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ABSTRACT 1 

 2 

Recent developments in advanced transport technologies such as vehicle-to-vehicle 3 

communications and Dedicated Short Range Communications (DSRC) led to an increased interest 4 

in building safety vehicular applications that would prevent traffic collisions. Such applications 5 

need a high level of performance and positioning accuracy in order to meet critical levels of road 6 

safety. However, there is still a lack of practical performance measurements of DSRC equipped 7 

systems, especially on a high number of heavy vehicles operating in large and diverse areas. 8 

 9 

This paper presents the results obtained from a research investigation undertaken into the 10 

capabilities of DSRC technology for meeting the positioning accuracy of road safety applications. 11 

The available data sets contain almost 400 million Basic Safety Messages (BSM) transmitted by 12 

58 heavy vehicles equipped with DSRC, operating on a daily basis on a 42 km test bed area in 13 

Illawarra, Australia. Firstly, as ground truth is not available, we conduct a comparative analysis of 14 

positioning in the transmitted BSMs by using both Open Street Map and Google Street Map as 15 

reference, and show that the latter provides better accuracy in positioning error computation. 16 

Secondly, we present the results obtained when analyzing the five most active trucks of the fleet, 17 

as well as the noise-prone areas in which false collision alerts can be generated. Thirdly, we apply 18 

gradient boosted decision trees on the data sets and identify the three most important factors that 19 

influence DSRC transmitted positioning error in heavy vehicles. 20 

 21 

 22 

Keywords: DSRC, connected vehicles, gradient boosted decision trees, positioning accuracy. 23 

  24 
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1. INTRODUCTION 1 

Traffic congestion and road vehicles collisions are one of the most important problems in 2 

concentrated urban areas around the globe, leading to almost 1.24 million road traffic deaths per 3 

annum (1). Current trends suggest that by 2030 road traffic accidents will become the leading cause 4 

of deaths unless urgent action is taken (2). In order to address this issue, intelligent transportation 5 

systems (ITS) have become essential in investigating problems of vehicular transportation and 6 

improve road safety (3). Advanced transport technologies such as Vehicle-to-vehicle (V2V) and 7 

vehicle-to-infrastructure (V2I) communications are already being tested and recent studies show 8 

the benefits of adopting these technologies in terms of life-savings and economic impact (4). 9 

 10 

Recent advancements in wireless communication technologies have led to the emergence of 11 

dedicated short-range communication (DSRC), which has been designed to support V2V 12 

communications, enhance mobility and improve road safety (5). As vehicular communications 13 

need fast interoperability, in the U.S., a dedicated bandwidth of 75 MHz in the 5.850-5.925 GHz 14 

band has been assigned for DSRC, together with the IEEE 802.11p standard (6). Similarly, Europe 15 

and Japan have also established dedicated DSRC bandwidths (7). In order to assess the 16 

performance and safety benefits of DSRC, various projects and test bed initiatives have 17 

concentrated on: testing the effective communication range between two vehicles and security 18 

protocols (8), analysing the probability of successful message reception (9), detecting collision 19 

situations and send drivers early alerts (10), analysing collision timing (11),  or investigating signal 20 

priority for connected vehicles (CV) at signalized intersections (12). Despite a high DSRC 21 

reliability indicated by these studies, in 2014, the National Highway Transportation Safety 22 

Administration (NHTSA) published the need to further investigate open research problems before 23 

establishing rule-making for a deployment-level V2V communication system mandate (13). 24 

 25 

One of the biggest problems to address when using DSRC for building safety applications such as 26 

proximity collision alerts, automated braking, intersection signal alerts, etc., is to have an accurate 27 

vehicle positioning capability. Currently this is provided by a Global Navigation Satellite System 28 

(GNSS) (14). Although in ideal operating conditions (clear sky, no obstructions), GNSS can 29 

usually meet the positioning accuracy for most DSRC applications, in dense urban areas, high 30 

multi-paths or tunnels the GNSS signal can be limited or contains inaccurate positioning (15). 31 

Some CV applications need sub-meter accuracy at the lane level, especially for real-time 32 

situational awareness (16). Bridging the gap between positioning accuracy and the necessary 33 

availability for CV applications represents an important challenge still to be tackled. In (17) the 34 

authors proposed a Bayesian approach for using received signal strength data from roadside 35 

equipment (RSE) to update and improve GPS positioning. While this approach can work well 36 

when RSE is available and ready to use, many test beds have insufficient RSE or they are located 37 

at sparse locations throughout the study network. Other studies propose integrating GNSS and 38 

navigation information such as map data (14; 18), which contains “metadata” for travellers. 39 

