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Introduction

1. Almost 60% of traffic congestion is due to non-recurrent incidents [1]
2. Australia - the annual economic cost of road crashes = $27 billion/y (2017) [2]

3. Various factors can influence the duration of traffic disruptions: location, time of
day, severity, fatalities, proximity to public facilities, weather, etc.

4. Traditional methods for incident duration prediction:

linear/non-parametric regression models [4],
Bayesian classifiers [9],

discrete choice models (DCM) [6],
probabilistic distribution analyses [7], and

the hazard-based duration models (HBDM) [8]

5. Majority of work — undergone for motorway incident prediction/

[1] D. a. L. Schrank, T., "The annual urban mobility report," College Station, TX: Texas Transportation Institute2003

ment. 2017 25/07/2018). Road Safety. Avallable https://infrastructure.gov.au/roads/safety/

-time traffic advisory and route guidance to manage borman incidents on-line using the hoosier helper program " Purdue University, School of Civil Engineering2000.
Duration Prediction," presented at the TRB 86th Annual Meeting, Washington DC, United States., 2007.
Freeways Based on Discrete Choice Model," in 2010 International Conference on Electrical and Control Engineering, 2010, pp. 3826-

zﬁaﬁon Research Part A: General, vol. 23, no. 5, pp. 387-396, 1989/09/01/ 1989.


https://infrastructure.gov.au/roads/safety/

Challenges

* How to accurately predict incident duration on arterial roads and regular streets
in a large city?

* How to integrate traffic flow information in the prediction process? What road
sections and from what timespan (before/after the incident was reported)?

» \What would be the most influential factors which affect the incident duration that
traffic centres need to prioritise for a fast and efficient incident clearance ?
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Victoria Road Incident Duration Prediction — Sydney, AU

3. Data sources

- one year (2017) of traffic incidents reported by the Traffic
Management Centre (TMC) in Sydney.

- contains 5,134 records of various planned and unplanned
incidents:

hazards,

road closures to

accidents and

maintenance work.

- we focus on incidents labelled as “Accidents” — they induce
the longest clearance time in the current subnetwork

Legend
@ inodent_duration < Smin
Q incident_duration in [5,30]

- Total =574 accident records @ incdent_duraton in (30, 45]
. . ® inadent_durationin [45, 100] min
- mean duration of 44.59 minutes, a @ incdant dhraton >=100min

-  maximum duration of 719 minutes.

Fig 1. Heat-map the “accident duration”
distribution in the Victoria Rd subnetwork.




Victoria Road — Sydney, AU

3. Data sources

- one year (2017) of traffic incidents reported by the Traffic
Management Centre (TMC) in Sydney.
- contains 5,134 records of various planned and unplanned
incidents:
- hazards,
- road closures to
- accidents and
- maintenance work.
- we focus on incidents labelled as “Accidents” — they induce
the longest clearance time in the current subnetwork

- Total =574 accident records
- mean duration of 44.59 minutes, a
-  maximum duration of 719 minutes (12h).

Categories Featurer/explanation Falue dataset
Accident Location {#H, Y} in GDA Lambert coordinates
Hour of day 10,1,...23}
Peak Hour {10}
Day of wask 113}
Waakend {0,1}
Momth of tha Year {12...12}
Type {Accident}
Subtyps {Bus, car, bicyele, animals, etc}
Affacted lanas {Hull, 1 lane, 2 lanes, 3 lamesz, 4 lanes, All
lanas, breakdown}
Direction {East, West, North, South, E-W, -5 One
Direction, Both Directions}
Severity {1.2...10%

Weathey

Event:

Area geomstry

Incident Sourcs

Unplannad

Avarage Tamperature
Fainfall

Public holidays

Sector ID
Tiliams.
Section ID
Section Speed
Section Lanes
Section Capacity
Section class
Street ID
Interzaction ID

