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ABSTRACT. In this paper we present a probabilistic approach for building the energy model when
the event-driven control is applied over a class of continuous-time stochastic switching system.
The system we study is a stochastic switching integrator which we model using Continuous-time
Markov Chains. When analyzing the stochastic evolution of the system, we identify a restart pe-
riodic behavior, which leads to the analysis of four possible scenarios of evolution. We therefore
propose new analytic methods to determine the parameters needed to compute the control en-
ergy, such as: the second order performability moment of the state variable, the exit times from
the control zone, as well as the control periods, which are characteristic to each scenario. In the
final part we validate the methods through numerical examples of two and four-state stochastic
switching integrators.

RÉSUMÉ. Dans cet article nous présentons une méthode probabiliste pour construire le modèle
énergétique quand le contrôle basé sur les événements est appliqué sur une classe des systèmes
stochastiques à commutation. On étudie un intégrateur stochastique à commutation modélisé
à l’aide des Chaînes de Markov en Temps Continu. En analysant l’évolution du système nous
identifions un comportement périodique de redémarrage, qui nous conduit vers l’analyse de
quatre scénarios d’évolution. Ce travail propose des nouvelles méthodes analytiques pour
déterminer: les moments de performabilité du deuxième degré de la variable d’état, les temps
de sortie de la zone de contrôle et les temps nécessaires pour appliquer le contrôle. Dans
la dernière partie de l’article nous validons les méthodes proposées à travers des exemples
numériques pour des systèmes stochastiques à commutation avec deux, respectivement quatre
états.
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backward Kolmogorov equations.
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1. Introduction

In the past few decades, stochastic switching systems (SSS) have known an in-
creasing popularity, as they can easily model the behavior of many dynamical sys-
tems, which are subject to random failures of components, sudden environmental
disturbances or changes in the system interconnection. Originally the SSS were an
important class of hybrid dynamical systems, containing a continuous part, usually
represented by a family of subsystems driven by differential equations, and a discrete
part, which can be a logical rule for switching between these subsystems. The idea
of introducing the stochastic aspect in the hybrid systems is not new, some of the
first models and approaches being initially presented in (Lygeros et al., 2008). The
application domain of such systems expanded to robotics (Egerstedt, Hu, 2002), net-
working (Strelec et al., 2012), transportation systems (Pola et al., 2003), automotive
systems (Balluchi et al., 2000) and biological systems (Kumar et al., 2013). A recent
analysis of the progress made in the area of stochastic hybrid systems can be found in
(Lygeros, Prandini, 2010).

1.1. Contributions

The system we study throughout this paper is a particular type of stochastic switch-
ing systems, more specifically we use a multi-state stochastic switching integrator
(SSI) which we model using continuous-time Markov Chains with finite state space
(presented in Section 2). This type of systems plays a key role for example in the
performance evaluation of water tanks or in telecommunication networks, as their be-
havior can be compared to that of fluid queues. Regarding the stationary analysis
of fluid queues driven by countable state space Markov chains, in (Guillemin, Seri-
cola, 2007) the authors propose an algorithm for computing the stationary probability
distribution of the buffer level in the fluid queue.

For the SSI we consider in this paper, we propose an event-driven control, which
would be triggered only when unexpected events change the evolution of the system.
In subsections 1.2 and 1.4, we present a comparison and state of the art on the event-
driven control. Our main contributions are presented in Section 3 and represent new
probabilistic and analytic methods for computing the energy model of the system. By
energy model we refer exactly to the computation of the quadratic expression witch is
generally associated with the energy consumed to apply the control and maintain the
system inside the control area, summed with the energy of the internal states of the
system. We therefore propose new analytical methods for determining the following
parameters needed to construct the energy model: (1) the first and second order mo-
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ment of the state variable, (2) the exit times from the control zone and (3) the control
periods.

Although the study of the considered SSI might seem trivial at a first glance, the
stochastic behavior of the system induces a high level of uncertainty when applying
the event-driven control over random and periodical restart periods. This increases the
complexity of the problem and leads us to the probabilistic analytic methods which we
further propose. The present paper completes and extends our previous work regard-
ing the exit times and probabilities, which have been published in (Mihăiţă, Mocanu,
2012). We conclude the paper with a numerical example in Section 4, for the case
of a two-state controlled stochastic switching integrator, followed by conclusions and
further perspectives.