However, until such maps are developed and shared across a large fleet, the cost to maintain a huge 40 

map database can become prohibitive especially for rapidly growing cities. 41 

 42 

Recent developments have investigated the use of cooperative positioning (CP), which aims to 43 

enhance location accuracy of GNSS or to provide position data when GNSS is not available in 44 

vehicular ad hoc networks (VANETs). CP systems use data fusion methods to combine position-45 

related data transmitted among a group of participating vehicles that can communicate with each 46 

other, and thus improve positioning accuracy. While conventional CP systems (differential GPS, 47 
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real-time kinematic GPS, assisted GPS, etc.) may suffer from limitations such as low signal 1 

coverage, weak signals or accuracy (19), modern CP methods are defined based on vehicle-to-2 

vehicle and vehicle-to-infrastructure communications and are applicable even when GNSS 3 

position data is unavailable (20) or when the number of visible satellites is small (21). However, 4 

ongoing studies have confirmed that even modern CP systems present constraints in radio ranging/ 5 

range rating and are not yet capable of bridging the gap and addressing the positioning accuracy 6 

required for safety applications, which is under a meter (15). In addition, these models normally 7 

require particular sensors with high computational complexity. 8 

 9 

While most of the research studies that focus on positioning accuracy problems are undertaken on 10 

a small number of vehicles equipped with DSRC and on a limited test area bed, there is a real need 11 

for analysing the GPS positioning accuracy transmitted by a large number of vehicles, over a 12 

longer period of time and under various traffic conditions. The Cooperative Intelligent Transport 13 

Initiative (CITI) is a project currently undertaken by Transport for New South Wales (TfNSW), 14 

with the aim of building Australia’s first semi-permanent test-bed for testing the DRSC technology 15 

over an area of 917 km2 in the Illawarra Region of NSW south of Sydney (22). Currently, sixty 16 

vehicles (mostly heavy vehicles), three signalised intersections and one roadside location have 17 

been equipped with DSRC units. In order to ensure road safety, one of the main problems of the 18 

project is to address the generation of false collision alerts that would hinder driving and might 19 

results in drivers ignoring or not truting the DSRC on-board-unit warning device. The first step to 20 

identify the possible cause of false alerts is to investigate the accuracy of the transmitted 21 

positioning between the trucks, as reported from Basic Safety Messages (BSMs). 22 

 23 

In this paper, we present the procedure, results and analysis we have undertaken in order to 24 

investigate the current GPS positioning accuracy of selected DSRC equipped vehicles involved in 25 

CITI. The main objectives of this study are: 26 

a) investigating and characterising the error (noise) in the DSRC GPS positioning,  27 

b) identifying “noise – prone sections” of the road network that would cause high levels of 28 

noise to be registered,  29 

c) identifying potential factors that would impact noise in the GPS positioning.  30 

 31 

In Section 2, we present the CITI project background and main challenges. Section 3 presents the 32 

data sources and processing, as well as the map-matching procedure for computing the noise in 33 

transmitted GPS. In Section 4, we conduct a positioning analysis and comparison for the five most 34 

active trucks which have been selected for this study. We also analyse the most important features 35 

that influence noise, as obtained from applying gradient boosted decision trees over the collected 36 

data sets. Conclusions and further perspectives of this work are addressed in Section 5. 37 

 38 

 39 

 40 

 41 

 42 

 43 

 44 

 45 

 46 

 47 
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2. CITI PROJECT BACKGROUND 1 

The Cooperative Intelligent Transport Initiative (CITI) is a project deployed by Transport for NSW 2 

(TfNSW) in partnership with Data61 and the Australian Federal Government’s Heavy Vehicle 3 

Safety Productivity Program. The main goal of the project is to assess V2V/V2I communication 4 

technology that could reduce the number of road accidents, with a focus on the Illawarra region. 5 

