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Abstract:
Vehicle-to-Vehicle communication and Dedicated Short Range Communication systems have
gained an increasing popularity in building vehicular applications for improving road safety, but
the high level of positioning accuracy at the centimetre level is still far from being achieved.
Various outages in transmitting the positioning information between neighbouring vehicles and
errors in broadcasting their current locations can lead to a fail in generating accurate collision
alerts that would help improve road safety.
The goal of this paper is to propose a modelling framework for applying an event-triggered
control when the location transmitted by connected vehicles equipped with DSRC is lost due
to unforeseen events. Firstly, we model the evolution of the DSRC transmitted positioning as
a multi-state stochastic switching system by taking into consideration the distance from the
transmitted location to the road center. A control interval is defined for the evolution of the
positioning signal by using the road width to define the boundaries. Secondly, we propose an
analytic method for determining the exit probabilities from the control interval, with the scope
of anticipating any position anomalies and help applying the event triggered control when the
control boundaries have been reached. Thirdly, we apply a cooperative location estimation
method for improving the broadcast position information by using the accumulating trajectory
segments from the moment of the anomaly alert.

Keywords: DSRC, connected-vehicles, positioning, event-triggered control, Markov Chains.

1. INTRODUCTION

Addressing congestion and avoiding traffic collisions has
become the main focus of intelligent transportation sys-
tems (ITS) due to ever increasing number of road traffic
deaths per annum (WHO, 2013). In order to improve road
safety, various ITS strategic plans are already engaged in
using advanced transport technologies such as Vehicle-to-
vehicle (V2V) and vehicle-to-infrastructure (V2I) commu-
nications (Grace et al., 2012).

Dedicated Short-Range Communication (DSRC) systems
have recently known an increasing popularity due to their
potential to enhance mobility safety and environmental
security (Zeng et al., 2012). United States of America,
Europe and Japan have already adopted the IEEE 802.11p
standard and established dedicated bandwidths for DSRC
(Li, 2010). Various projects and test bed initiatives have
concentrated on: 1) analysing the effective communication
range between two connected vehicles (DOT, 2011), 2)
testing the probability of successful message reception
(Jiang et al., 2006), measuring collision timings (Tang and
Yip, 2010) or investigating signal priority for connected
vehicles at signalized intersections (Gende et al., 2016).
Despite a high reliability shown by the DSRC equipped
systems, in 2014, the National Highway Transportation
Safety Administration (NHTSA) assessed the need to
further investigate DSRC related problems before releasing

a deployment-level V2V communication system mandate
(Harding et al., 2014).

The biggest challenge when using DSRC systems for con-
nected vehicle (CV) applications is the accuracy of the
vehicle position broadcasting through Basic Safety Mes-
sages (BSMs) to neighbouring vehicles. Many connected
vehicle applications need sub-meter accuracy at the lane
level, especially for real-time situational awareness (Alam
et al., 2012). Bridging the gap between positioning accu-
racy and the necessary availability for CV applications
represents an important challenge still to be tackled.
Various works concentrated on improving the GPS po-
sitioning of DSRC-equipped connected vehicles by either
proposing a Bayesian approach which uses received signal
strength data from roadside equipment (RSE) to update
the vehicle position (Jiangchen et al., 2016), or integrat-
ing together positioning and navigation map data which
contains metadata for travellers (Efatmaneshnik et al.,
2011; Van Hamme et al., 2013). While these methods
are very promising, they are relying on the existence of
additional equipment/features to be used (RSEe, digital
maps), which represent supplementary costs for current
test bed initiatives still trying to tackle the connected
vehicle installation and usage.

Although in ideal operating conditions (clear sky, no ob-
structions), the DSRC equipped vehicles can present a
good positioning accuracy, in more dense urban areas,



tunnels or bridges, the positioning signal can suffer various
outages and random perturbations (Alam and Dempster,
2013). As the number of connected vehicles on the roads
will increase, there is true need to understand how various
external events can influence the evolution of the trans-
mitted positioning signal, and what are the most adapted
control methods that can be applied for improving the
positioning accuracy of DSRC systems in such conditions.

