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Abstract— Recently, the problem of traffic accident risk
forecasting has been getting the attention of the intelligent
transportation systems community due to its significant impact
on traffic clearance. This problem is commonly tackled in
the literature by using data-driven approaches that model the
spatial and temporal incident impact, since they were shown
to be crucial for the traffic accident risk forecasting problem.
To achieve this, most approaches build different architectures
to capture the spatio-temporal correlations features, making
them inefficient for large traffic accident datasets. Thus, in this
work, we are proposing a novel unified framework, namely a
contextual vision transformer, that can be trained in an end-
to-end approach which can effectively reason about the spatial
and temporal aspects of the problem while providing accurate
traffic accident risk predictions. We evaluate and compare the
performance of our proposed methodology against baseline
approaches from the literature across two large-scale traffic
accident datasets from two different geographical locations. The
results have shown a significant improvement with roughly 2%
in RMSE score in comparison to previous state-of-art works
(SoTA) in the literature. Moreover, our proposed approach has
outperformed the SoTA technique over the two datasets while
only requiring 23x fewer computational requirements.

I. INTRODUCTION

Traffic accidents represent a major concern for cities
around the world due to a significant economical and health
impact to their populations. The number of vehicles has been
substantially increasing during the past decades, especially
in developing countries, which lead to an increase in the
number of traffic accidents [1]. The National Highway Traffic
Safety Administration (NHTSA) reports more than 5 million
traffic accidents happening in the United States each year [2].
The World Health Organization also reported 1.35 million
fatalities happening worldwide which resulted from traffic
accidents in 2016 [3].

In the past years, traffic accident research has seen an
increased use of computational methods. Different problems
were addressed, including: 1) traffic accident duration pre-
diction methods, [4] 2) accident detection [5], 3) estimation
of severity, and more recently, a development of spatial-
temporal modelling methods have allowed to perform acci-
dent risk prediction using high-dimensional spatial, semantic
and temporal data sets [6]. The use of such methods has
enhanced the automated analysis of traffic data together with
the increasing number of publicly available data sets. Traffic
accident risk prediction allows to: 1) detect high-risk areas
within a traffic network, which may facilitate the decision-
making inside traffic management authorities, 2) to allocate
resources and assess the road design to reduce the number

Fig. 1. City grid representation for our study.

of accidents in the future, 3) to predict timely high-risk
situations on the road and 4) to allow an implementation
of risk-reducing traffic management strategies.

In the literature, the traffic accident risk forecasting prob-
lem is commonly formulated as a time-series forecasting
task, where given past historical traffic accidents data for
a certain city/region, along with an optional contextual
information about those accidents, the objective is to fore-
cast/predict the future traffic accident risk for that city/region.
Since the nature of the traffic accident risk problem implicitly
involves two types of modelling, e.g. the spatial approach
(working on the affected geographic region) and the temporal
approach (applied over a period of time), thus this problem
is often tackled using at least two different types of model
architectures.

One of the first works on traffic accident risk prediction
using Deep Learning has been performed with human mo-
bility data using a Stack Denoise Autoencoder (SDAE) on
the Japan traffic network [7], but traffic flow and time-related
matters (including periodicity) were not considered. Another
research [8] relied on the LSTM network to improve the risk
prediction in comparison to SAE by considering in addition
the air quality, traffic flow and the weather data, represented
as short-term and periodic components. [9] proposed also
a Coarse and Fine grained prediction on the target acci-
dent risk map. RiskOracle [10] relied on Graph-Convolution
network, utilizing hierarchical coarse-to-fine modelling and
proposing minute-level predictions in comparison to day-
level [11] and hour-level [7]. In [11] authors have constructed
over the ConvLSTM by highlighting the spatial heterogene-
ity problem and proposing an ensemble of region-specific
ConvLSTM models (Hetero-ConvLSTM); they considered
weather, the environment and the road condition in Iowa,
US for over 8 years of observations, but POIs were not
considered. Semantic features, coarse and fine grained risk
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Fig. 2. The building blocks of our proposed C-ViT model.