1.2. Event-driven control

The continuous evolution of the stochastic switching systems is interspersed by
discrete events, which modify the differential equations defining the continuous flow.
The switches between the states of the system produce discontinuities in the trajecto-
ries describing the dynamics of the system, leading to weaker solution concepts for
the differential equation such as the Filippov solutions (Beek et al., 2004) or the Zeno
behavior (Lygeros et al., 2003). This aspect hinders the design of a suitable controller
for continuous-time hybrid systems, for example when the computational method in-
volves non-convex problems (Xu, Antsaklis, 2003). In the discrete-time case, the op-
timal control problems are easier to solve as the switching between the system states is
caused by events that take place at certain fixed sampling instants (Bemporad, Morari,
1999). But if the switches occur during the inter-sampling periods, this would lead to
modeling errors and state-mismatch.

In order to avoid state-mismatch errors, an appropriate solution would be to apply
and change the command values exactly when a switch occurs, in other words to ap-
ply an event-driven control (EDC). Event-driven methods have been originally used
in Petri nets and finite-state machines, and started to gain popularity in industrial sys-
tems (Guzzella, Onder, 2006), communication networks (Wang, Lemmon, 2008) and
biological systems (Wilson, 1999). The main advantage of using the EDC is the fact
that it can be applied only when is needed, becoming very efficient when the control
measures or the data acquisition is expensive, or when the energy consumption has
certain limitations (Cogill et al., 2007; Åström, Bernahardsson, 2002).

In the literature, the EDC can be found under different notations: event oriented
sampling (Åström, 2008), Lebesque sampling (Otanez et al., 2002) or asynchronous
command (Heemels et al., 1999). If the first studies (Kwon et al., 1999) have analyzed
the EDC only through simulations and experiments, subsequent studies, (Åström,
Bernahardsson, 2002) have obtained analytical results for a first order system, by
comparing the performance of the event-driven controlled systems and the continuous-
sampling controlled systems. They have shown that the EDC provides better perfor-
mance under certain experimental conditions, caused by the fact that the command can
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be decreased on time intervals having fewer perturbations, and increased on time inter-
vals with high stochastic perturbations. For example, (Henningsson et al., 2008) have
shown that sporadic control can give better performance than periodic control in terms
of both reduced process state variance and reduced control action frequency. More re-
cent studies (Stöcker et al., 2013) focus on the decentralized event-driven feedback
control of physically interconnected systems, and show how the number of events can
be reduced by estimating the interconnection signals between the subsystems.

In Section 2 of the paper we present the application of the event-driven control over
the stochastic switching system we study, in order to maintain the system evolution
inside a specific control zone.

1.3. Hybrid automaton

The basis for a hybrid system modeling framework is often provided by a hybrid
automaton, as the discrete events cause transitions from one discrete state to another,
regardless whether they are controlled or uncontrolled. When found in a particu-
lar state, the system’s behavior can be described by differential equations. More-
over, when the stochastic setting appears, one might be interested in the construc-
tion of stochastic hybrid automatons (Cassandras, 2008), or in the use of piecewise-
deterministic Markov processes (Schäl, 1998). Due to their dual behavior (discrete
and continuous) and to the abrupt variations in their structure, the Markov chains are
ideal to analyze and represent the stochastic switching systems (Mao, Yuan, 2006;
Boukas, 2006). In this article we use the continuous-time Markov Chains (CTMC) to
model the system behavior and the stochastic transitions between the states.

1.4. Alternative approaches

Computing the performance of a stochastic hybrid system is generally a hard task
due to the lack of a closed form expression which would capture, for example, the
dependence between some performance metrics and control parameters (Yao, Cassan-
dras, 2011). In the domain of pure discrete event systems (DES), the infinitesimal
perturbation analysis (IPA) has gained popularity as it offers the possibility to obtain
unbiased estimates of performance metric gradients, which can be later incorporated
intro gradient-based algorithms for optimization purposes (Panayiotou, Cassandras,
2006). However, when dealing with DES presenting discontinuities in their behavior,
the IPA estimates become biased, and therefore unreliable for applying the control.
Recent studies have shown that the IPA framework can be applied on a particular class
of stochastic hybrid systems, more specifically, on Stochastic Flow Models (SFMs).
For example, (Wardi, Riley, 2010; Cassandras et al., 2010), generalize and optimize
the application of the IPA framework.