Due to a random evolution and transmission of DSRC
location information, we believe that stochastic switching
systems (SSS) are an appropriate tool to model the be-
haviour of such dynamical systems which are subject to
random failures and sudden environmental disturbances.
SSS are an important class of hybrid dynamical systems
which contain a continuous part, usually represented by a
family of subsystems driven by differential equations, and
a discrete part, which can be a logical rule for switching
between these subsystems. The idea of introducing the
stochastic aspect in the hybrid systems has been initially
presented in (Lygeros et al., 2008) and the modelling
approach is now applied in robotics (Egerstedt and Hu,
2002), networking (Strelec et al., 2012), transportation
systems (Pola et al., 2003), automotive systems (Balluchi
et al., 2000) and biological systems (Kumar et al., 2013).

The continuous evolution of a SSS is interspersed by
discrete events that can influence the switches between
various states of the system. In the case of discrete-time
systems, the control problem is easier to solve as the
switching between the states of the systems take place at
fixed sampling instants (Bemporad and Morari, 1999). But
if the switches occur during the inter-sampling periods,
this would lead to modelling errors and state-mismatch.
In our case, although the BSMs are normally programmed
to be sent out 10 times a second, if the DSRC positioning
signal is lost due to random external events or the system
has a failure to transmit the messages, then the constant
timing between consecutive BSMs becomes stochastic. In
order to avoid these errors, an appropriate solution would
be to apply an event-triggered control (ETC) when specific
abnormal switches occur in the evolution of the system
or the transmitted position falls outside of the road. The
main advantage of using ETC is the fact that it can be
applied only when is needed, and is very efficient when the
control methods are computationally expensive or when
the energy consumption has specific limitations (Cogill
et al., 2007; Åström and Bernahardsson, 2002). Applying
a continuous procedure for re-estimating the car’s position
at every time step is time-consuming and would result
in delays between communicating devices. Applying an
adapted event-triggered control and anticipating when
the system will suffer anomalies in positioning is a true
challenge still to be tackled.

In this paper, we present the procedure and framework for
modelling the evolution of DSRC transmitted positioning
signal as a multi-state stochastic switching system. The
main objective is to propose an event-triggered method for
improving the positioning accuracy of connected vehicles
equipped with DSRC when road side units do not exist
and the dead-reckoning feature is failing to update the
position of the vehicle. Section 2 introduces the context of
our work, the motivation for this study as well as the main

challenges we are trying to address. Section 3 presents
the model description, the definition of anomalous events
that can trigger the control as well as the framework for
applying the ETC. For modelling the transitions between
the states of the system we use continuous-time Markov
chains (CTMC) with finite state space. In Section 3.2 we
elaborate an analytical method for computing the exit
probabilities from the control interval while in Section 4
we propose a collaborative positioning estimation method
to be applied during ETC. Conclusions and future per-
spectives of this work are provided in Section 5.

2. MOTIVATION FOR THIS WORK

2.1 Context

The Cooperative Intelligent Transport Initiative (CITI)
is a project currently undertaken by Transport for New
South Wales (TfNSW) in partnership with DATA61 and
the Australian Federal Government’s Heavy Vehicle Safety
Productivity Program (TfNSW, 2016), with the aim of
building Australia’s first semi-permanent DSRC test-bed
over an area of 917 km2 in the Illawarra Region of
NSW (Tyler et al., 2016). Currently, almost 60 heavy
vehicles, three signalised intersections and one roadside
location have been equipped with DSRC units. According
to TfNSW, 18% of the traffic on an important road in
CITI consists of heavy vehicles, which are involved in 63%
of fatal crashes (RMS, 2016).