maps were considered in [12], where also Graph-convolution
neural networks and attention-based LSTMs were used. A
more recent work in [6] represents the State-of-Art (SoTA)
in the field of accident risk prediction, where the authors
propose a weighted loss function to address the zero-inflated
issue (increase in the number of zero-risk grid cells due to
the increase in the granularity of predictions) and making
ensemble of models by processing semantic and geo features.
So far, risk accident prediction relied mostly upon graph-
based methods and spatial-temporal modelling. While this
approach worked for limited case study applications, we
highly believe that in order to scale it up, this approach can
benefit from using visual analysis techniques. Thus, in this
work we are re-formulating the problem of traffic accident
risk forecasting and we are proposing a novel approach
inspired by one of the recent best performing deep learning
based architectures for computer vision tasks, the vision
transformers [13]. In our proposed model we jointly model
and take into account the spatio-temporal nature of the traffic
accident risk forecasting problem as well as the influence of
contextual information on it using a single unified end-to-end
model.

In Section II, a detailed description about the proposed
methodology will be presented. Then, in Section III, we will
introduce the datasets we utilised for training and evaluating
the performance of our approach, the experiments setup and
the baseline approaches from the literature we compared our
approach against. Finally, in Section IV, we conclude our
paper.

II. METHODOLOGY

In this section, we will first start with definitions and the
problem formulation for the traffic accident risk forecasting

task. Then, we will present and discuss the details of our
proposed contextual vision transformer (C-ViT) model (as
shown in Fig. 2).

A. Definitions

Grid Representation: Given a city area bounded by
certain latitude and longitude coordinates, we partition it into
a grid form with I rows × J columns (as shown in Fig. 1),
where each cell share the same size.

Traffic Accident Risk: At any given time t, the traffic
accident risk Y i

t for a grid cell i is defined by the summation
of the different types of traffic accidents occurred at that grid
cell. Similar to [6], we have three types of traffic accidents
and each one has a corresponding value, namely a minor
accident has a value of 1, an injured accident a value of 2
and a fatal accident has a value of 3. For instance, if a grid
cell incurred three fatal accidents and two minor accidents,
the traffic accident risk for it then would be 11.

B. Problem Formulation

In our formulation of the traffic accident prediction prob-
lem, we re-cast it as an image regression task instead of the
traditional formulation as a time-series prediction task. This
new formulation enables us to natively model the spatio-
temporal nature of the traffic accident prediction problem in
an end-to-end fashion without the need to have a combination
of more than one architecture to address it. To that end,
given historical observations in the form of a traffic accident
risk map Z1:T , where Z ∈ RI×J over time period [1 : T ], we
represent these observations as an image X with a resolution
of I × J and its number of channels to be T . Then we feed
it to our proposed C-ViT model that fuse it together with
the historical contextual information C1:T to predict/regress



the future accident risk map in the next hour ŶT+1, where
Y ∈ RI×J .

C. Contextual Vision Transformer (C-ViT) Model

Given the aforementioned formulation, we compile the
traffic accident risk maps Z1:T as a unified single image
with size T × I × J, where T is the number of channels,
I is the image’s height and J is the image’s width, which we
pass as an input to our proposed novel C-ViT model. Our
C-ViT model’s architecture is inspired by the recently intro-
duced vision transformer network [13] that has been achiev-
ing competitive results to the convolutional neural network
(ConvNet) architecture for image classification tasks [13],
[14]. The main building blocks of our C-ViT model are
three components, namely the historical traffic accident risk
map encoding stage, the historical contextual information
encoding stage and the transformer encoder stage. In the
following we will analyse deeper each component.
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Fig. 3. Description of the first stage of the historical risk Map encoding.
Given a unified single image X , it is then divided into equally-sized image
patches that are passed individually to the linear patch embedding layer.