Another alternative of applying the control over stochastic hybrid systems, is the
predictive optimal stochastic control, which takes into account the probabilistic un-
certainty in dynamic systems, and aims to control the predicted distribution of the
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system state in an optimal manner. (Blackmore et al., 2007) worked on an approxi-
mation method of the stochastic predictive control problem to a deterministic one, and
solved the optimization problem using Mixed Integer Linear Programming. Recently,
a numerical approximation of stochastic hybrid processes with jumps by locally con-
sistent Markov decision processes can be found in (Temoçin, Weber, 2014). Other
works address the optimal control problem of Markov chains with constraints (Miller
et al., 2010) or use optimal control techniques to obtain the stabilization of stochastic
switched systems (Corona et al., 2014).

Whilst in the current paper we do not address the optimal control problem of
stochastic switching systems, the present work can be considered as a first step to-
wards the application of optimal control methods. res

2. Stochastic switching integrator (SSI)

2.1. Uncontrolled SSI

Let s ∈ S (a countable set) denote the discrete state, and x ∈ X ⊆ R denote the
continuous state, or more explicitly, the state variable. A sample path of such a system
would consist of a sequence of intervals of continuous evolution, followed by discrete
transitions. The system remains in a discrete state s until a random switch will occur.
We define the system by the following equation:{

ẋ(t) = rZ(t)

x(0) = x0
(1)

where x0 ∈ R is the initial state of the system, Z(t) is the Markov chain defined on the
finite state space S = {1, 2, . . . , N}, and rZ(t) are non-zero switching values, which
are chosen so that: {

ri > 0,∀i ∈ {1, . . . ,M}
rj < 0,∀j ∈ {M + 1, . . . , N}

More explicitly, the system has half of the states characterized by positive switch-
ing rates, while the other half is characterized by negative switching rates. Dividing
the states of the SSI in two halves is assumed for simplicity, without loss of gener-
ality. The further proposed analytical methods can be applied independently of the
proportion of the switching rates associated to the states.

The hybrid behavior of the systems is characterized by the continuous evolution of
the state variable x(t), and the discrete switches between the states of the associated
Continuous-time Markov Chain. We also consider the corresponding transition rate
matrix:

Q =


−
∑
j 6=1

λ1,j . . . λ1,N

. . .
λN,1 . . . −

∑
j 6=N

λN,j

 (2)
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where λi,j is the transition rate from state i to state j. Consequently, the transition
probability between i and j is pi,j = λi,j/

∑
j 6=i
λi,j .

A graphical representation of a two-state stochastic switching integrator is given
in Figure 1, with the associated transition rates: {r1 > 0} and {r2 < 0}. Using the
notations from (Cassandras, 2008), we consider σ1 and σ2 to be the events triggering
the transitions from state 1 to state 2, respectively from state 2 to state 1.

Figure 1. Two-state stochastic switching system

2.2. Controlled SSI

Let us consider Xmin and Xmax the minimal, respectively the maximal control
limit, as shown in Figure 2, and XL, XH the low, respectively the high stopping
control boundary.

Xmax

Xmin

XH

XL

High Control

No Control

Low Control

Figure 2. EDC applied over the Stochastic Switching Integrator (1).

The first objective when applying the EDC is to maintain the state variable x(t)
inside the control zone [Xmin, Xmax] with a minimal control energy. Every time one
of the limits is reached (for example when {x(t) = Xmin} or {x(t) = Xmax}), the
control will be applied until x(t) returns in the no-control zone (NC). By no-control
zone we denote either the interval (XL, XH), or (Xmin, XL)∪ (XH , Xmax), as long
as the limits haven’t been reached and the EDC is not being applied.

In this paper we follow a control scheme which is based on the discrete events of a
stochastic process. Therefore, the control process and the controller are stochastic as
well. As the controller we build is not an integrator, we do not currently have a fixed
set-point (our objective is to maintain x(t) ∈ [Xmin, Xmax]), and therefore we do not
have an error saturation and integration problem. While other control techniques can
be imagined for the specified problem (anti-windup, PID, Lyapunov, etc.), our main
objective remains to propose a control scheme based on a stochastic process, which
will be further used for the optimal control of other stochastic processes. The current
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method is therefore inspired from state-feedback control in a simplified stochastic
version. We would like to make the observation that indeed, the original approach
of the event-driven control formulated by (Åström, Bernahardsson, 2002) had similar
characteristics with the relay control (triggered when exceeding a limit) and was our
inspirational source for the current study.