According to TfNSW, 18% of the traffic on Picton Rd (a road in the CITI area) consists of heavy 6 

vehicles, which are involved in 63% of fatal crashes (23). Recent studies in Australia have shown 7 

that the total cost of crash accidents with fatal injuries for the years 2006-2010 is estimated at 8 

almost $6.9billion in economic loss (24). In order to address this problem and the high cost 9 

generated by truck accidents, CITI project aims at building a semi-permanent test bed for 10 

evaluating and further testing of the Cooperative Intelligent Transport Systems (CITS) technology, 11 

especially DSRC equipped vehicles. 12 

 13 

2.1 Current deployment and location 14 

 15 

The focus area for the CITI project represents a 42 km route between Port Kembla and the Hume 16 

Highway/Picton Road intersection (as represented in Figure 1a). During the first stage, the project 17 

has installed DSRC devices in 58 heavy vehicles, 2 light vehicles, 3 signalised intersections 18 

(Figure 1b) and 1 roadside unit at the top of Mt. Ousley near Wollongong, NSW. CITI currently 19 

utilises Cohda Wireless MK4 and MK5 DSRC (25) units running Cohda’s alert software in 20 

vehicles and roadside software for infrastructure deployment. Cohda DSRC systems are using the 21 

US standards of IEEE 1609 family, SAE J2735 and IEEE 802.11p standards. The heavy vehicles 22 

are usually equipped with 2 MobileMark ECO6-5500 DSRC antennas placed near the mirrors of 23 

the trucks, and one MobileMark SM-1575 GPS Antenna often placed in the vehicle, under the 24 

dashboard. Software on the units include a dead-reckoning feature. Inside the vehicles, the DSRC 25 

unit is connected to a Nexus 7 tablet for audio and visual display of generated alerts, such as 26 

Forward Collision Warning (FCW), Intersection Collision Warning (ICW), Electronic Brake Light 27 

Warning (EBLW), as well as two custom alerts. The custom alerts are a red light ahead warning 28 

based on Signal Phase and Timing broadcasts and a heavy vehicle speed restriction monitoring 29 

application that alerts drivers if they exceed a 40km/h restriction on a steep descent in the trial area 30 

(22). 31 

a)   b)  32 

FIGURE 1 a) CITI area with with an example of daily truck trip. b) DSRC equipped 33 

intersections (Google maps). 34 

 35 
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2.2 Problems and challenges 1 

 2 

Currently, there are over 150 drivers from 3 transport companies involved in daily trips from Port 3 

Kembla near Wollongong NSW to a colliery near Appin Rd, NSW. Many of the truck drivers make 4 

up to 7 trips per day with the trucks operating in two shifts 24 hours a day, 7 days a week. Vehicles 5 

in the trial are broadcasting their position 10 times a second in a message known as the Basic 6 

Safety Message (BSM). The positioning information in these messages is based on GPS 7 

measurements and in the case of brief loss of the GPS signal the position may be extrapolated from 8 

last known data in a process known as “dead reckoning”. The fusion of GNSS and Inertial 9 

Navigation System data for dead-reckoning is common in intelligent vehicles field. For example, 10 

during GNSS outages, the dead reckoning estimates the location of the vehicle (26). However in 11 

CITI, no additional sensors are connected to the DSRC unit and dead reckoning is restricted to 12 

interpolations from GPS locations. For the remainder of this article, reference to “GPS” is actually 13 

a reference to “GPS-based positioning information” as broadcasted by a vehicle in a BSM. Since 14 

the beginning of the project, the vehicles have generated more than 400 million BSMs to be 15 

analyzed and tested for positioning accuracy.  16 

 17 

To date there has been little data analysis for DSRC equipped vehicles operating in CITI. An initial 18 

aim is to examine the DSRC positioning accuracy in the Australian setting, which includes a range 19 

of urban and mountain environments, with isolated rural areas and coalmines. Large variations in 20 

the transmitted location to other connected vehicles can trigger false collision alerts, or hinder 21 

driver response to alerts. As road safety is the main focus of the CITI project, a major concern is 22 

to identify the risks that divers face when exposed to false alarms or when false and correct alarms 23 

cannot be distinguished. Therefore, the main objective is to understand how the positioning 24 

accuracy of DSRC equipped vehicles changes over time and how much the GPS positioning error 25 

varies relatively to previously reported locations. This is an important topic to be explored and to 26 

understand if the BSM based GPS data is suitable for conducting further analysis or for detecting 27 

changes in the driving behavior when collision alerts are received.  28 

 29 

This investigation looks at the noise evolution in locations reported in the BSMs over time, in 30 

various places and from various vehicles. Due to limited space, we limit our analysis to the 5 most 31 

active trucks in the data sets. As ground truth is not available for identifying the accuracy of the 32 

reported GPS location, this investigation uses the closest mapped road position from both Google 33 

