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Dong Zhao1, Adriana-Simona Mihăiţă1, Yuming Ou1, Sajjad Shafiei2, Hanna Grzybowska3,
Kai Qin2, Gary Tan4, Mo Li5 and Hussein Dia2

Abstract— A multi-modal transport system is acknowledged
to have robust failure tolerance and can effectively relieve urban
congestion issues. However, estimating the impact of disruptions
across multi-transport modes is a challenging problem due to
a dis-aggregated modelling approach applied to only individual
modes at a time. To fill this gap, this paper proposes a new
integrated modelling framework for a multi-modal traffic state
estimation and evaluation of the disruption impact across all
modes under various traffic conditions. First, we propose an
iterative trip assignment model to elucidate the association
between travel demand and travel behaviour, including a
multi-modal origin-to-destination estimation for private and
public transport. Secondly, we provide a practical multi-modal
travel demand re-adjustment that takes the mode shift of the
affected travellers into consideration. The pros and cons of
the mode shift strategy are showcased via several scenario-
based transport simulating experiments. The results show that
a well-balanced mode shift with flexible routing and early
announcements of detours so that travellers can plan ahead
can significantly benefit all travellers by a delay time reduction
of 46%, while a stable route assignment maintains a higher
average traffic flow and the inactive mode-route choice help
relief density under the traffic disruptions.

Index Terms— multi-modal transport, traffic states estima-
tion, disruption modelling, incident impact analysis, mode shift

I. INTRODUCTION

A. Background and motivation

Resilient cities have recently embraced a fully-connected
multi-modal transport network that gives travellers more
freedom when choosing when, where and how to travel.
However, multi-modal urban environments are also vulner-
able due to the lack of tolerance against an ever-growing
population, an expanding travel demand, a high private
car ownership, deficient transport design, inadequate traffic
control and flawed travelling or driving behaviour [1].

To improve the efficiency of the transport system at a large
scale, the encouragement of a travel behaviour change and
active mode shift is an encouraging option studied recently
[2]. Many other research studies reinforce this initiative by
providing substantial evidence via data-driven, or simulation-
based approaches [3], [4], [5]. The data-driven approaches
capture the real traffic behaviour before and after disrup-
tions, and some applications are used in programs such as:
INPHORMM, TAPESTRY or Travel Smart [6]. Other early
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studies revealed the value of public transport by investigating
the change of traffic states (e.g. section flows, traffic volumes
or travel times) and proposed an entire public transport
service removal when massive public transport disruptions
occur or when service is suspended [7], [8]. Few studies
that consider a simulation approach mention that the change
in the level of congestion before and after the removal
of public transport services would clarify the significance
of public transport [9]. More recently, the unprecedented
COVID-19 pandemic has heavily modified the travel demand
and provided evidence with regards to the impact of traffic
demand across all mode shifts in a city [10].

Challenges: All previous studies solve the mode choice
problem before departing, and most publications provide
modelling methods from a macroscopic or a mesoscopic
level based on a statical analysis. There is little research
into investigating the benefits of an active mode shift from a
dynamic microscopic perspective and its impact when traffic
disruptions occur. A significant gap is present due to the lack
of data regarding the impacted demand under incidents and
active mode shifts. Some studies rely on surveys or a stated
preference obtained ahead of trips to obtain the number of
impacted travellers or the number of mode and route shift
[11], [12]. However, we emphasise identifying the impacted
origin-to-destination (OD) trips affected by disruptions in a
simulating model, and the change of mode and route choice
that leads to a demand change is employed for evaluating
the impact on network performance in our work.

Apart from the lack of data, quantifying the impact of
disruptions is also a major challenge; some research studies
have analysed the change of trip-based mean delay, mean
speed [13] or travel time [9]. However, such indicators can
hardly differentiate the impact from the general traffic (e.g.
recurrent congestion) or from traffic control strategies. To
address this issue, we work across several indicators versus
baseline conditions in order to evaluate the efficiency of the
proposed ones.