We will further use the notation of high control (HC) when the EDC is applied in
the upper control zone (XH , Xmax] (this requires that the control has been triggered
by Xmax), respectively low control (LC) when EDC is applied in the lower control
zone [Xmin, XL). If the control has not been triggered, the system will rest in the no
control zone (NC) (see Figure 2). The controlled switching integrator now becomes:

{
ẋ(t) = rZ(t) + uZ(t)(x(t))
x(0) = x0

(3)

where uZ(t)(x(t)) is the control command applied on the system when being in a
specific controlled state {i, j} ∈ S, of the Markov chain Z(t) :

uZ(t)(x(t)) =

 0, if x(t) ∈ NC zone
−QHi, if x(t) ∈ HC zone, ∀i ∈ S
+QLj , if x(t) ∈ LC zone, ∀j ∈ S

(4)

andQHi andQLj are the high and the low control applied when the Markov chain
is in state i, respectively in state j.

In order for the event-driven control to take place and for the system to return in
the no-control zone, QHi and QLj are chosen so that:{

ri −QHi < 0 ,∀QHi > 0, i ∈ S
rj +QLj > 0 ,∀QLj > 0, j ∈ S (5)

An an example, in Figure 3 we represent a controlled two-state switching integra-
tor, as defined in (3), using a stochastic hybrid automata (Perez Castaneda et al., 2009).
We denote the state space as: S = {1NC, 2NC, 1HC, 2HC, 1LC, 2LC}, where
{1NC, 2NC} are the system states without control, {1HC, 2HC} are the states with
high control applied inside [XH , Xmax], while {1LC, 2LC} are the states with low
control applied inside [Xmin, XL]. For example, the state {1NC} indicates that the
Markov chain is in state 1 without control {ẋ(t) = r1}, unlike the state {1HC}which
indicates that the system is in state 1 with high control, therefore {ẋ(t) = r1−QH1}.

Using the representation from Figure 3, we notice that the event-driven control
is triggered only when certain types of events will appear. We identify two types of
events that can change the dynamics of the system:

1. uncontrolled Markov chain events: they are independent of the extreme fron-
tiers, making the system to switch between states having the same type of control
(high, low, or none); in the above example these events are represented by {σ1, σ2};
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1HC

1NC

1LC

2HC

2NC

2LC

Figure 3. Stochastic hybrid automaton for the controlled two-state SSI [3].

2. control events: they change the type of control applied to the system. For
example {x ↑ Xmax} and {x ↓ Xmin} are the events which trigger respectively
the high and the low control, while {x ↓ XH} and {x ↑ XL} represent the events
causing the high or low control to stop, when one of the stopping control limits has
been reached.

Figure 3 reveals that the system can only reachXmax from a state j with a positive
associated transition rate (ri > 0). Similarly, the system can only reach Xmin from a
state j having a negative associated transition rate (rj < 0). When {x(t) = Xmax} the
high control is applied and the system dynamics becomes {ẋ(t) = rZ(t)−QHi < 0},
causing the state variable to decrease to {x(t) = XH}, condition at which the EDC
will be stopped (same for {x(t) = Xmin}). At XH the system will be in one of the
corresponding uncontrolled state {1NC, 2NC}.

3. Energy model

In this paper, we follow the classical Linear Quadratic criterion, which is used for
applying an optimal control over linear systems. According to (Anderson, Moore,
1990), linear controllers are achieved by working with quadratic performance indices,
which are quadratic in the control and regulation error variables. In general, when
we need to select a performance index for a regulator, the cost terms are constructed
using the control energy and the energy associated with the internal state of the system.
These methods which are meant to achieve linear optimal control are known as Linear-
Quadratic (LQ) methods. We therefore propose an LQ-like method for constructing
the energy model of the considered stochastic switching system. We remind that by
energy model we refer exactly to the computation of the quadratic expression witch
is generally associated with the energy consumed to apply the control and maintain
the system inside the control area, summed with the energy of the internal states of
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the system. The analytical methods proposed here can be considered as a first step
towards the application of a linear optimal quadratic control measure.