Street Maps (GSM) and Open Street Map (OSM) to determine the “error” or noise in the DSRC 34 

transmitted GPS position. A detailed description of data processing and map matching method is 35 

provided in Section 3. As well, another important challenge is to identify the factors that lead to 36 

significant errors in the transmitted GPS positioning, based on the available data sets. For this 37 

purpose, we apply gradient boosted decision trees and identify the most important factors that can 38 

influence noise in GPS positioning, as discussed in Section 4. 39 

 40 

3. DATA PROCESSING METHOD 41 

3.1 Data sources and processing 42 

 43 

For the purpose of this study, we have received from TfNSW, almost 400 million DSRC messages 44 

transmitted by the trucks operating in the CITI project, collected between July 2015 and November 45 

2015. The data was collected by two equipped trailers in Port Kembla and contains all transmitted 46 

and received DSRC messages, including BSMs. After initial data format reading and verification, 47 
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we batch process and extract only the necessary messages and fields for data analysis. In our case, 1 

we process the Basic Safety Messages, including positioning, speed, heading, acceleration, brakes, 2 

elevation, timing, etc.  3 

 4 

3.2 Map-Matching 5 

 6 

After the positioning points are extracted from the raw positioning data, an important step is to 7 

establish the basis for comparison of these positions to “ground truth”. Such a comparison would 8 

establish the error/noise in the positioning information broadcasted in the BSM from the true 9 

position. Unfortunately a proper “ground truth” – the true position of the vehicle – is not available 10 

and very expensive to measure. However, by using Map-Matching (MM) algorithms we can 11 

integrate positioning data with spatial road network data (roadway centerlines) to identify the 12 

correct link on which a vehicle is travelling and to determine the location of a vehicle on a link 13 

(27). Due to the nature of the data sets, we apply a classical post processing map-matching 14 

algorithm and emphasize more on accuracy than computation efficiency (28). As our main purpose 15 

is to be able to identify noise-prone road sections, we focus on the data analysis and noise 16 

comparison by using either GSM or OSM for noise calculation, and the regression models for 17 

identifying factors that influence noisy GPS observations. While OSM shapefiles for identifying 18 

road centers are free to access and use in the MM procedure, in order to map positioning the GPS 19 

observations to road centers reported by GSM, we use the Google Snap to Roads API. The mapped 20 

positioning points have then been used to compute the Vicenty distance (29) between transmitted 21 

GPS locations and GSM. 22 

 23 

3.3 Notations and noise calculation procedure 24 

 25 

In the following, we denote 𝐷 as the total number of trucks under the study. For each truck, 𝑑 ∈26 

{1, . . 𝐷},  we have a total number of GPS observations 𝑁𝑑
𝐺𝑃𝑆  extracted from BSMs. Each GPS 27 

observation is described by its location: 𝑥𝑖 = (𝐿𝑖, 𝑙𝑖), 𝑖 ∈ {0, . . 𝑁𝑑
𝐺𝑃𝑆} registered at time 𝑡𝑖, where 28 

𝐿𝑖 and 𝑙𝑖 denote the longitude, and the latitude respectively. The total time travelled by a single 29 

truck is denoted by 𝑇𝑑, which can contain various trips conducted by the truck over multiple days 30 

since the beginning of the trial. Let Δt𝑖 = (𝑡𝑖−1, 𝑡𝑖), 𝑖 ∈ {0, . . 𝑁𝑑
𝐺𝑃𝑆} be the time interval between 31 

two consecutive GPS observations, which in our case is set to 0.1 seconds, according to the DSRC 32 

specifications. Each GPS observation (𝑥𝑖 , 𝑡𝑖) can be mapped to a specific road segment 𝑔𝑗, 𝑗 ∈33 

{1, 𝐺} , which can contain sequential GPS observations with the same spatial-temporal 34 

characteristics. A symbolic graphical representation of three consecutive GPS observations over a 35 

selected road section is provided in Figure 2. 36 

 37 

 38 
FIGURE 2. Examples of GPS observations 39 

 40 
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Let 𝑁𝑖 be the distance (deviation/noise) between a registered GPS location and the centre of the 1 

road section at time 𝑡𝑖, and �̅� the mean noise observed on a selected road section. We also note 2 

