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Introduction
1. Almost 60% of traffic congestion is due to non-recurrent incidents [1]
2. Australia - the annual economic cost of road crashes ≈ $27 billion/y (2017) [2]
3. Various factors can influence the duration of traffic disruptions: location, time of 

day, severity, fatalities, proximity to public facilities, weather, etc.
4. Traditional methods for incident duration prediction: 

• linear/non-parametric regression models [4], 
• Bayesian classifiers [5], 
• discrete choice models (DCM) [6], 
• probabilistic distribution analyses [7], and 
• the hazard-based duration models (HBDM) [8]

5. Majority of work – undergone for motorway incident prediction/
[1] D. a. L. Schrank, T., "The annual urban mobility report," College Station, TX: Texas Transportation Institute2003
[2] A. Government. (2017, 25/07/2018). Road Safety. Available: https://infrastructure.gov.au/roads/safety/
[4] S. a. R. Peeta, J. and Gedela, S., "Providing real-time traffic advisory and route guidance to manage borman incidents on-line using the hoosier helper program " Purdue University, School of Civil Engineering2000.
[5] F. D. Boyles S, Waller ST (2007), "A Naive Bayesian Classifier for Incident Duration Prediction," presented at the TRB 86th Annual Meeting, Washington DC, United States., 2007. 
[6] L. Ruimin, Z. Xiaoqiang, Y. Xinxin, C. Nan, and Z. Jianan, "Incident Duration Model on Urban Freeways Based on Discrete Choice Model," in 2010 International Conference on Electrical and Control Engineering, 2010, pp. 3826-
3829.
[7] G. Giuliano, "Incident characteristics, frequency, and duration on a high volume urban freeway," Transportation Research Part A: General, vol. 23, no. 5, pp. 387-396, 1989/09/01/ 1989.

https://infrastructure.gov.au/roads/safety/


Challenges

 How to accurately predict incident duration on arterial roads and regular streets 
in a large city? 

 How to integrate traffic flow information in the prediction process? What road 
sections and from what timespan (before/after the incident was reported)?

What would be the most influential factors which affect the incident duration that 
traffic centres need to prioritise for a fast and efficient incident clearance ?



Victoria Road Incident Duration Prediction – Sydney, AU

3. Data sources

Fig 1. Heat-map the “accident duration”
distribution in the Victoria Rd subnetwork.

- one year (2017) of traffic incidents reported by the Traffic 
Management Centre (TMC) in Sydney. 

- contains 5,134 records of various planned and unplanned 
incidents:

- hazards, 
- road closures to 
- accidents and 
- maintenance work. 

- we focus on incidents labelled as “Accidents” – they induce 
the longest clearance time in the current subnetwork 

- Total  = 574 accident records 
- mean duration of 44.59 minutes, a
- maximum duration of 719 minutes. 
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3. Data sources
- one year (2017) of traffic incidents reported by the Traffic 

Management Centre (TMC) in Sydney. 
- contains 5,134 records of various planned and unplanned 

incidents:
- hazards, 
- road closures to 
- accidents and 
- maintenance work. 

- we focus on incidents labelled as “Accidents” – they induce 
the longest clearance time in the current subnetwork 

- Total  = 574 accident records 
- mean duration of 44.59 minutes, a
- maximum duration of 719 minutes (12h). 



Victoria Road – Sydney, AU
3.1 Data sources
- majority of accidents are cleared off in less than 30 min 

(291 out of 574)

- incident duration is long-tail distributed, with the longest 
10% of the incidents (57 out of 574) spanning between 
100 and 719 minutes

- ECCDF - incident duration presents two different 
regimes given by different slopes to the right and left of 
a threshold T (identified to be revolving around 
45minutes)

Fig 2
a) Accident duration distribution and
b) Empirical Cumulative Distribution Function of the accident
duration.



Victoria Road – Sydney, AU
3.2 Adding in traffic flow features
- SCATS traffic counts available for the whole 2017 on all 

road sections in the Victoria Subnetwork area – 15’ 
frequency.

- The data from each detector is summed according to their 
installation location to generate the flow data for the 
corresponding road section.

- not all sections are equipped with SCATS detectors. There 
are 2,672 road sections in the model, 85 signalized 
intersections with the adaptive SCATS control system 
running, and a total of 4,256 SCATS detectors.

- some incidents are reported in locations with no traffic flow 
information
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3.2 Adding in traffic flow features
- The data from each detector is summed according to their 

installation location to generate the flow data for the 
corresponding road section.