From the previous analysis of the system, we observe different sources of stochas-
tic uncertainty: i) the initial state uncertainty, ii) the initial departing point uncertainty,
iii) the random mode transitions, and iv) the random control periods over which we
apply the event-driven control method.

As the transitions between the system states are exclusively random, arriving at
the borders and applying the EDC is a random process as well. Let’s denote by Tr the
random period that the system needs to start in XH or XL, apply control and return
to the no-control zone. The Tr period refers to all the possible restart periods during
the evolution of the system, and not only to the one starting at t = 0. Over this type
of period, we define the following quadratic cost criterion:

JTr
= E

[∫ Tr

0

[q · x2(t) + r · u2(t)]dt

]
, q, r > 0. (6)

where u2(t) is the consumed control energy and E[x2(t)] is the second order moment
of the state variable. For the computation of the above cost criterion, we need to
determine: Tr, u2(t) and E[x2(t)]. If one needs to determine the total quadratic cost
criterion associated to the whole functioning of the system, then he/she will need to
compute the sum of the costs associated to all the restart periods that may occur.

Figure 4. Possible evolution scenarios starting from XH and XL.

In the remainder of this section we present the analytical methods for determin-
ing each of the above parameters needed to compute JTr

. In Figure 4, we represent
a possible trajectory of the system’s evolution, for which we identify four possible
scenarios of evolution, as the system can either start in:

1. XH and reach Xmax during T1, which triggers the HC during T2, until the
system returns to XH ,

2. XH and reach Xmin during T3, which triggers the LC during T4, until the
system arrives at XL,
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3. XL and reach Xmin during T5, which triggers the LC during T6, until the
system returns to XL and,

4. XL and reach Xmax during T7, which triggers the HC during T8, until the
system arrives at XH .

From the periodic behavior of the system, we write the restart period Tr as:

Tr = Texit + Tcontrol (7)

where Texit ∈ {T1, T3, T5, T7} represents the exit time from the control zone, while
Tcontrol ∈ {T2, T4, T6, T8} is the time needed to apply the high or the low control.
We will often refer to Tcontrol as the the control period. We make the observation that
the Texit times are computed from the last time the system has started either in XH ,
or in XL, and not only from t = 0. The analytic methods for computing these times
are presented in Sections 3.2 and 3.3. By considering the scenarios (1)-(4), we write
the energy consumed for applying the EDC as:

Enjtot = pj1E
j
1 + pj2E

j
2 + pj3E

j
3 + pj4E

j
4. (8)

where Eji , i ∈ {1 . . . 4}, j ∈ S is the energy consumed in the ith scenario, when
starting from the j state. In the current paper we determine these energies, knowing
that the occurrence probabilities of each scenario (pji ) have been presented in (Mihăiţă,
Mocanu, 2012).

3.1. Second order moment of the state variable

As previously stated, determining the quadratic cost criterion implies computing:
i) the restart period Tr, ii) the control energy u2(t), and iii) the second order moment
of the state variable E[x2(t)].

First we compute E[x2(t)]. The method we present in this section is inspired by
the analytical method used by (Viswanadham et al., 1995) for computing the per-
formability moments in the transient analysis of a failure-prone system. We express
the nth order moment of the state variable when the system is in state i, as:

mn,i(t) = E[xn(t)|Z(0) = i], i ∈ {1, 2, . . . , N}

and ~mn(t) = [mn,1, . . . ,mn,N ] as the vector of the state variable moments, having
{~m0(t) = ~e, t > 0} (the zero performability moment is the identity vector), and
~mn(0) = ~0 as at t = 0 all the performability moments are null (Viswanadham et al.,
1995).

We write the equation for the first order moment m1(t), which corresponds to the
mean state variable of the stochastic switching integrator from (3):

d ~m1(t)

dt
= Q ~m1(t) + R ~m0(t), ~m0(t) = ~e
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where Q is the matrix generator of the Markov Chain (2), and R the diagonal matrix
of transition rates:

R =

 r1 . . . 0
. . .