Another major challenge of dynamically simulating the
mode shift is the lack of dynamic demand data and the
method of integrating the OD estimation across different
transport modes in order to identify the impacted trips. Most
previous research studies only consider a single-mode [14],
while some research studies model car-based transportation
versus public transportation differently [15]. Extensive ev-
idence considers the OD estimation from a total genera-
tion and attraction data based on the gravity model. This
method has been largely developed with the improvement of
mathematical, analytical and computational skills. However,



Fig. 1: Framework of our proposed multi-modal transport network modelling under disruptions.

the large potential of the gravity model approach in the
transport field has not yet been fully explored, as most
research studies attempted to investigate the OD matrix for
a single transport mode, mostly cars. There is still a need
to consider the influence of other transport modes when
mode splitting and trip assigning under a multi-modal public
transport environment. The challenge of integrating the OD
matrices of various public transport modes with that of
private vehicles is still unsolved.

B. Paper Contributions
In this paper, we propose an integrated modelling approach

comprised of multiple stages, from the data selection and
filtering to the origin-to-destination estimation modelling
across multiple modes, down to a dynamic assignment and
microscopic simulation modelling aimed at evaluating the
impact of disruptions across multiple modes. Finally, we
propose a mode shift impact modelling to evaluate the best
mitigation strategies and employ different disruption impact
indicators such as delay time, flow, density and travel time
for identifying the impacts.

Another important contribution represents the investigation
of the mode shift behaviour according to dynamic traffic
states; more specifically, we provide a method to examine
the change in traffic states and the travel costs due to mode
and route shifts under traffic disruptions. We model the
decision-making en-route and the mode choice relies on
an iterative traffic assignment; this means that, for those
flexible travellers, the route choice is modifiable during
their travelling, and the decision-making is more appealing
than those travellers who are loyal to the initial routing
plan. To summarise, the main theoretical and methodological
contributions of this paper are:

• an integrated OD estimation modelling framework for
multi-modal transport networks,

• a suitable spatial-temporal disruption impact modelling
via a multi-modal transport simulation approach,

• a dynamic traffic assignment model that simulates the
mode shift behaviour via a dynamic demand adjustment,

• an analytic method regarding the mechanism of mode
shift as well as its impact under traffic disruptions.

This paper is organised as follows. In Section II, the dy-
namic trip assignment model is discussed, and the details of
the integrated OD estimation is highlighted in Section II-B,
followed by the methodology of traffic disruption modelling
and the procedures for determining the spatial-temporal
impact of traffic disruptions in Section II-C. The model for
mode shift and impacted trips identification are included in
Section II-D. The application of the proposed methods to a
real network is presented in Section III and the results of
the case study are demonstrated in Section IV. Finally, the
research conclusion and the future directions are provided in
Section V.

II. METHODOLOGY

A. Modelling framework
Fig. 1 showcases our proposed modelling framework

for evaluating the impact of disruptions across multi-mode
transport networks. The framework consists of three stages:
at Stage 0 we collect, filter and aggregate all the input
data-sets (such as traffic flow counts, traffic control plans,
incident logs, etc.); at Stage 1 we propose a multi-modal
demand estimation modelling with the purpose of obtaining
an integrated multi-modal OD demand matrix (see details
in Section II-B); at Stage 2 we further propose a dynamic
trip assignment and demand refinement based on the impact
of transport disruptions (as explained in Section II-C), and
finally, at Stage 3 we construct various mode and route shift
strategies and their impact on the traffic congestion, as further
described in Section II-D.

B. Integrated multi-modal OD estimation (Stage 1)
The multi-modal transport system is firstly modelled by

implementing a four-step demand estimation model but



adapted to multiple public transport modes, as shown in
Stage 1- Fig. 1, including trip generation and attraction (Step
1), trip distribution (Step 2), modal split (Step 3) and static
trip assignment at the macroscopic level (Step 4), followed
by a calibrated travel demand path assignment plan (Step 5).
The study area consists of Z j, j = {1 . . .J} zones, and for
each time period t, the travel demand matrix, which is the
main output of this stage (Output 5), is denoted as:

ODk(t) =
[
T k

i, j(t)
]

Z×Z
, i, j = {1 . . .J}, (1)

where T k
i, j stands for the number of trips originating from

zone i and arriving at zone j at time interval t by transport
mode k. Due to space constraints, we provide the mathemat-
ical modelling of the Gravity-Model for multi-mode public
transport in the supplementary material [16], while focusing
in the following on the incident impact modelling.

C. Disruption modelling without mode shift (Stage 2)

By using the calibrated OD demand from Stage 1 and
the reported incident logs, we further apply a dynamic trip
assignment which re-adjusts and generates a dynamic and
time-dependent OD matrix that is used for: a) evaluating a
baseline scenario where people travel as usual, without any
disruptions (see Output 6), and b) evaluating the impact of
reported accident logs but assuming that people do not make
any changes to their trips, and instead wait for the incident
to be cleared off (see Output 7).