𝐴𝑖 as the anomaly detected at time 𝑡𝑖 : 3 

 4 

 𝐴𝑖 =  {
𝑁𝑖, 𝑖𝑓 𝑁𝑖 > 8 𝑚, ∀𝑖 ∈ {1, . . , 𝑁𝑑

𝐺𝑃𝑆}

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 5 

 6 

As the road sections we are investigating have in general 2 lanes, each of 3.5 meters, we consider 7 

that any computed distance which is bigger than 8 meters to be recorded as an anomaly in the 8 

noise computation. Therefore, the steps we have applied for detecting noise anomalies for each 9 

vehicle, are the following: 10 

1) Consider a road section [A, B] defined by a starting point A and ending point B. 11 

2) Apply a MM procedure for identifying the trajectory of the DSRC GPS positioning. 12 

3) Compute 𝑁𝑖 deviations from the road center for each intermediary points between [A, B]. 13 

4) Compute mean deviations (noise) on the selected road section (�̅�), for all available trips 14 

undertaken during the total travel time of a truck 𝑇𝑑. 15 

This procedure has been applied for all heavy vehicles and some selected results will be 16 

presented in the following section.  17 

 18 

4. POSITIONING ANALYSIS FOR TRUCKS 19 

4.1 Single transmission file analysis 20 

 21 

Before presenting the noise results of the trucks, we show the analysis conducted over a single 22 

transmission file, belonging to the most active truck, which contains a typical daily trip of a truck 23 

from Port Kembla to a nearby colliery, as represented in Figure 1a). 24 

 25 

This transmission file contains 87,165 BSMs, recorded between 20:46:13 and 23:12:58 on the 20th 26 

of July 2015. For an accurate analysis, we filter GPS positions that indicate stopping in parking 27 

areas or inside the mine area. By using GSM as ground truth, we obtain an average noise of 2.9762 28 

meters, with certain GPS points exceeding 8 meters threshold and reaching a maximum of 12.1415 29 

meters from the road center, as represented in Figure 3 a) right.  30 

 31 

A special area of the selected road section is the Mt. Ousley area (Figure 3b) left) which has a 32 

speed restriction of 40 km/h for trucks descending the mountain. Therefore, on this road section 33 

the GPS accuracy will generally be obtained at lower travelling speeds. The average noise obtained 34 

in this area is lower (2.3836 meters) and the overall noise under 7 meters (Figure 3b) right). The 35 

good accuracy in the GPS positioning can be influenced by truck speed, as we will discuss in 36 

Section 4. Regarding the continuity of the GPS signal, and the consistency between consecutive 37 

GPS points we have observed noise variations that can go up to a maximum of 15 cm between 38 

consecutive BSMs with Δt𝑖 = 0.1 𝑠𝑒𝑐  (Figure 4). While a continuous variation in between 39 

consecutive GPS points can indicate that the truck is changing lanes and heading in another 40 

direction, some other variations between registered BSM seem not to be consistent from previous 41 

ones, and might indicate some deviations in the GPS location transmitted by the DSRC system.  42 

 43 

 44 
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a)  1 

b)  2 

FIGURE 3 Noise mapping and evolution on: a) selected road section b) Mt. Ousley. 3 

 4 

 5 
FIGURE 4. Variations between consecutive GPS locations from 50 BSMs on Mt. Ousley. 6 
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 4.1.2 GSM and OSM noise comparison  1 

 2 

We apply the same noise computing method by using as well Open Street Map. Table 1 reports the 3 

average and maximum noise level obtained for the single transmission file when using both GSM 4 

and OSM. 5 

Table 1 Comparison between GSM and OSM noise for one transmission file example. 6 

 Google Street Maps Open Street Maps   

 Average 

noise[m] 

Maximum 

noise[m] 

Average 

noise [m] 

Maximum 

noise[m] 

Difference 

[meters] 

Error [%] 