Distance from CED

11,23}
{0-plannad, 1-unplanned}

ranging from {11.13°C - 32.4°C }

ranging fom {0 — 83mm}

{0-mo, L-vas}

As defined by TMC

Lz defmad by BTS (Burean of Tramespert
Statiztics)

R,

R, [Emh]

101,234,536}

10, max 3100 vehicleshour}

Az defined by TMC

Az defined by TMC

As defined by TMC

R, [Em]
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3.1 Data sources

Density
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- majority of accidents are cleared off in less than 30 min

(291 out of 574) L

0.000

- incident duration is long-tail distributed, with the longest T B et duraton T
10% of the incidents (57 out of 574) spanning between Empirical CCDF of incident duration

100 and 719 minutes T

0.200 0.500

- ECCDEF - incident duration presents two different
regimes given by different slopes to the right and left of
a threshold T (identified to be revolving around
45minutes) .

ECCDF
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0.002 0.005
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Fig2
a) Accident duration distribution and

b) Empirical Cumulative Distribution Function of the accident
duration.




Victoria Road — Sydney, AU

3.2 Adding in traffic flow features

SCATS traffic counts available for the whole 2017 on all
road sections in the Victoria Subnetwork area — 15’
frequency.

The data from each detector is summed according to their

installation location to generate the flow data for the
corresponding road section.

not all sections are equipped with SCATS detectors. There ' |

are 2,672 road sections in the model, 85 signalized
intersections with the adaptive SCATS control system
running, and a total of 4,256 SCATS detectors.

some incidents are reported in locations with no traffic flow
information




Victoria Road — Sydney, AU

3.2 Adding in traffic flow features

- The data from each detector is summed according to their
installation location to generate the flow data for the
correspgnding road section.
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Victoria Road — Sydney, AU

3.2 Adding in traffic flow features

- 3 measures of traffic flow were used:
- a) the reported real-time flow from the 15-min time-interval when the incident was reported (TRF),
- b) the traffic flow corresponding to 1 hour prior to the accident (TFH) and
- ¢) the 15-min to 1 hour traffic flow ratio on each section computed as TFR=TRF/TFH, (a TFR =zero

=> high congestion as the real-time flow decreases considerably close to the accident start-time as
compared to the flow 60 minutes earlier).




Victoria Road — Sydney, AU

3.3 Feature Scenario construction

Baseline Feature Set (BFS): uses all the feature information from Table 1

Feature Set A (FSA):
BFS + flow counts from TRFi, TFHi, TFRIi, i € {1, N,},), where N, = total number of road sections).
This resulted in the addition of almost 700 extra features in the model training.

Feature Set B (FSB): BFS + the traffic flow from only the top 5 closest road sections to the incident
location (TRFi, TFHi, TFRi, where i € {1,..5}).

Feature Set C (FSC): BFS + the aggregated traffic flow from the top 5 closest road sections (TRF,, 5 =
?_1TRF;, TFH;op, 5 = X7 TFH;, TFRyop 5 = Yi—1 TRF;).

Feature Set D (FSD): BFS + the traffic flow extracted from all the sections in the vicinity of the reported
location of the incidents (TRFq, = Y., TRF;, TFHq, = Y1, TFH;, TFRq, = Y1, TRF;, where
N, is the total number of road sections in the selected area and

is the distance from the location of the incident to the closest road sections; {100m, 200m, 300m, 500m,
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4. Methodology
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4. METHODOLOGY

Baseline Incident Feature Data —§—>»Incident Classification Prediction

p!

Latest Traffic Flow Feature Data

Long-term Trafflc Flow Feature Data
Graph congestion propagation .
Natural Language Processed Features

Fig 3 Bi-level incident prediction framework.




4.1 Incident duration classification

i=1,.N .
X = [xi,j]{_l N_f the matrix of model features,
=1,.N;

where N; is the total number of incidents used for training the models, and
Nf 1s the total number of features to be considered.