1) Indicators for impact identification: The indicator we
use when determining the impact of a traffic disruption D
on link l during time period t is the ratio of the traffic state
parameter v, which is illustrated by the following formulas:

RD
l (t) =

(
vα

l − vD,β
l

)
(t)

vα
l (t)

(2)

∆vD
l (t) =

(
vα

l − vD,β
l

)
(t) (3)

where vα is the traffic state not affected by disruptions, vD,β
l

is the traffic state affected by the disruption and ∆vD
l (t)

represents the scale of the impact; finally RD
l (t) stands for

the ratio of a baseline versus a disrupted network. The
total number of links in the study area is l, l = {1 . . .L};
α represents the baseline traffic situation; β represents the
situation when the traffic disruption D is impacting the
network at time period t.

To understand the change of traffic states, various indi-
cators such as mean link delay time tdelay

l (t), mean travel
time ttravel

l (t), flow f f low
l (t) or density f density

l (t) during time
period t are used for ratio impact analysis provided later in
the Results section.

The overall traffic disruption in the network that impacts
the traffic states is represented by:

D(t) = g

(
L

∑
r=1

dγ
r (t)

)
(4)

where the impact of the disruption is the function of the
sum of all appeared disruptions in the network during a time
period t; d is the individual disruption event; r indicates
the location of the disruption, r = {1 . . .L}; γ is the binary
parameter that indicates whether the disruption is impacting
or not the link l during t.

Temporal impact identification: The total impact dura-
tion (∆t impact

D ) of the network is the accumulation of the time
period from the time when the travelling of a vehicle is first
impacted by the disruption D (t impact−initial

D ) until the time
when the first vehicle can travel as usual, without being
impact, denoted as t impact−end

D . Therefore, the total impact
duration can be described by:

∆t impact
D = t impact−end

D − t impact−initial
D (5)

with additional constraints with regards to the initial time of
the disruption (tD−initial

D ), the end of the disruption (tD−end
D )

and the parameters of traffic states (vD,β
l and vα

l ):

t impact−initial
D ≥ tD−initial

D (6)

ε

L

∑
l=1

vD,β
l

(
t impact−initial

)
≥

L

∑
r=1

vD,α
l

(
t impact−initial

)
(7)

t impact−end
D ≥ tD−end

D (8)

ε

L

∑
r=1

vD,β
l

(
t impact−end

)
≤ ε

L

∑
r=1

vD,α
l

(
t impact−end

)
(9)

where ε is the factor of impacted traffic state that indicates
the pre-defined level of impact. For instance, if ε is 90%
and the indicator is delay time, the link is assumed to be
impacted by the disruption when 90% of the link delay time
is greater than the delay time for the baseline scenario. As
for the representations of traffic states, such as travel speed,
that are reduced by the disruption, the associated constraints
are switch from Eq. (7) to:

L

∑
r=1

vD,β
l

(
t impact−initial

)
≤ ε

L

∑
r=1

vD,α
l

(
t impact−initial

)
(10)

from Eq. (9) to:

ε

L

∑
r=1

vD,β
l

(
t impact−initial

)
≥

L

∑
r=1

vD,α
l

(
t impact−initial

)
(11)

Spatial impact identification via links: The time impact of
the disruption is captured from a network-wide perspective,
but the spatial impact can be analysed via a link-based
analysis:

SD(t) = [lγ(t)] (12)

where γ is the binary parameter that indicates whether the
disruption is impacting the link l during t; similarly to the
time impact, we define the following constraints when the
impacted links can be identified if:

εvD,β
l

(
t impact−initial

)
≥ vD,α

l

(
t impact−initial

)
(13)

εvD,β
l

(
t impact−end

)
≤ εvD,α

l

(
t impact−end

)
(14)



The impact on the incident duration can be defined by using
the affected links as follows:

∆t impact
l,D = t impact−end

l,D − t impact−initial
l,D (15)

Spatial impact identification via OD matrix: In terms of
the zonal impact analysis, the affected number of trips from
an OD pair can be determined by comparing the OD matrix
with or without the disruption in the road network. The level
of impact on trips is subjected to the ratio of the disparity
of trips travelled between zones in a baseline versus incident
scenario, which is derived from Eq. (2) as follows:

RT
i, j(t) =

(
T α

i, j −T β

i, j

)
(t))(

T α
i, j + ε

)
(t)

,T α
i, j,T

β

i, jandε ≥ 0 (16)

where T α
i, j indicates the number of trips between zone i and

j under a baseline scenario, T D,β
i, j represents the disruption-

impacted number of trips and ε is a small constant that
is added at the number of trips without impacting by any
disruption in order to enable calculation, as in reality, some
of the zone pairs are inaccessible for a specific transport
mode. The different between the baseline and the disruption-
impacted trips is denoted as ∆Ti, j(t). Therefore, if the ratio
of disparity trip is between 0 and 1, then the number of
trips inside the affected OD is reduced; while if the ratio is
negative, the network experiences an increase in the affected
number of trips which can be explained by alternative modes
being deployed in the network by the affected number of
people.

2) Disruption modelling: The impacted travel cost of
every link during time t due to the reduction of link capacity
should be described as a function of disruption duration
(Eq. (15)) and disruption scale (Eq. (12)):

Cl(t) = h(t, l) , l(t) ∈ SD(t), t ∈ ∆t impact
D (17)

This means that, for each impacted link during the incident,
the properties of the link can be highlighted by the capacity
or by the limited travel speed change by time and location.
Therefore, if we assume that the travel cost is majorly sub-
jected to the travel speed, the link closure can be described as
Cl(t) = 0, where the limited travel speed equals zero during
the disruption period; in terms of the simulation of link
capacity reduction, this can be achieved by introducing a
weight to the designed limited travel speed V for each lane
w of the link l, which is denoted by ηl,w. Therefore, the
weighted limited travel speed can be illustrated by ηl,wVl,w.

D. Disruption modelling under mode shift (Stage 3)

1) Mode shift modelling: The commonly used strategies
to minimise travel costs are mode and route shifts. By mode
shift, we refer to the shift of the travel demand between
different means of transportation. Therefore, the objective of
mode shift modelling is to first find the changeable demand
for each transport mode, then adjust it accordingly in the
travel demand matrix in order to evaluate its impact. Such
process is what is illustrated as Step 7 and Step 8 with the
highlighted Outcome 8 in Fig. 1.

Given a scenario of a road network disruption, the per-
ceived travel cost increases, and the decision-making on
mode and route choice is re-decided according to the utility
function. The re-calculated set of the shortest path by a
transport mode will update the travel demand. For the
updated travel demand matrix, the number of impacted trips
travelled by mode k1 due to the disruption is transferred to
demand travelled by mode k2, the number of transferred trips
equals δT k1,k2

i, j (t). Hence, the travel demand by a transport
mode k1 between each pair of zones is calibrated by the
impacted demand:

T k1
i, j (t) = T k1

i, j (t)−δT k1,k2
i, j (t) (18)

With regards to a mode k2, the number of zonal trips is
increased by δTi, j(t), and is denoted as:

T k2
i, j (t) = T k2

i, j (t)+δT k1,k2
i, j (t) (19)

The origin travel demand matrices for transport modes k1 and
k2 are denoted as [T k1

i, j (t)] and [T k2
i, j (t)], separately, while the

mode-shift adjusted matrices can be illustrated by [T k1,δ
i, j (t)]

and [T k2,δ
i, j (t)], for each. We make the observation that a

similar approach can be undertaken regardless of the number
of modes in the network.

2) Loyal and flexible travelling to route choice modelling:
When disruptions occur, the change of travel cost and link
properties will influence the shortest path searching at the
process of trip assignment (see Step 6 in Fig. 1). This logic
captures the reality that travellers value travel costs before or
during their travelling, which is reflected by the frequency of
decision-making on mode and route. Therefore, the travellers
who have loyal travel behaviour tend to travel by following
their initial shortest path, which is searched before depart-
ing; they will not make changes even if disruptions occur.
However, travellers who are more sensitive to travel costs
tend to re-update their shortest path more frequently. The
shortest path searching frequency is denoted by λ , and for
those travellers that are loyal to their daily route, λ equals the
simulation period. This is means that the shortest path is only
calculated once during the simulation period. For flexible
travellers, the λ is set as 10 minutes, which means that the
shortest path is re-adjusted every 10 minutes according to the
updated traffic states. This concept is applied in Scenario 3
and further detailed in Section IV-C. This decision-making
of mode and route can be simulated by a discrete choice
model such as the multinomial logit model (ML) through a
function of utilities of all path alternatives. The impact of
a travel cost change on decision-making can also be well
illustrated by applying a scale parameter to the utility in the
multinomial logit model; therefore, the ML model is adopted
in this research study.