In order to ensure road safety, the main challenge of
the project is to address the generation of false collision
alerts that hinders driving conditions and might result
in drivers ignoring or not trusting the DSRC on-board
warning device. Therefore, the first step was to investigate
the accuracy of the transmitted positions between heavy
vehicles, as reported from Basic Safety Messages (BSMs).
The major finding indicated that 37.89% of transmitted
BSMs during a specific period of time were incomplete or
empty, while some vehicles presented various anomalies in
positioning (e.g. one of the most active vehicles presented
almost ' 9% of anomalies). This work is therefore a
continuation of previous results presented in (Mihaita
et al., 2017) with the purpose of proposing a theoretical
framework for detecting anomalous events and propose an
adapted control strategy that would mitigate this risk.

2.2 Challenges to address

Although BSMs are normally transmitted 10 times a sec-
ond, random outages of the system or failures in sending
out the updated information can induce larger time in-
tervals between BSMs and inaccuracies in the broadcast
information. The positioning information in these mes-
sages is based on GPS measurements and in the case of
brief loss of the GPS signal the position may be extrapo-
lated from last known data in a process known as “dead
reckoning” (Bento et al., 2012). However, in CITI, no
additional sensors are connected to the DSRC unit and
dead reckoning is restricted to interpolations from last
known GPS locations. For the remainder of this paper,
reference to “GPS” is actually a reference to “GPS-based
positioning information” as is transmitted by a vehicle in
a BSM. Therefore, the accuracy of the “transmitted GPS



positioning” is not independent of the DSRC unit, but is
a mix of processing and transmission methods. Modelling
the stochastic behaviour of such systems represents a true
challenge, especially for finding an adapted method for
re-estimating the positioning information when no road
side units are available or the dead-reckoning functionality
is not accurate. As well, we seek to anticipate when the
positioning of the vehicle would fall outside of the road
width and how to improve the location estimation of the
vehicles in this situation.

3. MODEL DESCRIPTION

In the following, we denote by NG the total number of
DSRC GPS observations transmitted in a single BSM. A
GPS observation is described by its location Ai = (Li, li),
i ∈ {1, ..NG} registered at time ti, where Li and li
denote the longitude, and the latitude respectively. Let ∆t
be the time between two consecutive GPS observations;
in this study we consider ∆t to be stochastic due to
possible random loss of the transmission signal. Each
GPS observation Ai can be mapped to a specific road
segment gj , j ∈ {1, G}, with the same spatio-temporal
characteristics. A symbolic graphical representation of
three consecutive GPS observations over a selected road
section is provided in Figure 1. The road section has
two lanes of width L in the same direction and, in this
case, the line separating the two lanes represents the
road center used for computing the noise. Let Ni be the
distance (or noise) between a registered GPS location and
its projection on the road centre line at a specific time ti.
For simplicity, in the rest of this paper, we will use the
notion of noise when referring to the distance between a
GPS observation and the road center.

Fig. 1. Example of 3 GPS observations.

Let s ∈ S be a discrete state of the system corresponding
to a specific GPS observation, S = {1, ..NG} a finite state
space and x(t) the state variable denoting the continuous
evolution of noise registered in each state of the system.
The system remains in a specific state s until a random
switch occurs; it will then transition to a new state
described by a new noise level. We model this behaviour
as a stochastic switching system described by:{

ẋ(t) = NA(t)

x(0) = x0
(1)

where x0 ∈ R is the initial state of the system, A(t) the
continuous-time Markov chain defined on S, and NA(t) the
accumulated noise when the system is in a particular state
of the Markov chain. The hybrid behaviour of the system
is described by the continuous evolution in time of the
state variable x(t), while the system randomly switches
from one state to another, as described by the associated
CTMC. Let Q be the transition matrix of the system:

Q =


−
∑
j 6=1

λ1,j . . . λ1,N

λN,1 . . . −
∑
j 6=N

λN,j

 (2)

where λi,j is the transition rate from one state i to another
state j. Consequently, the transition probability between i
and j is pi,j = λi,j/

∑
j 6=i

λi,j .