Road section  2.9762 12.1415 3.2883 12.6679 0.3121 10.48 % 

Mt. Ousley  2.3836 7.0131 2.7480 8.0559 0.3644 15.28 % 

 7 

These initial results on a single transmission file show a more accurate GPS positioning when 8 

using Google Street Map as the “ground-truth”. The average noise when using GSM is smaller 9 

than the noise obtained when using OSM. We observe that there is a difference that can vary 10 

between 31cm and 36cm between the two pseudo ground truth references, which can influence the 11 

final noise results. Based on these initial findings, for the rest of the results presented in this paper 12 

we will consider GSM as the ground truth for noise calculation. 13 

 14 

  4.2 Truck positioning analysis 15 

 16 

In this section, we present the data analysis and interpretation we have conducted for the five most 17 

active trucks over the selected road section including Mt. Ousley, presented in Section 3. For easing 18 

the notations, we will denote the trucks as “𝑇𝑟𝑢𝑐𝑘 𝑖, 𝑖 = 1, . .5”.  19 

 20 

A summary of the total number of investigated BSMs, total dates and detected anomalies for each 21 

truck is provided in Table 2. All trucks are coal carriers and are doing daily trips on from Port 22 

Kembla to a coal mine near Wollongong. In terms of total number of BSMs, we note that Truck 1 23 

appears to be the most active, with almost 4.75 million BSMs transmitted during the testing period 24 

in the Illawarra region, followed by Truck 2. From the total number of transmitted messages, after 25 

filtering the BSMs sent on the selected road section, we observe that each truck has different and 26 

sometimes unique activity. Truck 2 seems to have a higher transmitting activity in this area, 27 

gathering 903,209 BSMs. In terms of detected anomalies, Truck 1 and 2 present again a higher 28 

number of deviations from the road center, compared to the last 3 trucks. Truck 2 is the one which 29 

registered the biggest number of anomalies, representing 4.69% of its total number of BSM 30 

positioning points. As well, on Mt. Ousley road section, Truck 2 has registered 24,234 anomalies 31 

(8.65%) compared to Truck 1 (1.08%), which is comparably bigger than noise recorded for other 32 

trucks.  33 

 34 

 35 

 36 

 37 

 38 

 39 

 40 

 41 



Mihăiţă, Tyler, Menon, Wen, Ou, Cai 11 

 

Table 2 Description of BSM statistics and noise anomalies for each truck. 1 

 2 

  Start Date End Date Number of BSMs 

Truck 1 All road sections registered 

by DSRC 

Jul 3, 2015 

15:03:45.189162000 

Nov 3, 2015 

19:47:24.243018000 

4,749,912 

 Selected road section Jul 15, 2015 

16:38:07.995023000 

Oct 27, 2015 

15:56:14.490091000 

711,601 

 Anomalies on selected road  Jul 15, 2015 

16:40:15.195829000 

Oct 27, 2015 

08:44:00.326029000 

42,342 (5.95%) 

 Mt. Ousley road section Jul 15, 2015 

16:55:09.595133000 

Oct 27, 2015 

08:44:06.946928000 

186,907 

 Anomalies on Mt. Ousley  Oct 27, 2015 

08:40:38.025210000 

Oct 27, 2015 

08:44:00.326029000 

2,024 (1.0829%) 

Truck 2 All road sections registered 

by DSRC 

Aug 22, 2015 

23:12:01.866107000 

Oct 30, 2015 

05:26:16.002918000 

3,732,178 

 Selected road section Aug 24, 2015 

01:04:00.246601000 

Oct 29, 2015 

03:31:14.630633000 

903,209 

 Anomalies on selected road  Aug 24, 2015 

01:47:23.246482000 

Oct 28, 2015 

12:44:06.390510000 

42,363 (4.69%) 

 Mt. Ousley road section Aug 24, 2015 

01:06:09.146352000 

Oct 29, 2015 

03:30:38.730758000 

280,057 

 Anomalies on Mt. Ousley  Sep 6, 2015 

13:48:56.872012000 

Oct 19, 2015 

09:33:46.141116000 

24,234 (8.65%) 

Truck 3 All road sections registered 

by DSRC 

Aug 22, 2015 

10:50:13.875742000 

Nov 2, 2015 

23:14:16.176066000 

2,766,201 

 Selected road section Aug 22, 2015 

17:04:35.079759000 

Nov 2, 2015 

22:48:51.875910000 

362,506 

 Anomalies on selected road  Aug 22, 2015 

17:22:21.080043000 

Nov 2, 2015 

22:43:45.277766000 

6904 (1.904%) 

 Mt. Ousley road section Aug 22, 2015 

17:06:49.080062000 

Nov 2, 2015 

22:46:35.075914000 

121,358 

 Anomalies on Mt. Ousley  Oct 5, 2015 

02:02:01.981338000 

Nov 2, 2015 

22:43:45.277766000 

4360 (3.59%) 