0 . . . rN


By left-multiplying the above equation with e−tQ we obtain:

e−tQ
d ~m1(t)

dt
− e−tQQ ~m1(t) = e−tQR ~m0(t)⇔

d

dt
[e−tQ ~m1(t)] = e−tQR ~m0(t)⇒

~m1(t) =

∫ t

0

e(t−τ)QR~edτ (9)

which is used in the calculus of the expected first order moment of the state variable:

E[x(t)] = ~p(0)T ~m1(t)

Following the same procedure for the second order moment m2(t), we write:

d~m2(t)

dt
= Q~m2(t) + 2R~m1(t) (10)

where ~m1(t) is previously calculated in equation (9). By applying the same method
as in the case of ~m1(t) (which can be adapted for performability moments of higher
order), we obtain:

~m2(t) = 2

∫ t

0

e(t−τ)QR~m1(τ)dτ

later used for computing the expected second order moment of the state variable:

E[x2(t)] = ~p(0)T · ~m2(t) (11)

that we were searching for in (6).

3.2. Computing the exit times from the control zone

In many stochastic applications, predicting the exact time when the system reaches
a certain performance level is a hard task due to the random switching in the behav-
ior of the system. The notion of exit time (hitting time) is frequently used in finance:
determine the right moment to buy or to sell shares (Masoliver et al., 2005), in the
manufacturing industry: know when to stop the production if the level of performa-
bility has been reached (Rao, Swift, 2006), or in the diffusion process: know when a
particle must exit the control zone (Lefebvre, 2011).
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The numerical methods for the stochastic differential equations become compli-
cated and inefficient when approximating the exit times (Higham et al., 2011). Cer-
tain progress has been made in the work of (Brandejsky et al., 2012), which presents
a numerical method (quantification) for computing the exit times for a piecewise de-
terministic Markov process.

In this section we propose an analytic method for computing the exit time from the
control zone [Xmin, Xmax], which is inspired from the studies of (Gardiner, 2004) for
determining the exit times that a particle needs to reach a control zone with absorbing
barriers. Let us define the exit times from a general point of view.

DEFINITION 1. — Let {Zn}n∈N+
be a Continuous Time Markov Chain and B a

subset of the state space taking values in [Xmin, Xmax]. We define the exit time from
B, when the system starts in state j, as:

T jexit(x) = inf{t > 0|x(t) /∈ B, x(0) = x, Z(0) = j}.

Considering that our stochastic switching integrator is a multi-state system charac-
terized by a Continuous-time Markov Chain, we use backward Kolmogorov equations,
for computing the exit times towards the control limits. For more information on the
use of backward stochastic differential equations, which generalize the Kolmogorov
equation associated to jump Markov processes, the reader can refer to (Confortola,
Fuhrman, 2013).

We present only the case for the exit towards Xmax, as the exit towards Xmin is
similar. Let us consider the following backward Kolmogorov equation :

R · d~γup(x)

dx
+ QT · ~γup(x) + ~πup(x) = 0 (12)

where ~πup(x) is the exit probability vector calculated in (Mihăiţă, Mocanu, 2012) and
~γup(x) is the column function vector:

~γup(x) =
[
γ1up(x) γ2up(x) . . . γNup(x)

]T
We consider γjup(x) to be a function of the couple “exit time T jup(x) - exit proba-

bility πjup(x)” towardsXmax, when departing from x in state j. By T jup(x) we denote
the exit time towards Xmax when departing from x in a state j as previously defined.
The same reasoning applies for the γjdw(x) function towards Xmin. Therefore, we
write γjup(x) and γjdw(x) as:

γjup(x) = πjup(x) · T jup(x) (13)

γjdw(x) = πjdw(x) · T jdw(x) (14)

which respect the following boundary conditions:

γjup(Xmin) = γjdw(Xmin) = 0, if rj < 0

γjup(Xmax) = γjdw(Xmax) = 0, if rj > 0
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These conditions can be explained as follows: the exit probability towards Xmax

is zero, when departing from Xmin in a state with a negative associated transition rate
(similarly for the exit probability towards Xmin from Xmax, in a state having positive
transition rate).

If we left-multiply the equation (12) by e
∫ x
Xmin

(R−1QT )dx
R−1, and use the nota-

tion W = −R−1QT , we obtain the following solution:

~γup(x) = eW(x−Xmin)~γup(Xmin)−
∫ x

Xmin

eW(x−τ)R−1 · ~πup(τ)dτ.

We proceed in the same way for the lower case, and obtain ~γdw(x) as:

~γdw(x) = eW(x−Xmin)~γdw(Xmin)−
∫ x

Xmin

eW(x−τ)R−1 · ~πdw(τ)dτ.