As mentioned earlier, the system can suffer random failures
in transmitting or updating the information regarding its
location. Figure 2a) shows a short sequence of real DSRC
GPS observations as transmitted by a connected heavy
vehicle operating in CITI. The road center is a Google
Map shape file which is used for computing the noise as
a Vicenty distance (Vicenty, 1975) between the DSRC
GPS observations and the corresponding mapped point
on a road segment. This process is known as a Map-
Matching (MM) procedure. MM algorithms can integrate
GPS positioning data with spatial road network data in
order to identify the correct link on which a vehicle is
travelling and the exact location of a vehicle on that link
(Greenfield, 2002). While MM methods have received a lot
of attention in the literature (Hashemi and Karimi, 2014;
Miwa et al., 2012), our main objective in this paper is
to focus on event-triggered control techniques that can be
applied when special events or anomalies may appear.

Figure 2b) shows the corresponding noise computed for
each GPS observation plotted in Figure 2a). As the official
lane width in Australia is L = 3.5m, we define this limit
as the Upper Control Limit (UCL). Any noise below
this limit (Ni ∈ [0, 3.5m]) is considered as normal. Noise
levels that fall outside UCL (Ni ≥ 3.5m ) are considered
anomalies and will trigger the control for re-estimating
the DSRC transmitted location. We therefore define the
following events that can change the evolution of the
system:

• Normal switching events: which are independent of
the control limits, and indicate a normal switch
between the states of the system.

• Anomalous events: which appear on random occa-
sions and indicate that the positioning signal is er-
roneous and falls outside of the normal road width.
These events trigger a special type of control that
needs to be applied in order to re-estimate the trans-
mitted positioning of the vehicle, which we denote as
Event-Triggered Control (ETC).

We therefore define the control interval (CI = 2L) as the
interval in which normal noise levels may appear and UCL
and LCL as the upper, respectively lower control limits of
the SSS considered in this paper. The control process is
stochastic with the objective of maintaining x(t) ∈ CI.
While other control techniques can be imagined for this
problem (PID, anti-windup, Lyapunov, etc.), our main
objective is to propose a control method which is based
on a stochastic process and that could be further used to
minimize the energy to maintain the positioning of the
vehicle inside the road width. For simplicity, we consider
the road width to be fixed while the switches between the
states to be stochastic. The current method is adapted
from state-feedback control in a simplified stochastic ver-
sion. The method is similar to the original approach formu-



Fig. 2. a) DSRC transmitted positions along the road center from Google Maps. b) Evolution of noise along the road
segment falling outside the Upper Control Limit UCL.

lated by (Åström and Bernahardsson, 2002) and represents
our original inspiration for this study. The event-triggered
controlled system is described by:{

ẋ(t) = NA(t) + uA(t)(t) + w(t)
x(0) = x0

(3)

where uA(t)(t) is the control command applied when the
upper or lower control boundaries have been reached and
w(t) is a zero-mean white Gaussian noise related to the
control command. We can therefore express uA(t)(t) as:

uZ(t)(x(t)) =

{
0, if x(t) ∈ CI
∆N(t), if x(t) 6∈ CI zone, ∀i ∈ S (4)

where ∆N(t) represents the difference between the esti-
mated noise and current noise in order to re-adjust the
positioning of the vehicle so that the noise level remains
inside the control interval. The main challenge is therefore
to be able to find an event-triggered control command
which is adapted to the stochastic evolution of the system
with random anomaly events and can improve the system
performance.

3.1 Framework

Applying the control only when is needed has a great
advantage of minimizing the effort of a continuous re-
positioning of the vehicle which can be time and energy
consuming. Recent studies have investigated the possibil-
ity of using cooperative positioning (CP) methods for re-
estimating the transmitted location of a connected vehicle
by combining position-related data from neighbouring ve-
hicles. While conventional CP systems (differential GPS,
real-time kinematic GPS, assisted GPS) may suffer from
limitations such as low signal coverage, weak signals or
accuracy (Hofmann-Wellenhof et al., 2001), modern CP
methods have gained a lot of attention as they are using

V2V and V2I connections to estimate the position of a
vehicle when the number satellites is small or GNSS is
unavailable (Tan, 2010). DSRC systems can provide range
data as well as heading, speed and acceleration of vehi-
cles, which enables more complicated techniques that have
potential to enhance position accuracy, such as Bayesian
filtering (Liu et al., 2015) or Kalman filter (Efatmaneshnik
et al., 2011).