Historical Risk Map Encoding: Given the historical risk
maps as a unified single image X with size T × I×J, we first
encode it into a representation that could be easily digested
and learned using our transformer encoder. As it was shown
in [15], transformer encoders can work better with input data
as a sequence of tokens. Thus, we divide the unified single
image into a sequence of equally sub-images Xp which we
refer to it as an image patch sequence. We can think of
the image patches as a sub-spatial regions of a number of
cells within the city’s grid representation that we defined in
Section II-B. The rationale behind this patching process is
derived by the assumption that grid cells that are spatially
closer to each others will have some geographical and spatial

correlations that could potentially be exploited by our model
for conducting a better traffic accident risk forecasting.

Here Xp has a size of N × T × P × P, where P is the
height/width of the image patch and N is the total number of
sequences of image patches, which is defined by N = IJ/P2.
The operation of dividing the unified single image into a
sequence of image patches Xp can be shown in Fig. 3. The
image patches sequence are then individually passed through
a linear embedding layer which is essentially a learn-able
linear projection operation in order to get a sequence of
trainable flattened image patches of size D, which we refer
to as patch embeddings. Additionally, similar to [13], we
have an extra learnable embedding token appended before
the sequence of patch embeddings to be passed to the
transformer encoder and we refer to this embedding as a
“regression token”. The regression token embedding acts
as an image representation which its output is transformed
inside the transformer encoder into the predicted accident
risk map ŶT+1.

Since the transformer encoder does not have the notion
of order in its input sequence tokens, an additional position
embeddings are added to each patch embedding. There are
a number of pathways to define position embedding, and
in our current model we follow the formulation introduced
in [15]. In this formulation, the position encoding PE vector
is defined by using a wide spectrum of frequencies of
sine/cosine functions as follows:

PE(a,2k) = sin
(

a/100002k/D
)

PE(a,2k+1) = cos
(

a/100002k/D
) (1)

where a represents the position, and k is the dimension.
From the above formulation, once can conclude that for
each dimension k of PE vector, it has a corresponding
sinusoid that spans a frequency range from 2π to 10000 ·2π .
In other words, this will allow the model to be mindful
of the order in the sequential patch embedding by using
unique relative positions. The dimension of the PE vector
is similar to the linear patch embedding layer’s dimension
which is D.

Historical Contextual Information Encoding As
discussed in Section II-B, besides the historical accident
risk maps, our C-ViT model takes into account also the
historical contextual information C1:T for the city grid
representation. In our model and similar to [6], we took into
account the following contextual features: 1) the time period
of the day, 2) the day of the week, 3) whether the day is a
holiday or not, 4) the weather condition (clear, cloud,..etc),
5) the weather temperature, and 6) traffic condition (inflow
and outflow). Given those contextual features, we encode
them via a learnable linear embedding layer of dimension
D, whose output is fused together with the output from the
transformer encoder via a concatenation operation.

Transformer Encoder The main building block of our
transformer encoder is the multi-head self-attention mod-



ule [15]. In total we have six layers inside our transformer
encoder. Internally, each layer is composed of a both self-
attention head and feed-forward fully connected sub-layers.
Additionally, each sub-layer is followed by two residual con-
nections and a normalisation operation. The multi-head self-
attention, or the multi-scaled dot-product attention, works
based on the mapping between the so-called ‘query’ vectors
and the pair (key, value) vectors. The dimension of the query
and key vectors is dk, where the values vector dimension is
dv. The attention operation itself is computed by taking the
dot-product between the query and the key vectors divided
by the square root of dk before finally passing them to the
softmax function to get their weights by their values. Since
the scaled dot-product attention operation is done multiple
times, the queries, keys and values vectors are extended into
matrices Q,K,V respectively. The following formula is the
description of how the scaled dot-product attention operation
is calculated:

Attention(Q,K,V ) = softmax(
QKT
√

dk
)V (2)

III. EXPERIMENTS AND RESULTS

In this section, we first present the datasets we utilised
for training and evaluating the performance of our proposed
approach. Then, we provide the details of the setup for
our experiments, the evaluation metrics and the compared
baseline approaches from the the literature. Finally, the
quantitative and qualitative results of our proposed approach
on real-life datasets are evaluated and discussed.

