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Introduction

Globally:
Traffic congestion has reached unprecedented peaks in majority of large urban areas in the world!
Top 10 most congested cities have reached up to 140% of congestion in October 2019.

1 o Mumbai == India 65% >
2 o Bogota m= Colombia 63% Bt >
3 o Lima Il Peru 58% Euk:kD >
4 o New Delhi == India 58% >
5 o Moscow region (oblast) B Russia 56% >
6 o Istanbul Turkey 53% >
7 o Jakarta ™= Indonesia 53% >
8 o Bangkok == Thailand 53% >
9 o Mexico City Bl Mexico 52% =i >

Source: TomTom Live Congestion Index https://www.tomtom.com/en_gb/traffic-index/ranking
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Introduction .

Australia: &

« Sydney is the country’s most congested city when average speeds are compared to free-flow speeds

« The cost of congestion to the national economy is projected to rise to $37.3 billion by 2030 without major policy
changes
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Open Questions:

a) How to efficiently predict road traffic congestion using extensive data-driven techniques which can
adapt to real-time big-data sets?

« Parametric models: Kalman filtering, ARIMA[2]. SARIMA[4], ARIMAX[4], etc. Stochastic and disruptive events
can affect accuracy of parametric models.

* Non-parametric models : k-nearest neighbours [6], support vector regressions [7], artificial neural networks, [8],
Gaussian Processes [9], etc.

b) What are the best techniques that can capture the spatial-temporal correlations arising in complex
traffic networks?

c) Why are some models efficient for short-term traffic prediction, but not for long-term prediction?

[2] M. V. D. Voort, M. Dougherty, and S. Watson, “Combining kohonen maps with arima time series models to forecast traffic flow,” Transportation Research Part C, vol. 4, no. 5, pp. 307 — 318, 1996.

[4] A. M. Khoei, A. Bhaskar, and E. Chung, “Travel time prediction on signalised urban arterials by applying sarima modelling on Bluetooth data,” in Australasian Transport Research Forum, 2013.

[5] B. M. Williams, “Multivariate vehicular traffic flow prediction: Evaluation of arimax modeling,” Trans. Res. Rec., vol. 1776, no. 1, pp.194-200, 2001.

[6] H. Chang, Y. Lee, B. Yoon, and S. Baek, “Dynamic near-term traffic flow prediction: system-oriented approach based on past experiences,” IET Intel. Transport Systems, vol. 6, no. 3, pp. 292-305, 2012.

[71Y. Jeong, Y. Byon, M. M. Castro-Neto, and S. M. Easa, “Supervised weighting-online learning algorithm for short-term traffic flow prediction,” IEEE Transactions on Intelligent Transportation Systems, vol. 14, no. 4, pp. 1700-1707, 2013.
[8] M. Karlaftis and E. Vlahogianni, “Statistical methods versus neural networks in transportation research: Differences, similarities and some insights,” Trans. Research Part C, vol. 19, no. 3, pp. 387 — 399, 2011.

[9] D. Ide and S. Kato, “Travel-time prediction using gaussian process regression: A trajectory,” in International Conference on Data Mining, 2009, pp. 1185-1196.



Deep Learning Challenges:

a) Scalability of DL models for large scale and real-life deployment
b) Relationship between the training and the prediction horizons

c) Deploying hybrid deep learning models that combine both spatial
and temporal modelling
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Methodology

a) Motorway road
insfrastructure
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Methodology

a) Motorway road b) Data profiling and c) Multiple couting stations
insfrastructure Outlier identification Feature generation
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Methodology

-R ... t-2 t-1 t t+1 t+2 t+P
|:| |:| I 3min |:| |:| |:|
\ ) ) | |
[ Y TABLE I: Summary of notations.
R=training horizon P=prediCti0n horizon Notation  Interpretation
N the total number of stations used in this study (N =
208 comprised of 104 in each direction).
TI a 3-min Time Interval; the time is discretized into
'X* L] - —R+1 t—1 ¢ 3-minute time intervals (480 T1 per day).
1 X X Y i p AP Ot ~ s P1T R the length of the time window in the past; the
X’zr YT—R—l Yi‘—l o X = X Xq f ey Xy ] number of Tr used as historic information.
X' = — |72 72 S P future prediction horizon; predictions will be made
_ for the P" Ti in the future.
X,‘Mf Ii;h.f_R_l . .Yif_l .Yi r xi,-_r the traffic flow of station j at Ti=r—i,i € {0,...R}.
SR o ’ o S the traffic flow for ALL stations at Ti=17—i,i €
{0,...R}: an N-dimensional column vector § =
[t! i r{ r ’*N_]T'
X! the observed traffic flow, for all stations for the

past R T1, an R x N matrix (see Eq. (1)).