III. CASE STUDY

A. Geography information

The case study model is implemented in the Aimsun
software and represents the city of Tarragona in Spain, which
contains 15 centroids, 71 nodes and 201 links. The nodes



consist of 13 signalled nodes (signalised intersections) and 58
connection nodes (unsignalised intersections or turns). The
links contain 201 road sections, including primary streets,
freeways, ramps, roads, roundabout streets, secondary streets,
urban roads, tertiary streets and toll roads with different link
capacities and pre-defined limited travel speeds. There are
15 bus lines serving this area with 38 public transport stops.
The land use data along with the model is collected from the
census in 2012, and the initial travel cost data is generated
from the trip matrices united in the vehicle for car and public
transport users.

B. Hypothesised disruption details

To showcase our approach, we study the impact of the
traffic disruption that took place at the road section 300,
as highlighted by the red shape in Fig. 2 The definition

Fig. 2: Map of the Tarragona area showing road networks
and the disruption location.
and characteristics of the modelled disruptions are further
categorised and described by the following scenarios, where
Scenario 1 and Scenario 2 intend to explore the conse-
quences of the disruption in time and space, while Scenario
3 attempts to understand the impact of mode shift on the
network performance as well as the network mobility. The
setting details of each scenario and experiment are presented
in Fig. 3 In Scenario 1, we conduct three experiments
categorised by the disruption duration which can last 10, 30
or 60 minutes, according to the Eq. (17) and the explanation
provided in Section II-C.2 regarding the link closure. Any
vehicle impacted by the disruption drops the travel speed
to 0km/h at the section. These experiments are named as
whole lane suspended for 10, 30 and 60 minutes in the next
sections.

Scenario 2 contains a further three experiments defined
by the disruption scale, when only one lane is impacted by
the incident for 30 minutes while the rest of the lanes on
the affected section remain functional, but the travel speed
is reduced to 5, 25 and 30 km/h from 8:00 to 8:30 AM for

each experiment. Such scenarios describe the link capacity
reduction as expressed in Section II-C.2. These experiments
are named as single lane speed drop to 5, 25 and 40 km/h
in the next sections.

In Scenario 3, we block the entire section from 8:00 to
8:30, and the travel speed drops to zero km/h during the
disruption, where the mode choice ahead or after represents
the situation when travellers are notified of the disruption
before departing or after being blocked by a disruption; the
loyal or flexible route choice is represented by the frequency
of the shortest path searching during the simulating period.
There are four experiments included in this scenario:

• Experiment 1 (S3E1): considers the situation when
travellers are notified of the disruption before departing
and make the decision of their mode choice ahead
of the travelling, then choose their regular transport
mode for the entire simulation. The new mode choice
influenced by the disruption is identified by using the
“shifted ahead” travel demand at the beginning of the
simulation (this means that the travel utility calculation
for the shortest path searching only happens once at
the beginning of the simulation). These experiments are
named as mode shift ahead, loyal to route choice in the
following subsections;

• Experiment 2 (S3E2): expresses the circumstances that,
before the disruption, travellers follow the baseline
demand and travel loyally according to their normal
route choice; however, after the disruption occurs, they
choose a new mode choice for finishing their trips.
The travel utility for the shortest path searching is
calculated twice: at the beginning of the simulation
and after the shifted demand is applied at 8:30 AM
(after the disruption occurrence) in order to simulate the
updated route choice for passengers. These experiments
are further referred to as mode shift after, loyal to route
choice;

• Experiment 3 (S3E3): illustrates the same setups as
for Experiment 1 but instead, we are searching for the
best path every 10 minutes to simulate a flexible travel
behaviour for travellers. This experiment is referred
to asmode shift ahead, flexible to route choice in the
following subsections;

• Experiment 4 (S3E4): demonstrates the setups that in-
clude both a mode and a flexible route choice (meaning
all travellers can switch between any type of mode and
also between their routing to finish their destination).
This experiment follows closely real-life behaviour and
is referred to as mode shift after, flexible to route choice
in the following sections.