A. Datasets

In this study we use two publicly available real datasets
for the traffic accident risk forecasting problem, namely
NYC1 and Chicago2. As it can be seen from Table I, both
datasets have historical traffic accidents and historical taxi
trips. The historical traffic accident data contains: time, date,
location (latitude and longitude), the number of causalities,
the weather condition (clear, cloudy, rainy, snowy or mist),
the temperature and the road segment data (i.e. road length,
width and type). The NYC dataset has an additional Point of
interest (POI) data regarding locations (i.e. residence, school,
culture facility, recreation, social service, transportation and
commercial). The historical taxi trips include the location
and times of pick-up and drop-offs and this data is used to
calculate the inflow/outflow of the traffic condition in each
area.

B. Experiment Setup

Before we train and evaluate our proposed C-ViT model,
we first pre-process the two datasets. The first pre-processing
stage was to perform a grid representation by dividing each
city map of the two datasets (i.e. NYC and Chicago) into
equally-sized grid cells each with a dimension of (2KM ×
2KM). Secondly, similar to [6], we group all the accidents
that happened in each grid cell based on their location over

1https://opendata.cityofnewyork.us/
2https://data.cityofchicago.org/

TABLE I
DATASETS STATISTICS

Dataset Attributes Range/Count

NYC

Reporting Duration 1 Jan 2013 - 31 Dec 2013
Accidents 147K
Taxi Trips 173,179K

POIs 15,625
Weathers 8,760

Road Network 103K

Chicago

Reporting Duration 1 Feb 2016 - 30 Sep 2016
Accidents 44K
Taxi Trips 1,744K
Weathers 5,832

Road Network 56K

the reported duration time for each dataset (for each grid cells
with no road segments/accidents, we set its traffic accident
risk to zero). Thirdly, we split the data-sets into training,
validation and testing. The strategy we followed for the
splitting is similar to [6], where we use 60% for training,
20% for validation and 20% for testing while making sure
that there is no overlapping accidents based on time (i.e. no
accident happened in specific grid cell on specific time is
shared between the three data splits). It is worth noting that
the traffic accidents periodicity according to the two datasets
was set to 1 hour. Finally, each data split is standardised by
a mean and standard deviation normalisation so that it could
help in accelerating the training process.

Regarding the implementation details of our C-ViT model,
the size of the historical traffic risk maps X was set to
7×20×20 which corresponds to a total 7 historical traffic
accident risks across the city grid with I rows × J columns of
size 20. Here we chose 7 historical accident risks specifically
to conform with the work done in the literature [6], [16]
for a fair comparison provided later in the paper. For each
grid cell, the 7 historical accident risks comes from the most
recent accident risks in past 3 hours in addition to the past
accident risks in the last 4 weeks. The prediction horizon
pf the traffic accident risk was set to 1 (i.e next hour)
similar to [6], [16]. The hyper-parameters for our C-ViT
model itself were set according to the model performance
on the validation split. To that end, the D dimension for
the linear patch embedding, the position embedding layer
and the linear embedding layer of the historical contextual
encoder was set to 64. The resolution of input patches P
to the patch embedding layer was set to 5. The number of
self-attention heads were set to 8 and the final output fully
connected layer of our C-ViT model was set to 128. Since
we formulated the traffic accident risk prediction task as an
image regression task, we have therefore optimised our C-
ViT model during the training phase using a weighted mean-
squared error (MSE) loss function. The reason for using the
weighted MSE loss function instead of using the standard
MSE loss function, is to try to combat the unbalanced nature
of the traffic risk prediction problem, also known as the zero-
inflated problem [19]. The procedure for weighting our loss



TABLE II
PERFORMANCE EVALUATION OF OUR C-VIT MODEL AGAINST A NUMBER OF BASELINE APPROACHES FROM THE LITERATURE OVER THE NYC AND

CHICAGO DATASETS.