Y = [y;]i=1,n,, Incident duration vector

where y; is the duration (in minutes) of an incident occurring at a specific time.

The classification problem is to predict ¥ from X, more specifically predict if y; takes one of the following
values:

L )L ifyiﬁlz (1)
Yo, ify; > Y

where Y represents the 45min incident clearance time.
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4.1 Incident duration classification
Methods:

+ k-nearest neighbours (kNN)[14] - doesn’t require specific assumptions about the data distribution or
characteristics of the variables to learn,

+ logistic regression (LR) [13] - focuses on the conditional probability distribution of the predicted variable
given its set of features,

« random forests (RF) [23] — randomly selects observations/rows and specific features/variables to build
multiple decision trees and then average the results.

« gradient-boosted decision trees (GBDT) [16] — from the entire dataset, uses all the features/variables of
interest to build decision trees where the leaves are the final predicted class.

« extreme-boosted decision trees (XGBoost) [17] — enhanced version of GBDT with a regularization
parameter in the objective function.

[13] G. Valenti, M. Lelli, and D. Cucma "A comparative study of models for the incident duration prediction," European Transport Research Review, vol. 2, no. 2, pp. 103-111, 2010/06/01 2010.
B. Han, and S. Y Chen "Traffic Incident Duration Prediction Based on K-Nearest Neighbor," Applied Mechanics and Materials, vol. 253-255, pp. 1675-1681, 2013.
Influential Factors for Freeway Incident Clearance Time Prediction Using the Gradient Boosting Decision Trees Method," IEEE Transactions on Intelligent Transportation Systems,

edings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, California, USA, 2016.
icting. Incident Duration Using Random Forests," presented at the Transportation Research Board 97th Annual Meeting, Washington D.C.,



4.1 Incident duration classification

We perform a five-fold cross-validation (5CV):

» the dataset is randomly divided into five subsets (or folds), each containing the same proportion of the positive
and the negative class (e.g. stratified folds).

lteratively, each fold serves as a test set, while the remaining four folds are used as training set.

The model parameters are fit on the training set, and the predictions of the incident durations are obtained for the
test set.

Evaluation:
_ TP+TN

= S TTNTFPIEN- ratio of correct predictions over all prediction; sensitive to class imbalance

TP

TS how many of the predictions made by the learner are correct

TP

R = TDTEN - how many of the correct (e.g. true) examples were correctly predicted by the learner
2PR

F1 =" : mean of Precision and Recall; to maximize F1, the learner needs to have simultaneously a high
P+R

Precision and a high Recall




4.1 Incident duration regression

%(GBoost enhances GBDT (which sequentially processes a combination of trees from weighted training data with a slow learning rate)
y:
introducing a regularization parameter in the learning objective function (to control over-fitting),
+ Adapting to parallel tree learning through sparsity-aware capability
* having a better support for multicore processing which reduces computational time

Given a dataset D = {(xl-j,yl-)}, where |D| = N; and {xl-j € RV, y; € R}, the XGBoost model uses K additive functions to predict the
incident duration as:

¥i=0xy) = Yie1 fre(x), fr €F (4)

where K is the number of generated trees, and f are functions in the functional space F defined as:
fr(x) = g, 0 €RT, q: RV - {1,2,..T},

T is the number of leaves in the tree; each f; corresponds to an independent tree structure q and leaf weights wg(,y. The objective
function to be minimized is given by:

L(®) = k=1 L0 ¥) + Ty Q(fi) )

where [(y;, §;) is a MAPE function and Q is the regularization term which penalizes the complexity of the model and is expressed as:
Q(fi) = AT + L lw|?