RMSE the Root Mean Square En'or evaluation metric;
RMSE =/ + ), (- F;)°

ReLU(x) The ReLU functlon ReLU (x) = max(x,0)




Methodology
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Methodology

a) Back-propagation Neuronal Networks (BPNN):

BPNN consists of two fully-connected layers. The input of first layer is the historical information of all stations,
and the last layer’s output is the prediction of the traffic flow across all monitoring stations.

In this work, BPNN is mainly used as a lower bound DL performance measure, and it serves to assess the
performance gains obtained when implementing the more complex models detailed here below.

b) Convolutional Neural Networks (CNN):

Input: X

Output
Fully
Convolution Convolution Connected
+RelU +RelU Flatten Layer
— e — » »>
Filter=3x3x10 Filter=3x3x5
Stride=1 Stride=1
No Padding No Padding
Matrix Size: RxN (R-2(M-2)x10 (R-d4)(MN-4)1x5 N

Fig. 2: CNN model for traffic flow prediction.



Methodology

c) Long Short-Term Memory Networks (LSTM):

d) Hybrid CNN-LSTM prediction:

<
%
s
Fully
LS LSTM LS
#A# R+1.. #4 ~+ Connected output
—-t R+1
Fig. 3: LSTM model for traffic flow prediction.
BtR+1 at—
(ST Fully
F-R+1 . -1 Connected — output
Layer
F-R+1
~ Convolution )
A ——————— i
where ¢ Filter=1x3 i
Stride=1
No Padding

Fig. 4. CNN-LSTM hybrid model for traffic flow prediction.

Footer content here




Summary

3. Case Study
1. Sydney M7 motorway traffic flow
2. Daily Profile and traffic flow map



Daily profiling and outlier identification vy

50A: Tuesday daily profile and outlier 02A: daily profiles of days of the week

35]]' | X i m} . I

M' m

2500. 2500
% 1500 1500
|_

1000 1000

500 500

0. ik i o
0:00 2:00 4:00 &:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 24:00 0:00 2:00 4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 24:00

(a) (b)

Fig. 5: (a) Constructing the daily profile. Mean (solid line) and the 20% — 80% percentiles (red area) for the traffic flow series for the
station 5024, computed on the period 2017-02-01 to 04-30; (b) Daily profiles for days of the week. The daily profiles for station 022 for
each of the days of the week, computed for the same period of time. (¢) Daily profiles for all stations — the Traffic Flow Congestion
Map. The colormap of the Monday traffic flow for all 104 south-bound (A) stations is calculated based on a Flow/Capacity ratio and
ranges between 0 and 1.

U T s Footer content here
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4. Experimental setup



Experimental Set-up

1) Prediction setup - 36.34 million data points

selrchend wiwtions” Fow in 200 T-03-01]

Lo ]
Ll ]
L= latie =t ]

250000 | Training Validation
- l\._ | Testing
200000{ = ~--Y¥_____ - e — S -

150000 4

Missing points

10
I —a

(a)

Fig. 9: Missing data in the Sydney Motorway traffic flow dataset. (a) The traffic flow for 1..of February 2017, for
three contiguous stations (80B, 81B and 82B) with no entries and exits in between. 81B is showing missing data.
(b) The total number of missing data points, aggregated per month.



Experimental Set-up

2) Other baseline models:

1. Daily Profile Prediction (DPP)

2. BPNN for separate station prediction (Sep-BPNN) — applied separately for each station; each model has
10 Hidden layers

3. ARIMA(p = 2;d =1; q = 0) — after selection from p = {1..5}, d in{1..5}, q in {0..3}

1. pis the parameter of the autoregression
2. D is for the degree of differencing (the number of times the data have had past values subtracted) and

3. q controls the moving average.

Total: 7 comparisons: DPP, ARIMA, Sep-BPNN, BPNN, CNN, LSTM, CNN-LSTM



Experimental Set-up

3) DL implementation and hyper-parameter selection:

By varying t on a dataset with n time points, we obtain n-R-P+1 pairs of inputs and outputs.