But anticipating when to apply the re-estimation of the
positioning information which will be transmitted remains
a challenge for which we propose the analytical solution
presented in Section 3.2. In Figure 3 we propose the general
framework for applying the ETC, which can represent
a baseline for further tests and studies of positioning
methods. By using information broadcast by the DSRC
unit with dead-reckoning feature (Step 1), we apply a Map-
Matching procedure (Step 2) for computing the distance
(noise) between the DSRC GPS observations and the
road center. We then model the noise evolution at every
time step using a SSS with a CTMC which helps us
to compute the exit probabilities towards the control
boundaries (Step 3). If these probabilities reach a certain
predefined threshold P (e.g. P = 80%), then the ETC
can be applied in advance in order to re-estimate the
positioning of the vehicle from the associated road segment
(Step 4). The ETC can be applied for each state of the
system until the exit probabilities fall below the specified
threshold.

3.2 Exit probabilities

The analytic method we propose in this section is inspired
from the studies of (Gardiner, 2004), for computing the
mean exit times that a particle needs to exit a control
zone with absorbing barriers. Another interesting analytic
method for determining the maximum level and the hitting



Fig. 3. ETC framework.

probabilities for stochastic fluid flows is presented in (Seri-
cola and Remiche, 2011), with the use of matrix differential
Riccati equations. We define the exit probabilities in the
following.

Definition 3.1. Let {An}n∈N+
be a continuous-time Markov

chain and B a subset of the state space taking values inside
the control interval CI. We define the exit probability
πj
e(x), as the probability for the system to exit B, when

starting in a state j:

πj
e(x) = Prob{x /∈ B|x(0) = x0, A(0) = j}.

Considering the multi-state stochastic switching system
representing the evolution of noise in time, we use
backward Kolmogorov equations, for computing the exit
probabilities towards the control limits (Confortola and
Fuhrman, 2013). In this section, we present only the case
for the exit towards UCL, as the exit towards LCL is
similar. Let us consider the following differential equation:

R · dπe(x)

dx
+ QT · πe(x) = 0 (5)

where QT is the transposed transition matrix of CTMC
defined in (2), R is a diagonal matrix of the noise evolution
associated to the states of the system:

R =

(
N1 . . . 0
0 . . . NNG

)
(6)

and πe(x) is a probability column vector defined as:

πe(x) =
[
π1
e(x) π2

e(x) . . . πNG
e (x)

]T
with πj

e(x) as the probability to reach UCL when starting
from x in state j. Therefore, we search for the exit
probabilities towards the upper control limit :

πj
e(x) = Prob{x ≥ UCL|x(0) = x0, A(0) = j}

which respect the boundary conditions: {πj
e(UCL) = 1

if Nj ≥ UCL} and {πj
e(LCL) = 0 if Nj ≥ LCL}. In

other words, when the system is already at the upper
control limit, the probability to to exit towards UCL is
1, indicating an urgent need to apply the ETC. Similarly,
if the system would be at the LCL, the probability to

exit towards UCL would be 0. The vice-versa is valid for
the exit probability towards LCL. Solving the backward
Kolmogorov equations (5) for the exit probabilities, with
the previous boundary conditions, provides the following
solutions:

πe(x) = e−R
−1·QT ·(x−LCL) · πe(LCL) (7)

which can be computed at every switch between the states
of the system and to decide whether the ETC should
be applied or not. For best optimizing the application of
ETC and to avoid delays in location re-estimation, one
would need to set up a specific probability threshold P ,
as mentioned in the previous section. As an example, if
the probability to hit the UCL is 80%, then the chances
of a future anomaly are high, therefore the ETC could be
triggered in advance. This event is classified as anomalous
and helps preventing the delays in location re-estimation
by anticipating when the system might reach the bound-
aries of the control interval.

