45%
in top-1 accuracy with more than 4% improvement over the
best performing approach on the Drive&Act dataset from
the literature. Furthermore, the computational requirements
of our proposed framework has a reduced number of floating-
point operations which is 13 times lower than than our
competitor approaches from the literature; this significant
achievement makes our approach more suitable for real-time
operations.

In our future work, we will explore other complementary
techniques to our framework to address the problem of in-
balanced samples per class that is commonly exits in video-
based driver activity datasets. Additionally, we will also
further test our framework on other datasets to evaluate its
generalisation capabilities when trained on one dataset and
tested on another different dataset.
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