For all modelled experiments in all three scenarios, the
blockage clear time is estimated based on each vehicle
following the rule that the vehicle departs immediately at
the end of the blockage, which is the end time of disruption
(t impact−end). The earlier arrived vehicles depart ahead of the
later blocked vehicles.



Fig. 3: Details of scenario and experiments.

IV. RESULTS

A. Scenario 1 results: impact of various disruption duration

The results of modelling the impact of various disruptions
according to Scenario 1 are shown in Fig. 4 and Fig. 5.
These two figures demonstrate the time-dependent change
of traffic states, namely delay time, flow and density, using
a link closure as the disruption modelling method (defined in
Section II-C.2). The traffic states ratios shown in Fig. 5 are
calculated by using Eq. (2). The results are compared to the
Baseline states, which allows us to investigate the impacts
of various disruptions from the baseline.

Fig. 4: Impact of various disruption duration on a) delay
time, b) flow and c) density

Fig. 4 and Fig. 5 combines the outputs for the morning
peak hours, where the disruptions occur at 8:00 AM and
last for 10, 30 or 60 mins. The mean delay time shown in
Fig. 4a) shows a significant impact post-accident, especially
after 08:30-9 AM. When comparing the delay time of the
baseline and their impact ratios (Fig. 4a and Fig. 5a) we
observe that: a) for a 10-min disruption ending at 08:20 AM,
there is a delay time ratio of -62, b) for a 30-min disruption
occurring at 08:40, the delay ration quickly reaches -355
(5.72 times higher than that of a small incident); and this
is more severe c) for a 60-min disruption reaching its delay
peak at 09:10 AM, when the delay ration is -1139 (more
than ten times from the baseline).

Fig. 5: Impact of various disruption duration on a) delay time
ratio, b) flow ratio and c) density ratio

B. Scenario 2 results: impact of various disruption scales

The temporal impact of a disruption is also highly related
to the disruption speed scale, as shown in Fig. 6, where
the curves of the delay time, flow and density ratios are
presented. Following the Scenario 2 details from Section III-
B and the disruption modelling method externalised by a
capacity reduction in Section II-C.2, the result indicates that
the severity of the disruption against delay time increases
with the single lane speed drop. From Fig. 6a), we can
see that the delay time increases faster towards the speed
reduction scales. Unlike Scenario 1, the peak delay appears
at the same time (around 8:10 AM) for different scales of
disruptions. This means that the scales of disruption could
hard influence the occurrence of the peak delay. Fig. 6b)
and Fig. 6c) show that the hypothesised single lane speed
drop also has a slight negative impact on the traffic flow and
density. As shown by curves, a speed drop to 25 km/h (grey
curve) results in more flow drop and higher density in the
section than other hypothesised speed drop experiments.

C. Scenario 3 results: impact of mode and route shift

The impact of mode shift is analysed according to the Sce-
nario 3 defined in Section III-B, where the main strategy is
a travel demand adjustment: affected passengers switch from
the impacted public transport to cars following either a loyal
and/or flexible route choice behaviour. At this stage, for those



Fig. 6: Impact of various disruption scales on a) delay time
ratio, b) flow ratio and c) density ratio

experiments applying mode shift ahead of departing (S3E1,
S3E3), the adjusted public transport demand is increased
while the car demand is decreased from the beginning of the
simulation. While for the experiments that apply the mode
shift after disruption (S3E2, S3E4), the demand adjustments
are conducted after the disruption ends. The loyal and flexible
route choice behaviours have been depicted in Section II-D.2.

The shifting on travel demand (Step 7) is illustrated in
Fig. 1 and after another round of dynamic trip assignments
based on the shifted dynamic travel demands via the four
scenarios (Step 8-11), we analyse the Outputs 8-11 which
reflect the impact of mode shift and route shift on the road
network performances, as shown in Fig. 7 and Fig. 8.

Fig. 7 provides a comparison of the estimated travel
demand across morning peak hours (7:00-10:00 AM), for
the following experiments: Scenario 1 Experiment 2 (S1E2:
whole lane suspended for 30 minutes), Scenario 3 Exper-
iment 1 (S3E1: mode shift ahead, loyal to route choice),
Scenario 3 Experiment 2 (S3E2: mode shift after, loyal to
route choice), Scenario 3 Experiment 3 (S3E3: mode shift
ahead, flexible to route choice) and Scenario 3 Experiment
4 (S3E4: mode shift after, flexible to route choice).