4. EVENT-TRIGGERED POSITIONING
ESTIMATION

Besides the information about the vehicle location, the
DSRC unit broadcasts information about the acceleration,
speed, elevation, brakes, and heading Θ (angle of the
vehicle relative to the horizontal direction of movement).
The heading and distance between DSRC locations can
be used to re-estimate the vehicle’s trajectory from the
moment when an anomaly detection has been released.
The following decentralized cooperative method is adapted
from (Li et al., 2015) in which the authors applied it
for estimating the location of mobile users in disruptive
tolerant network, by accumulating walking segments.

Let A0 = (L0, l0) be the initial point from where the
system has started to receive anomaly alarms (π0

e(x) ≥ P )
and Ac = (Lc, lc) the location point where the system has
reached (or even exceeded UCL) and has to re-estimate its
current position. A transition movement from one location
to another can then be approximated based on the distance
between two consecutive locations of the same vehicle
which we denote (Di), as well as the heading of the vehicle.

So the coordinates of estimated Âc can be approximated
by accumulating the past trajectory segments from the
moment when the ETC alarm has been activated:

L̂c = L0 +

M∑
i=1

DisinΘi (8)

l̂c = l0 +

M∑
i=1

DicosΘi (9)

Theoretically, if we have access to the initial location when
the alarm has been triggered, by using equations (8)-(9),
we can then estimate its location as any given moment in
time. But various errors can occur and accumulate during
the transitions from one state to another (system failures,
stochastic delays between consecutive locations), reason
for which we strongly believe that the positions received
from other connected vehicles along the road can help
improving the positioning estimation in a collaborative
process.



Consider the case of a DSRC connected vehicle with esti-
mated positioning Âc at UCL, which encounters another
DSRC vehicle with location Bn. We then apply a two-
step verification test: 1) if the Vicenty distance between
the two vehicles is inferior to the DSRC range (which is
normally set up at 250 meters according to (Efatmanesh-
nik et al., 2011)), then the second vehicle is considered
to be a valid candidate with possible correct positioning
2) if the exit probability of the second vehicle exceeds as
well the established probability threshold P or is already
outside of the control interval (πe(NBn) ∈ [P, 1]), then the
second vehicle is considered to be anomalous as well and
its location will not be used for improving the first car’s
location; otherwise, if the neighbouring vehicle has low exit
probability nor hasn’t reached the CI limits then it can
be considered as an accurate neighbour and its position
Bn can be used for further refinements of the first car’s
position.

In this case, the control command applied for adjusting the
initial noise level of the first car, would be completed with
the difference between the noise of the second car NBn and
the noise of the first car NAc : ∆N(t) = NBn −NAc (see
equation 3).

Final step is to adjust as well the trajectory of the system
from A0 location when the ETC system detected the
anomaly, up to the last location Bn, whose coordinates

now satisfy: LB = L0 +
∑M

i=1D
B
i sinΘi and lB = l0 +∑M

i=1D
B
i sinΘi. This would need further adjustments of

all previous distances between consecutive transmitted
DSRC locations, which can be solved as a linear pro-
gramming optimisation problem. Lastly, one would need
to verify that the error between the adjusted distances
and the original ones remain under specific thresholds ε.

5. CONCLUSION

In this paper we presented an event-triggered control ap-
proach for improving the location estimation of DSRC
transmitted positions in a connected vehicle environment
which may be affected by unforeseen perturbations. The
main advantage of the method is that the event-triggered
control is applied only if anomalous events appear in
the system evolution. By computing the exit probabilities
towards the boundaries of the control interval one could
verify what are the chances that the system location will
deteriorate. This step is the starting point of searching for
neighbouring vehicles which have correct DSRC location
and respect the same control boundaries. We are cur-
rently focused on investigating various modern cooperative
positioning methods which can be applied together with
an ETC approach in a CV environment and which can
improve the estimation of transmitted DSRC location.
CITI is an ongoing project, with aims to investigate the
use of DSRC for signalised intersections, as well as im-
proving road safety especially in high concern public areas
(schools, kindergardens). Ongoing work is also focusing on
the quality of the GPS positioning on a a small number of
light vehicles which are currently being equipped with both
GPS and GLONASS for improving the location detection.
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