Truck 4 All road sections registered 
by DSRC 

Aug 23, 2015 
07:04:38.270970000 

Oct 23, 2015 
03:31:06.089445000 

2,853,832 

 Selected road section Aug 24, 2015 

13:29:16.984854000 

Oct 15, 2015 

08:04:36.729368000 

329,612 

 Anomalies on selected road  Aug 24, 2015 

13:29:23.385231000 

Oct 15, 2015 

07:52:24.529124999 

3345(1.01%) 

 Mt. Ousley road section Aug 24, 2015 

13:43:16.085094000 

Oct 15, 2015 

08:02:32.529147000 

90,830 

 Anomalies on Mt. Ousley  Oct 7, 2015 

06:10:03.925373000 

Oct 7, 2015 

06:13:05.025705000 

450 (0.49%) 

Truck 5 All road sections registered 
by DSRC 

Aug 22, 2015 
14:11:35.674519000 

Oct 26, 2015 
15:42:51.925330000 

1,670,058 

 Selected road section Aug 22, 2015 

14:57:18.611686000 

Oct 26, 2015 

15:26:14.425329000 

345,849 

 Anomalies on selected road  Aug 23, 2015 

15:35:39.695137000 

Oct 26, 2015 

15:13:58.525482000 

2093 (0.6%) 

 Mt. Ousley road section Aug 22, 2015 

14:59:24.211495000 

Oct 26, 2015 

15:24:08.829763000  

103,870 

 Anomalies on Mt. Ousley  Sep 27, 2015 

01:15:24.979748000 

Sep 27, 2015 

01:16:36.743136000 

720 (0.69%) 
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 1 

 2 
FIGURE 5 Noise mapping and distribution for Truck 1, 2 and 3. 3 



Mihăiţă, Tyler, Menon, Wen, Ou, Cai 13 

 

Figure 5 shows the noise mapping and noise distribution on the selected road section for the first 1 

3 trucks. We can therefore identify which road areas are susceptible to register deviations from the 2 

road center, which we will define as “noise-prone” areas. Figures 5 a1), b1) and c1) show that the 3 

north part of the road is more sensitive to noise, which is near the coal mine where the trucks stop 4 

for loading. As well, we can notice that, although Truck 2 registered the biggest number of 5 

anomalies, Truck 3 seems to present a large spread in the positioning where the noise is registered. 6 

The noise distribution plot (Figure 5 a2), b2), c2)) confirms again a particular behavior for Truck 7 

3 and 2, as the maximal noise can reach 17.0785 meters in certain locations. In terms of average 8 

noise on Mt. Ousley, we make the observation that Truck 5 (not represented here) has the lowest 9 

noise levels (2.24 average noise from road center), which falls into good levels of positioning on 10 

the streets. In furthering the understanding of GPS and BSM accuracy, we suggest these noise-11 

prone locations would be good places to investigate in detail in order to understand the phenomena 12 

of common localized issues. 13 

 14 

By taking into consideration the global positioning of all the trucks we investigated in the CITI 15 

project, we can state that the average noise obtained for almost all trucks fall under 3 meters, which 16 

indicate that the GPS location being transmitted has good accuracy in most of the BSMs. 17 

Nevertheless, bad positioning accuracy can lead to false alert generation and hinder road safety, 18 

especially when trucks are fully loaded with 82 tons of coal. This aspect is not to be neglected and 19 

further studies need to be undertaken in order to understand the cause of bad positioning accuracy, 20 

possibly including: bad placement of antennas, road geometry, speed, heading etc. 21 

 22 

4.3 Regression models for noise analysis 23 

 24 

In this section we perform a closer investigation of explanatory factors that can influence DSRC 25 

GPS noise. Besides GPS observations with longitude and latitude from transmitted BSMs, we also 26 

record the following features (variables): Elevation, Speed, Heading, Brakes, Acceleration 27 