Victoria Road – Sydney, AU
3.2 Adding in traffic flow features
- 3 measures of traffic flow were used:

- a) the reported real-time flow from the 15-min time-interval when the incident was reported (TRF), 

- b) the traffic flow corresponding to 1 hour prior to the accident (TFH) and 

- c) the 15-min to 1 hour traffic flow ratio on each section computed as TFR=TRF/TFH, (a TFR =zero 
=> high congestion as the real-time flow decreases considerably close to the accident start-time as 
compared to the flow 60 minutes earlier). 



Victoria Road – Sydney, AU
3.3 Feature Scenario construction

Baseline Feature Set (BFS): uses all the feature information from Table 1

Feature Set A (FSA): 
BFS + flow counts from TRFi, TFHi, TFRi, 𝑖𝑖 ∈ 1,𝑁𝑁𝑠𝑠 , ), where 𝑁𝑁𝑠𝑠 = total number of road sections). 
This resulted in the addition of almost 700 extra features in the model training. 

Feature Set B (FSB): BFS + the traffic flow from only the top 5 closest road sections to the incident 
location (TRFi, TFHi, TFRi, where 𝑖𝑖 ∈ {1, . . 5}).

Feature Set C (FSC): BFS + the aggregated traffic flow from the top 5 closest road sections (𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡_5 =
∑𝑖𝑖=15 𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖,𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡_5 = ∑𝑖𝑖=15 𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖, 𝑇𝑇𝑇𝑇𝑇𝑇top_5 = ∑𝑖𝑖=15 𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖). 

Feature Set D (FSD): BFS + the traffic flow extracted from all the sections in the vicinity of the reported 
location of the incidents (𝑇𝑇𝑇𝑇𝑇𝑇dv = ∑𝑖𝑖=1

𝑁𝑁𝑟𝑟 𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖, 𝑇𝑇𝑇𝑇𝑇𝑇dv = ∑𝑖𝑖=1
𝑁𝑁𝑟𝑟 𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖, 𝑇𝑇𝑇𝑇𝑇𝑇dv = ∑𝑖𝑖=1

𝑁𝑁𝑟𝑟 𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖, where 
𝑁𝑁𝑟𝑟 is the total number of road sections in the selected area and 
𝑑𝑑𝑑𝑑 is the distance from the location of the incident to the closest road sections; {100m, 200m, 300m, 500m, 
600m}
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4. METHODOLOGY

Fig 3 Bi-level incident prediction framework.



4.1 Incident duration classification
𝑿𝑿 = [𝒙𝒙𝒊𝒊,𝒋𝒋]𝑖𝑖=1,..𝑁𝑁𝑖𝑖

𝑗𝑗=1,..𝑁𝑁𝑓𝑓 the matrix of model features,
where 𝑁𝑁𝑖𝑖 is the total number of incidents used for training the models, and

𝑁𝑁𝑓𝑓 is the total number of features to be considered.

𝒀𝒀 = [𝑦𝑦𝑖𝑖]𝑖𝑖=1,.𝑁𝑁𝑖𝑖, Incident duration vector
where 𝑦𝑦𝑖𝑖 is the duration (in minutes) of an incident occurring at a specific time.

The classification problem is to predict 𝒀𝒀 from 𝑿𝑿, more specifically predict if �𝑦𝑦𝑖𝑖 takes one of the following
values:

�𝑦𝑦𝑖𝑖 = �1, 𝑖𝑖𝑖𝑖 𝑦𝑦𝑖𝑖 ≤ �𝑌𝑌
0, 𝑖𝑖𝑖𝑖 𝑦𝑦𝑖𝑖 > �𝑌𝑌

(1)

where �𝑌𝑌 represents the 45min incident clearance time.



4.1 Incident duration classification
𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴:

• k-nearest neighbours (kNN)[14] - doesn’t require specific assumptions about the data distribution or 
characteristics of the variables to learn, 

• logistic regression (LR) [13] - focuses on the conditional probability distribution of the predicted variable 
given its set of features, 

• random forests (RF) [23] – randomly selects observations/rows and specific features/variables to build 
multiple decision trees and then average the results. 

• gradient-boosted decision trees (GBDT) [16] – from the entire dataset, uses all the features/variables of 
interest to build decision trees where the leaves are the final predicted class.

• extreme-boosted decision trees (XGBoost) [17] – enhanced version of GBDT with a regularization 
parameter in the objective function. 