Ex1. R=2, P=1 FR . t2 1t t+1 t+2 P
Ex2. R=3, P=2 | |
Y Y

Our experimental range : R ={1...30}, P = {1,...10}

Total:

« Training : (42,721-R-P) + (44,161-R-P) combinations (2 contiguous training periods),
« Validation set: (14,401-R-P) pairs

« Test set: (14,881-R-P) pairs.



Experimental Set-up

c) DL implementation and hyper-parameter selection:

- Hyper parameters are tuned on the validation data set:
- we vary the batch size in the range [20;30;40; ...75;100] and we obtain a value of 50.

- learning rate is 0:0003 and the weight of the L2 regularisation term is 10-8.
- implementation in PyTorch [17], using the Adam optimiser which provided a better performance than SGD or

AdaGrad.

Given a value of the prediction time horizon P, we train the model 5 times and we calculate the average
accuracy on the validation dataset. We select as the best R the value that achieves the highest average accuracy

for the current P.

Open questions:

how much should we learn from the past to achieve best prediction results?

how long in the future should we predict?

is the size of the past horizon affecting the prediction results?

what is the relation between R, P and the performances of the advanced DL models?

BN~



Experimental Set-up e
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4) Performance evaluation:

 Root Mean Square Error (RMSE),
 Mean Absolute Error (MAE) and

« Symmetric Mean Absolute Percentage Error (SMAPE). 200
150 -
0 5 10 o 15 20 25 30
(a)
TABLE II: The time spent on training our models [sec] o 16 — 80% percentile
E —— 209 percentile
BPNN CNN LSTM  CNN-LSTM 14 -
¥
Mean 101.190 219452  302.105 382.538 %12_
Std 28.304 61.610  100.960 107.722 =
=
e 107
S
0 5 10 15 20 25 30
=

(b)

Fig. 10: Training time (a) and epochs to convergence (b) required
by LSTM, with multiple values of K. The shaded area indicates the
20% — 80% percentiles interval.



Summary

5. Results
1. Model performances
2. Past vs future time horizon analysis



Results — Model performance SMAPE Loss

[] ] 284 — 5
Prediction performance A o
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Fig. 7: Prediction performance for all models (Oy axis), for -
creasing future time-horizons P (Ox axis). The zoom expands the
performance of DL models. The y-axes show the RMSE of each
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Results — Residual analysis o
<,
%
40A: Predicted flow and residuals for 2017-10-18
(a) 3min (P = 1) (b) 15 min (P = 5) (¢) 30 min (P = 10)
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Fig. 6: Observed and predicted traffic flow, and residuals for 3 min (a), 15 min (b) and 30 min (c) for station 40A on a weekday.

Max error of 10.8% in AM/P peaks

Footer content here




Results — Residual analysis >

Prediction performance (multiple time horizons)
(@) CNN (b) LSTM (C)CNN_LSTM

P=10 240

2204
2001
w
w
=
['4
180
160 160 160

P:M 140 w w
140- 140

56 7 8 9 1011121314 151617 18 19 20 21 22 23 24 25 26 27 28 29 30 12345678 910111213141516171819202122232425262728293 123 45 6 7 & 0101112131415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
R R R
(c)

Footer content here




Results — Best R for each P

LSTM and the hybrid CNN-LSTM make

use of larger past time horizons even when making short-

term predictions.

P=3:

The best LSTM uses 69min in the past (R = 23), while

CNN only uses 18min in the past (R = 6)!

This may prove problematic when long historical data is not
available, in which case CNN and BPNN might provide

better results.

Best R foreach P
(c)

3]:' -

24
] \
20 1
18
16 ]
14 7
12 ;
10 1 /!
8 Vi

ﬁ -
4]
2

t ﬂ\/\f"

BFMN

—-- CNN

— LS5TM
CNN-LSTM

g 10



Conclusions

DL provides overall good prediction accuracy for a large number of traffic flow counting stations

Model usage should be based on past learning horizon and future prediction horizon (adapted to its
functionality):

« LSTM and its variants learn long-term trends and require longer histories, while

* CNN learns spatial correlations from short histories.

LSTM has the best predictive performance, despite having competed against a hybrid model combining CNN
and LSTM

The more complex deep learning models do not improve the prediction accuracy for our motorway flow
prediction study.

Future work

Designing traffic flow-based detection methods for stochastic events which can massively disrupt the traffic flow
along motorways

Early anomaly detection

Graph-based prediction approaches
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