As shown in Fig. 7, the mode share maintains the same
for experiments Baseline and S1E2, while after the demand
adjustment ahead of travelling (see results of S3E1 and
S3E3), the shares of car increase more dramatically than
the demand adjustment after disruption (see results of S3E2
and S3E4) when the demands for public transport decrease
contrarily. The impacts of mode and route shift on traffic
states are further discussed in following Section IV-C.1 and
Section IV-C.2.

1) Impact of mode shift: The impact of mode shift is
compared by analysing the delay time ratio R((tdelay

l (t)), the
flow ratio R( f f low

l (t)) and the density ratio R( f density
l (t)),

based on experiments S3E1 and S3E2. As shown in Fig. 8
a), both modes shift ahead and after the disruption benefit the
travellers by reducing delay time, and the mode shift ahead
(S3E4) is slightly superior to mode shift after (S3E2) as can

Fig. 7: Comparison of travel distribution by transport modes

be observed by analysing the timing around 8:50 to 9:30
in this case. By looking at the curves of flow ratio (Fig. 8
b)) and density ratio (Fig. 8 c)), both mode shift strategies
increase travel flow after disruption and ease the traffic
congestion. The curves of flow ratio indicate that before and
during the disruption, the mode shift ahead increases the
flow, but due to the extra demand, the performance of the
post-disruption congestion relief is limited. An interesting
phenomenon is that, right after the disruption, the road
section is free of the vehicle; this enables the initially
released vehicles to run in a free-flow situation, which results
in a peak of flow that is even higher than the Baseline
situation. The density curves in Fig. 8c) indicate that shifting
modes after the disruptions is more efficient on easing the
congestion because the bottom density ratio is reduced to
−0.24 for S3E2 (see grey curve) while for S3E1 it can
only touch down to −0.33, and the bottom density ratio is
−0.34 for S3E3 (yellow curve) while for S3E4 it is −0.39,
comparing with the ratio of Incident 30 (dark blue curve) is
−0.56.

Fig. 8: Comparison of the impact of mode and route choice
on a) delay time ratio, b) flow ratio and c) density ratio

2) Impact of route shift: The route shift is modelled using
a stochastic route choice, where trips can be assigned to
the network after the shortest travel path for each trip, as
introduced in Section II-D.2. To understand the impact of
route shift on network performance, results based on S3E1
verses S3E3, and S3E2 verses S3E4 are selected accordingly.
The significant benefit in delay time reduction can be ob-
served when applying the S3E4 with mode shift applied after



disruptions and flexible route choice behaviour, where the
delay time ratio is reduced to -2.67 and the ratio of flow is
reduced to -0.25 (see Fig. 8 a) and b)). According to Fig. 8 c),
the higher density ratio appears on the curve of S3E2(-0.24),
which indicates that the strategy with flexible route choice
with mode shift ahead performs much more gratifying.

V. CONCLUSION

This paper proposed an integrated multi-modal hybrid
modelling framework that embeds the four-step model es-
timation with a dynamic demand estimation and mode shift
approach. This framework demonstrates the potential ability
to model real-time disruptions, their impact and an evaluation
of mode shift and route shift in a multi-modal environment.
We consider the essential of dynamical microscopic trans-
port simulation and propose a methodology to identify and
quantify the temporal-spatial impact of transport disruption.
For the spatial impact analysis, we proposed a method to
detect the impacted trips between OD pairs. This permits
us to simulate the mode choice behaviour without starting
from the static demand estimation, which, therefore, does
not require more land-use data. The results and findings
generated from this research study evidence that public
transport does make travel more accessible, especially when
disruption is suspending the traffic. The mode and route
shift benefit the transport system by increasing the flow and
effectively reducing delay time and density. Future investi-
gations could cover the topic of examining more types of
disruptions by duration or location by links. The theoretical
link-based disruption impact estimation method is proposed
in this paper, but the paper falls under statistical analysis
following this idea. More investigation towards impact prop-
agation into the network through links could be a good sub-
direction. The impact of dual or multiple disruptions on
network performance is also underestimated in this paper.
We limit the work only by considering the single disruption,
single land closure and single road section closure. The
method to quantify the impact of multiple disruptions in the
network is also required. Investigating data-driven methods
for impact measurement and model calibration is another
highly recommended direction.
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