Longitude, and Acceleration Latitude, in matrix 𝑿𝒕 = [𝑿𝒊,𝒋]
𝑖=1,..𝑁𝑑

𝐺𝑃𝑆
𝑗=1,..8

 . We also consider the 28 

corresponding noise vector 𝑵𝒕 = [𝑁𝑖]𝑖=1,..𝑁𝑑
𝐺𝑃𝑆  for this time. We then consider the regression 29 

problem of predicting 𝑵𝒕  from 𝑿𝒕 , so as to determine the highly predictive features which 30 

influence GPS noise. 31 

 32 

To avoid the statistical issue of overfitting (30), we separate our data into a training and a testing 33 

set. The training set comprised the first 80% of all GPS readings, with the rest falling into the 34 

testing set. We then fit a regression model (to be described subsequently) on the training set, and 35 

evaluated model performance on the testing set. Performance is evaluated using the mean squared 36 

error (MSE). As a baseline, we used the trivial model which predicts the mean of the GPS noise in 37 

the training set; any model that performs worse than this is practically useless. 38 

 39 

We use two underlying regression models. The first is a decision tree (specifically, one using the 40 

CART algorithm (31)). This model was chosen because it is intuitive to explain, and can easily fit 41 

nonlinear relationships in the data. At a high level, a decision tree involves making a number of 42 

splits of the data based on some thresholding of the feature values. Depending on the outcome of 43 

this thresholding, one then fits a sub-model, which is recursively another decision tree. Finally, 44 

one terminates at a leaf node, where a hard prediction is made for the target value. This is typically 45 

done by the average of the points that fall into that leaf node. 46 

 47 
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We fit a decision tree with a fixed depth of 3 levels. We found this model to give an MSE of 2.4261, 1 

which is a nearly 60% improvement over the baseline MSE of 5.7864. Further, the output of the 2 

tree is shown in Figure 6 a), and seems to be intuitive. We find that the most predictive features 3 

are the Speed, Elevation, and Heading. The model is seen to separately treat the cases of very low 4 

speed (< 11 km/h). For higher speed, the Longitude is seen to be predictive. While this may seem 5 

counterintuitive, in fact the longitude indicates high variations in the movement of the truck along 6 

the selected road section, as represented in Figure 5 a1). 7 

 8 

To further assess feature importance, we fit a gradient boosted decision tree (GBDT) model (32). 9 

This is an example of an ensemble method (one that computes a number of individual sub-models, 10 

and then considers an appropriately weighted average of them). Such an averaging procedure lends 11 

these methods a robustness against overfitting to spurious signals in the data. 12 

a)  13 

b)  14 

 15 

FIGURE 6 Outputs of decision tree methods: a) Decision tree with a fixed depth of 3 levels 16 

for 𝑿𝒕, b) Features influencing DSRC GPS positioning accuracy. 17 

 18 
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We fit a GBDT comprising 500 individual sub-models, to a maximum depth of 2 levels. We found 1 

this model to give an MSE of 2.2696, which is a further 6% improvement over the single decision 2 

tree model. Compared to a decision tree, it is harder to directly visualize the output of a GBDT, 3 

since it comprises hundreds of sub-models. Nonetheless, we can still estimate the overall 4 

importance of individual features. We find that the most predictive features that can influence 5 

DSRC GPS accuracy are: speed, elevation and heading (Figure 6b)), which is largely consistent 6 

with the finding from the single decision tree. These results validate as well our previous finding 7 

of noise evolution on Mt. Ousley which has restricted low speed for trucks descending the 8 

mountain. The fact that these features are also useful for the GBDT gives confidence that there is 9 

a statistically meaningful relationship between these variables and the DSRC GPS noise. 10 

 11 

5. CONCLUSIONS  12 

 13 

In this paper we conducted a detailed investigation for analysing the GPS positoning accuracy as 14 

transmitted in BSMs by DSRC equipped heavy vehicles, operating in the CITI project. After 15 

choosing GSM as main ground truth for noise computation, we showcase the DSRC transmitted 16 

positioning accuracy of the 5 most active trucks of CITI fleet, and identify the noise-prone areas 17 

in which DSRC false generated alerts can be triggered. Lastly, by conducting a regression analysis 18 

method based on gradient boost decision trees we found that for the data set we used, speed, 19 

elevation and heading were most predictive of GPS positioning error. 20 

    21 

This work is an intial step in the positioning accuracy and accident alerts investigation for 22 

improving road safety. CITI project is an ongoing project, with aims to investigate DSRC use at 23 

signalised intersections, as well as improving road safety especially in high concern public areas 24 

(schools, kindergardens, etc.). As the DSRC systems are applied more widely, there is a real need 25 

for testing and investigating the technology on more light vehicles, in order to improve road safety.    26 

 27 
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