[13] G. Valenti, M. Lelli, and D. Cucina, "A comparative study of models for the incident duration prediction," European Transport Research Review, vol. 2, no. 2, pp. 103-111, 2010/06/01 2010. 
[14] Y. Wen, S. Y. Chen, Q. Y. Xiong, R. B. Han, and S. Y. Chen, "Traffic Incident Duration Prediction Based on K-Nearest Neighbor," Applied Mechanics and Materials, vol. 253-255, pp. 1675-1681, 2013.
[16] X. Ma, C. Ding, S. Luan, Y. Wang, and Y. Wang, "Prioritizing Influential Factors for Freeway Incident Clearance Time Prediction Using the Gradient Boosting Decision Trees Method," IEEE Transactions on Intelligent Transportation Systems, 
vol. 18, no. 9, pp. 2303-2310, 2017. 
[17] T. Chen and C. Guestrin, "XGBoost: A Scalable Tree Boosting System," presented at the Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, California, USA, 2016. 
[23] K. a. A.-R. Hamad, Rami and Zeiada, Waleed and Dabous, Saleh Abu and Khalil, Mohamad Ali, "Predicting Incident Duration Using Random Forests," presented at the Transportation Research Board 97th Annual Meeting, Washington D.C., 
2018. 



4.1 Incident duration classification
We perform a five-fold cross-validation (5CV): 
• the dataset is randomly divided into five subsets (or folds), each containing the same proportion of the positive 

and the negative class (e.g. stratified folds). 
• Iteratively, each fold serves as a test set, while the remaining four folds are used as training set. 
• The model parameters are fit on the training set, and the predictions of the incident durations are obtained for the 

test set. 

Evaluation:  
𝑨𝑨 = 𝑻𝑻𝑻𝑻+𝑻𝑻𝑻𝑻

𝑻𝑻𝑻𝑻+𝑻𝑻𝑻𝑻+𝑭𝑭𝑻𝑻+𝑭𝑭𝑻𝑻
:  ratio of correct predictions over all prediction; sensitive to class imbalance 

𝑻𝑻 = 𝑻𝑻𝑻𝑻
𝑻𝑻𝑻𝑻+𝑭𝑭𝑻𝑻

: how many of the predictions made by the learner are correct 

𝑹𝑹 = 𝑻𝑻𝑻𝑻
𝑻𝑻𝑻𝑻+𝑭𝑭𝑻𝑻

: how many of the correct (e.g. true) examples were correctly predicted by the learner 

𝑭𝑭𝟏𝟏 =
𝟐𝟐𝑻𝑻𝑹𝑹

𝑻𝑻+𝑹𝑹
: mean of Precision and Recall; to maximize F1, the learner needs to have simultaneously a high 

Precision and a high Recall



4.1 Incident duration regression
XGBoost enhances GBDT (which sequentially processes a combination of trees from weighted training data with a slow learning rate) 
by:

• introducing a regularization parameter in the learning objective function (to control over-fitting), 
• Adapting to parallel tree learning through sparsity-aware capability
• having a better support for multicore processing which reduces computational time

Given a dataset 𝐷𝐷 = 𝑥𝑥𝑖𝑖𝑗𝑗 , 𝑦𝑦𝑖𝑖 , where 𝐷𝐷 = 𝑁𝑁𝑖𝑖 and 𝑥𝑥𝑖𝑖𝑗𝑗 ∈ ℝ𝑁𝑁𝑓𝑓 ,𝑦𝑦𝑖𝑖 ∈ ℝ , the XGBoost model uses K additive functions to predict the 
incident duration as:
�𝒚𝒚𝒊𝒊 = ∅(𝒙𝒙𝒊𝒊𝒋𝒋) = ∑𝒌𝒌=𝟏𝟏𝑲𝑲 𝒇𝒇𝒌𝒌(𝒙𝒙𝒊𝒊), 𝒇𝒇𝒌𝒌 ∈ 𝓕𝓕 (4)

where K is the number of generated trees, and 𝒇𝒇𝒌𝒌 are functions in the functional space 𝓕𝓕 defined as:
𝒇𝒇𝒌𝒌(𝒙𝒙𝒊𝒊) = ⍵𝒒𝒒(𝒙𝒙),⍵ ∈ ℝ𝑻𝑻,𝒒𝒒: ℝ𝑁𝑁𝑓𝑓 → {1,2, . .𝑇𝑇},

T is the number of leaves in the tree; each 𝒇𝒇𝒌𝒌 corresponds to an independent tree structure q and leaf weights ⍵𝒒𝒒(𝒙𝒙). The objective 
function to be minimized is given by:
𝓛𝓛(∅) = ∑𝒌𝒌=𝟏𝟏𝑲𝑲 𝒍𝒍(𝒚𝒚𝒊𝒊, �𝒚𝒚𝒊𝒊) + ∑𝒌𝒌 Ω( 𝒇𝒇𝒌𝒌) (5)

where 𝑙𝑙(𝑦𝑦𝑖𝑖 , �𝑦𝑦𝑖𝑖) is a MAPE function and Ω is the regularization term which penalizes the complexity of the model and is expressed as:
Ω(𝑖𝑖𝑘𝑘) = 𝜆𝜆𝑇𝑇 + 𝛾𝛾

