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Introduction

Why is hard to manage incidents?

a) random planned and unplanned events can severely disturb regular traffic
conditions

b) the spatial structure and layout of the network can induce high complexity in
the localisation of traffic count stations and the reported incidents

c) the spatial and temporal distribution of traffic flow can induce direct and indirect
congestion propagation patterns

d) missing or erroneous data due to varying equipment functioning state, or
iInconsistent human reporting.

e) traffic forecasting is a necessary step for efficient network operation and is an
integral part of intelligent transportation systems (ITS) applications.



Introduction

Main critical functionalities for an incident management platform:
a) Provides fast insights into the current traffic states
b) Predicts the evolution of traffic congestion under disruptions

c) Is able to simulate various scenarios of how to manage the disruption in real
time

d) Is able to compare and optimise the best response plans that traffic operators
need to take in order to clear the affected area as soon as possible

e) Can be used for BOTH intervention and planning purposes.
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Methodology
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OD Demand Estimation

The most crucial input for any DTA We express the problem mathematically as follows:
models is the origin-destination (OD) trip
table.
T
The success of the DTA application relies 2692 b At
on the quality of OD demand matrices. min . z Z(x %)+ (1 - w) Z Z(ya ~ Ya)
€l t= aeA t=1

Estimating the OD demand by using link (1)

traffic data is a popular approach and far

superior to doing the conventional travel z z Py (X)xl-t
surveys which are slow and expensive. =
Many studies proposed a bi-level where,

optimization formulation where the
feedback of demand changes is
evaluated by an assignment model yL, vyt are the observed and estimated link flow in link “a” at a time period h (a € A,
iteratively . h=[1.T])

xf, x! are the initial and estimated demand flow of OD pair i (i € /) at time period t,

pal is the assignment proportion of x! that passes link “a” during a time period h,

w is the reliability weight on the initial demand data.



OD Demand Prediction

Several Machine Learning models have been applied (Geron, 2015)
« Support Vector Machines (SVM) — used for both classification and regression and can deal with noisy data sets

* Decision Trees (DT) — are non-parametric supervised ML algorithms which divides the data sets in subsets based
on specific thresholds

« ARIMA - traditional time series prediction using the autoregressive moving average

« Extreme Gradient Boosting (XGBoost) — is a tree based algorithm with a boosting enhancement on the objective
function

« Random Forests (RF) — ensemble learning methods using a multitude of decision trees at training time and
outputting the class that is the mode of the classes (classification) or mean average prediction of individual trees
(regression),

* kNN (k-Nearest Neighbors) — used for both classification and regression which analyses the k closest training
examples in the data set,

« Light Gradient Boosted Model (LGBM) — uses tree based algorithms, etc.
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Case studies

Victoria corridor sub-network. Green points show
signals equipped with SCATS count detectors
(measured traffic data). Red line demonstrates the main
Victoria corridor

1,310 links and 428 nodes

81 signalized intersections with the adaptive SCATS control
system running

4-h morning peak hours from 6:00 to 10:00 AM.

1,262 OD pairs with various demand profiles — one ML for
each OD pair

modified multinomial logit model as an advanced stochastic
route choice model (Aimsun, 2013)

Maximum five shortest paths are calculated using Dijkstra’s
label-setting algorithm.

Aimsun modelling tool.



Case studies
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Victoria corridor sub-network. Green points show
signals equipped with SCATS count detectors

(measured traffic data). Red line demonstrates the main
Victoria corridor



Case studies
Input transport data for the microsimulation model

Traffic count: SCATS (arterials) traffic counts,

* Public transport plans — using GTFS data,
« Signal control plans —using SCATS signal timing,
« Travellers demand: Origin-destination of private vehicle users,

* Incident data logs: includes the incident location ([x,y] coordinates),

Outputs of the microsimulation model

network or individual link travel times,
assigned link traffic volumes,
network/link delay

speed/density, etc.



Case studies

Demand Estimation Results and model validation
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Figure 6. Simulated versus observed traffic flows after the rolling horizon OD estimation (a)
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Figure 7. Absolute flow errors versus observed flows.
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Case studies .

Demand Prediction results v

Table 2. Predicted demand using different predictors.

Prediction window
Predictor ;'5 r:liﬂ iﬂ r:lin 45 r:lin a0 r:lin
ofal \rap Total g Toal g Tetal g
SITOor e1ror eIror eIror

Max=21 762 0.81 2785 079 2278 0.81 3077 Q.82
Max=5 606 0.65 1152 0.61 1743 062 2533 068
unconstraint 660 0.70 1216 0.65 1816 0.65 2645 0.70
RBF (C=0.1) 1381 147 2613 140 3738 133 4797 1.28
Sigmoid (C=0.1) 1592 1.71 3017 1.67 4519 154 5545 148
Linear (C=0.1) 832 0.89 1676 0.89 2462 0.87 3327 0.89
Linear (C=1.0 852 0.91 1693 090 2490 0.89 3376 0.90
(1,0,0) 869 0.93 1652 0.88 2459 0.87 3377 090
(2,0.0) 883 094 1678 090 2517 089 3509 093
0,0.1 1009  1.08 1876 1.00 2762 098 3864 1.03
Tree 556 0.59 1033 1579 056 2237  0.60
Linear 1141 1.21 2336 1.24 3471 123 4640 1.24
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Case studies

Incident Impact analysis
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Case studies .

L )
San Francisco Incident Duration Prediction %

San-Francisco network

v San-Francisco, All roads, All-to-all
Muodel baseline LT ilF elF 1LOF eLOF LT-ilF  LT-elF LT-iLOF LT-eLOF Winner
LGBEM  30.6 296 322 30.9 31.0 33.7 30.1 29.7 30.3 29.1 LT-eLOF
RF 3R8.2 284 393 38.9 36.1 364 29.2 28.9 29.1 28.5 LT
LE 131.4 70,9 1330 133.1 127.6 127.3 71.5 T71.3 T0.8 69.3 LT-eLOF
GBDT 434 30.1 453 44.9 439 42.2 32.1 31.4 32.7 314 LT

., KNN 64.0 473 640 63.9 61.7 62.8 478 46.7 47.0 46.2 LT-eLOF
XGB 38.0 31.7 368 35.6 33.7 38.6 33.1 31.2 33.0 314 LT-elF

Best LGBM RF LGBM LGBM LGBM LGEM RF RF RF LGBM

1501

Our models can predict with an
accuracy of +/- 5 min the duration of
an accident in San Francisco
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Contributions

e Proposed a prototype for an incident management platform using integrated data-driven and dynamic traffic
simulation modelling;

e Estimated day-to-day OD flows for the OD demand prediction module when an incident occurs. We propose several
machine learning models for OD demand prediction to reinforce the traffic simulation;

e Deployed traffic micro-simulation modelling according to real-life adaptive signal control by applying the same
controllers’ logics to simulated vehicles.

e Predicted incident durations using several machine learning models with enhanced features and obtained Smin

accuracy in prediction for San Francisco.
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