Dataset NYC Chicago

Model RMSE ↓ Recall ↑ MAP ↑ RMSE ↓ Recall ↑ MAP ↑
RNN-GRU [17] 8.3375 28.09% 0.1228 12.6482 17.83% 0.0664

SDCAE [16] 7.9774 30.81% 0.1594 11.3382 18.78% 0.0753
H-ConvLSTM [11] 7.9731 30.42% 0.1454 11.3033 18.43% 0.0716

GCN [18] 7.7358 31.78% 0.1623 11.0835 18.95% 0.0805
GSNet [6] 7.6151 33.16% 0.1787 11.3726 19.92% 0.0822

C-ViT (ours) 7.0053 33.86% 0.1875 9.4456 20.93% 0.0980

function is motivated by the focal loss introduced in [20],
where we holistically divided the total training samples into
four distinctive classes based on their traffic accident risk
values. Those risk values are (0, 1, 2, ≥3). Similar to [6],
the loss function weights were set to 0.05, 0.2, 0.25 and 0.5
respectively. In total, we have trained our C-ViT model for
200 epochs using the Adam optimiser with a learning rate
of 0.003 and the batch size was set to 32.

C. Evaluation Metrics

In order to evaluate the performance of our trained C-
ViT model, we utilised the three commonly used metrics
for the traffic accident risk prediction task [6], [21], namely
root mean squared error (RMSE), Recall and mean average
precision (MAP). The three evaluation metrics are calculated
as follows:

RMSE =

√
1
N

N

∑
n=1

(
Yn − Ŷn

)2
, (3)

Recall =
1
N

N

∑
n=1

Hn ∩An

|At |
, (4)

MAP =
1
N

N

∑
n=1

∑
|At |
j=1 PR( j)×REC( j)

|An|
, (5)

where N is the total number of samples to be evaluated,
Yn,Ŷn are the ground truth and the predicted risk values for
all grid cells of sample n respectively. An corresponds to the
set of grid cells of sample n that have an actual/true traffic
accident risk values. Hn corresponds to the set of grid cells
within An with the highest traffic accident risk values. On
the other hand, PR( j) corresponds to the precision of the
grid cells starting at 1 and ending at grid cell j. Similarly,
REC( j) corresponds to the recall value for grid cell j which
is set to 1 in case there was a traffic accident risk at it and
set to 0 otherwise.

Based on the definition of these three evaluation metrics,
we can deduce that the lower the score of RMSE is, the
better is the quality of prediction coming out of the model.
On the other hand, the higher the recall and MAP scores are,
the better is the accuracy of the model.

D. Baselines
We have compared the performance of our proposed C-

ViT model to 5 different baseline approaches from the
literature and in the following we will briefly describe each
approach:

• RNN-GRU [17]: This model is based on one variant
of deep recurrent neural networks (RNN), the gated
recurrent unit (GRU) model. This model casts the traf-
fic accident risk forecasting problem as a time-series
prediction problem and tries to model the temporal
dependency among historical traffic accidents risk.

• SDCAE [16]: This model is based on the stacked
denoised convolution auto-encoder architecture, which
focuses mainly on capturing/modelling the spatial fea-
tures between different cells within a city grid area for
a better prediction of the traffic accident risk.

• H-ConvLSTM [11]: As the name implies, this model
combines both deep convolution layers with RNN-based
LSTM layers to extract the spatio-temporal features of
the traffic accident risk problem by having a sliding win-
dow over the city’s grid cells; this allows to have sub-
regions that could potentially capture the heterogeneity
among the different types of spatial regions.