4.1 Incident duration regression

Performance evaluation:

« MAPE = 2% yn yyi| (6)
o 2 — _ Z?=1(yi_§'\i)2
R 1 2?:1(yi_y)2

Hyper-parameter tuning through randomized search

 Randomized-Search:
» selects randomly a (small) number of hyper-parameter configurations to use through cross-validation.
« for a high enough number of random samples (e.g. 100-200) the random search was faster than grid-search, Bayesian optimisation

» For our cross-validation setup, we train each learner for:
* 10 times (number of learning folds) x
» 5 times (number of hyper-parameter tuning folds) x
* 500 (number of random hyper-parameter combinations) = 25,000 times.

» Total execution time = 10 minutes, on a computational machine with 24 cores.




4.1 Feature Importance classification

Selecting important features:
- the influence of each feature data set can be very different on the prediction results.
- not all features are efficient for improving the result accuracy!

- We need a fast metric which drops unnecessary information (we have scenarios with almost 800 features!).

Shapley value :

- originates in the game theory: where a coalition S of n players (belonging to a set N) need to cooperate to obtain an overall gain,
called the worth of the coalition v(S).Main question: how to divide the gain among players based on contributions?

- Shapely is a fair distribution of gain among the players, assuming they all cooperate. For our prediction p, the Shapley value for a
specific feature i (out of the total N, features) can be expressed as:

ISIIANT=IS|=1)!
IN|!

(S VU ii}) —v(S)

—~
K

> what would the prediction of the model be without a feature /?

0;(p) = ZSQN{i}

- Practically the Shap value calculates the marginal contribution of a feature i to the entire feature set over the number of features
excluding i.




Results

Incident Classification:

Accuracy:

- kNN ranks lowest at 65%,

- RF and GBDT : highest score of 69% but RF is
overfitting (testing is higher with 21% of the);

F1:
- GBDT has the highest F1 score in testing (82%)
- GBDT - close to XGBoost

Recall:

- Aside from kNN, all other four ML models have a
testing Recall score above 95% - that they are highly
capable of identifying incidents <45 min.

Precision :

- RF, GBDT and XGBoost — achieve the highest
performance across all methods

- Even though their testing performance are
similar, RF appears to over-fit the training data
more than the other two models
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Fig 5 Performance comparison of different classification algorithms on the Baseline Feature Set: a) Accuracy b) FI c)

Precision d) Recall.



Results

Incident Regression:

- Zero or very small durations (<1-2min) are noisy for
the model training and prediction.

- Removing these outliers reduced the MAPE from
221.04 to 120.34 for GBDT and from 77.84 to 68.77
for XGBoost

- Large outliers — tested the log space transform:
GBDT this procedure reduces the error considerably
(from 120.34 to 83.26 after outlier removal),

- this has limited impact for the extreme boost model
most likely due to its additional regularization terms.

OBS: the modelling results presented in the following
have a learning in the original incident duration space
and are trained without the previously mentioned
outliers.

a) GBEDT
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I %)
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=] o
| I
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50

All incidents Remowve

e Duration in original space
powm Duration in log space
221.04 227.92 9 =P
171.04
53.38
30.7 135.61
8.19 14.0 lo10 120.24
) 93.38
3.26
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1
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= 1lmin = Z2min

Fig 6 MAPE comparison among datasets with incremental outliers removed.



Results

Incident Regression:

Four regressors (3 training measures)

a) Evaluation using MAPE b) Evaluation using R2
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Fig 6 MAPE comparison among datasets with incremental outliers removed.




Results

Feature importance

High
X . - X
HourOfDay P . HourofDay
AffectLanes - - . - AffectLanes
Y . - h i
Tempivg Templvg
SectionSpeed . SectionSpeed
Severity Sewverity
RTAgg - RTAgg
SectionCapacity e SectionCapacity
SubType o SubType
Source E Source
MeanRatio E MeanRatio
SactionLane SectionLane
MonthOfYear MonthOfyear
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AreaCode AreaCode
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Direction Direction
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i i ! T T T Low
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Results

Scenario evaluation for traffic flow impact analysis:

Incident duration prediction (<45min) with traffic flow data

70 4
604 °6]40 55|28 >7|38
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