2
⍵ 2



4.1 Incident duration regression
Performance evaluation:

• 𝑴𝑴𝑨𝑨𝑻𝑻𝑴𝑴 = 𝟏𝟏𝟏𝟏𝟏𝟏𝟏
𝒏𝒏

∑𝒊𝒊=𝟏𝟏𝒏𝒏 𝒚𝒚𝒊𝒊−�𝒚𝒚𝒊𝒊
𝒚𝒚𝒊𝒊

(6)

• 𝑹𝑹𝟐𝟐 = 1 − ∑𝑖𝑖=1
𝑛𝑛 𝒚𝒚𝒊𝒊−�𝒚𝒚𝒊𝒊 2

∑𝑖𝑖=1
𝑛𝑛 𝒚𝒚𝒊𝒊−�𝒚𝒚 2

Hyper-parameter tuning through randomized search 
• Randomized-Search:

• selects randomly a (small) number of hyper-parameter configurations to use through cross-validation. 
• for a high enough number of random samples (e.g. 100-200) the random search was faster than grid-search, Bayesian optimisation

• For our cross-validation setup, we train each learner for:
• 10 times (number of learning folds) x 
• 5 times (number of hyper-parameter tuning folds) x 
• 500 (number of random hyper-parameter combinations) = 25,000 times. 

• Total execution time = 10 minutes, on a computational machine with 24 cores.



4.1 Feature Importance classification
Selecting important features:
- the influence of each feature data set can be very different on the prediction results. 

- not all features are efficient for improving the result accuracy!

- We need a fast metric which drops unnecessary information (we have scenarios with almost 800 features!).

Shapley value :

- originates in the game theory: where a coalition S of n players (belonging to a set N) need to cooperate to obtain an overall gain, 
called the worth of the coalition v(S).Main question: how to divide the gain among players  based on contributions?

- Shapely is a fair distribution of gain among the players, assuming they all cooperate. For our prediction p, the Shapley value for a 
specific feature i (out of the total Nf features) can be expressed as:

∅𝑖𝑖 𝑝𝑝 = ∑𝑆𝑆⊆𝑁𝑁{𝑖𝑖}
𝑆𝑆 ! 𝑁𝑁 − 𝑆𝑆 −1 !

𝑁𝑁 !
(𝑑𝑑 𝑆𝑆 ∪ 𝑖𝑖 − 𝑑𝑑 𝑆𝑆 ) (8)

- Practically the Shap value calculates the marginal contribution of a feature i to the entire feature set over the number of features 
excluding i. 

what would the prediction of the model be without a feature I?



Results

Fig 5 Performance comparison of different classification algorithms on the Baseline Feature Set: a) Accuracy b) F1 c) 
Precision d) Recall.

Incident Classification:

Accuracy:
- kNN ranks lowest at 65%, 
- RF and GBDT : highest score of 69% but RF is 
overfitting (testing is higher with 21% of the);

F1 :
- GBDT has the highest F1 score in testing (82%)
- GBDT  - close to XGBoost

Recall: 
- Aside from kNN, all other four ML models have a 
testing Recall score above 95% - that they are highly 
capable of identifying incidents <45 min. 

Precision :
- RF, GBDT and XGBoost – achieve the highest 

performance across all methods 
- Even though their testing performance are 

similar, RF appears to over-fit the training data 
more than the other two models 



Results
Incident Regression:

Fig 6 MAPE comparison among datasets with incremental outliers removed. 

- Zero or very small durations (<1-2min) are noisy for 
the model training and prediction.

- Removing these outliers reduced the MAPE from 
221.04 to 120.34 for GBDT and from 77.84 to 68.77 
for XGBoost

- Large outliers – tested the log space transform: 
GBDT this procedure reduces the error considerably 
(from 120.34 to 83.26 after outlier removal), 

- this has limited impact for the extreme boost model 
most likely due to its additional regularization terms.

OBS: the modelling results presented in the following 
have a learning in the original incident duration space 
and are trained without the previously mentioned 
outliers. 



Results
Incident Regression:

Fig 6 MAPE comparison among datasets with incremental outliers removed. 



Results
Feature importance



Results

Scenario evaluation for traffic flow impact analysis: 





THANK YOU!

adriana-simona.mihaita@uts.edu.au
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