• GCN [18]: This model is a deep learning model that
relies on graph convolution neural network to represent
the historical traffic accident data as a graph to cap-
ture the long-term spatio-temporal dependency among
historical traffic accidents risk data.

• GSNet [6]: A recent model that learns the complex
spatial-temporal correlations of traffic accidents risk
by using a combination of GCN, LSTM and attention
mechanism. To the best of our knowledge, GSNet is
currently the SOTA method on the NYC and Chicago
data-sets.

E. Results
In Table II, we report the results of our C-ViT model

in comparison to the aforementioned baseline approaches
from the literature over the total testing splits for both NYC
and Chicago data-sets. As it can be noticed, our model has
outperformed all the baseline approaches from the literature
in terms of RMSE, recall and MAP scores over the two data-
sets. It is worth noting from the results, that those models



TABLE III
PERFORMANCE EVALUATION OF OUR C-VIT MODEL AGAINST A NUMBER OF BASELINE APPROACHES FROM THE LITERATURE OVER THE HIGH

FREQUENCY TIMES OF ACCIDENTS IN THE NYC AND CHICAGO DATASETS.

Dataset NYC Chicago

Model RMSE ↓ Recall ↑ MAP ↑ RMSE ↓ Recall ↑ MAP ↑
RNN-GRU [17] 7.3546 30.76% 0.1301 9.0421 18.66% 0.0758

SDCAE [16] 7.2806 31.22% 0.1536 8.7543 20.58% 0.1002
H-ConvLSTM [11] 7.2750 31.43% 0.1498 8.5437 18.93% 0.0770

GCN [18] 7.0958 33.04% 0.1647 8.4484 20.42% 0.0933
GSNet [6] 6.7758 34.15% 0.1769 8.6420 21.12% 0.1052

C-ViT (ours) 6.2658 34.46% 0.1802 7.0353 21.95% 0.1247

(our C-ViT, GSNet, GCN and H-ConvLSTM) which account
for the spatio-temporal property of the traffic accident risk
prediction problem, are the top performing approaches on
the two data-sets.
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Fig. 4. Comparison between our proposed C-ViT model and GSNet [6],
in terms of the number of training parameters.

The closest competitor baseline approach to our C-ViT
model, was the GSNet, which to the best of our knowledge,
was the SOTA on the two data-sets before our proposed
approach. As it can be seen, our C-ViT model has improved
the RMSE, recall and MAP scores in comparison to GSNet
especially across the Chicago dataset by a relatively large
margin. Furthermore, our C-ViT has more competitive ad-
vantage over GSNet in terms of the efficiency. As it can be
shown in Fig. 4, the number of parameters required by our
C-ViT model for training are far lower than those needed for
GSNet (saving more than 23x parameters) which makes our
approach more suitable for real-time deployment.

In order to further evaluate the performance of our pro-
posed C-ViT model, in Table III we report the RMSE, recall
and MAP scores of our model when compared to all the
other baseline approaches over peak hours of frequent traffic
accidents that resulted from the testing split of both the
NYC and Chicago data-sets. Those times of high frequency
of traffic accidents are essentially during morning/evening
rush hours which are within 7:00-9:00 AM and 04:00-07:00
PM. As it can be seen from the reported results, our C-ViT
model continues to achieve more robust results than all other

compared baseline approaches. This further prove the utility
and quality of our proposed approach that it has a consistent
performance across different settings.

IV. CONCLUSION

In this work, we have presented a novel approach for
the task of traffic accident risk forecasting. In our approach
we re-formulated the problem as an image regression prob-
lem and introduced a unique contextual vision transformer
network (C-ViT) that can efficiently model the traffic ac-
cident risk forecasting task from both spatial and temporal
perspectives. The proposed approach has been evaluated on
two publicly available datasets for the traffic accident risk
problem. Furthermore, our proposed C-ViT model has been
compared against a number of baseline approaches from
the literature and it has outperformed them with a large
margin while only requiring less than 23 times the number
of training parameters.
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