Knowing ~γup(x) and ~γdw(x), one can easily compute from (13)-(14) the exit times
we were searching for: {T j1 , T

j
3 , T

j
5 , T

j
7 }, associated to a state j ∈ S:

T jup(x) =
γjup(x)

πjup(x)
; T jdw(x) =

γjdw(x)

πjdw(x)
(15)

These exit times will be used for the calculation of the restart period Tr, together
with the control periods that we present in the next section.

3.3. Control period

In this section we construct an analytical method for computing the control times
needed to apply the EDC (T2, T4, T6, T8 from Figure 4). The analysis of the system’s
behavior during the application of high EDC, reveals that the high control periods are
equal T2 = T8, as well as the low control periods: T4 = T6.

As an observation, the control periods can be also considered as exit times, but
from the control zone: [XH , Xmax] or [Xmin, XL]. In this case, the exit limit is
causing the EDC to stop (XL or XH ). Therefore, the current analytical method for
computing the control period, is constructed by adapting the method from the Section
3.2 to the above specifications. Our main goal here is to determine the total control
period, independently of the starting point, XL or XH , or the starting state. We make
the following observations:

1. The R matrix is now a diagonal transition rate matrix containing {rj −QHj <
0} for the high control, and {rj +QLj > 0} for the low control. Let RH be the high
control transition rate matrix in [XH , Xmax], where:

RH = [rij ]i,j∈S and

rij =

{
ri −QHi , if i = j,∀i, j ∈ S
0 , otherwise (16)
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and RL the low control transition rate matrix in [Xmin, XL], where:

RL = [rij ]i,j∈S

rij =

{
ri +QLi , if i = j,∀i, j ∈ S
0 , otherwise (17)

2. The boundary conditions are now applied on the control intervals. Let T je (x) be
the exit time from the control zone, which respects the following boundary conditions:

T je (XH) = 0, if x(t) ∈ [XH , Xmax] (18)

T je (XL) = 0, if x(t) ∈ [Xmin, XL] (19)

3. When we have defined the SSI, we considered that the system can reach Xmax

in any state having a positive transition rate (rj > 0, {j ∈ S}), respectively Xmin in
any state having a negative transition rate (rj < 0). The following analytical method
takes into account this aspect.

Using the notations from (Gardiner, 2004), let Gj(x, t) be the cumulative distri-
bution function for a state j, which corresponds to the probability that the system will
exit the control zone in a certain Te period: Gj(x, t) = Probj(Te ≥ t). The exit
probability vector then becomes ~G(x, t) = [Gj(x, t)]j∈S , which respects the follow-
ing boundary conditions:

~G(x, 0) =

{
~πT0 , if Xmin ≤ x ≤ Xmax

~0 , otherwise.
(20)

where ~πT0 is the transposed stationary probability vector (~̇π0 = ~π0Q). This means that
at t = 0, the system can depart in any of the states of the Markov chain, with certain
stationary probabilities. Following the reasoning and notations from (Gardiner, 2004),
we express T je (x), the total time that the system spends in a state j before exiting the
control zone, as:

T je (x) =

∫ ∞
0

Gj(x, t)dt.

Hereafter, we present only the method for the high control time, inside [XH , Xmax],
as the low control case is similar. Returning to the studies of (Viswanadham et al.,
1995), the distribution function Gj(x, t) satisfies the following partial differential
equation:

∂ ~G(x, t)

∂t
= RH

∂ ~G(x, t)

∂x
+ QT ~G(x, t) (21)

~G(0, t) = ~0, t ≥ 0 (22)

As ~G(x, 0) respects (20), we integrate the equation (21) on (0,∞), and we obtain the
following differential equation:

RH
d~Te(x)

dx
+ QT ~Te(x) + ~π0 = 0. (23)
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where ~Te(x) is the column vector:

~Te(x) = [T 1
e (x) T 2

e (x) . . . TNe (x)]T

and T je (x) represents the time that the Markov Chain stays in a state j, before exiting
the control zone, independently of the departing state. We therefore call T je (x) the exit
time which satisfies the boundary condition we have expressed in (18)-(19).

In order to respect our third observation, we adapt the initial probability vector to
the requirements of the system. We define the exit probability vector towards XH as:

~πH = ~π0(T jup(XH))

where T jup(XH) is the solution from (15). By normalizing this vector, we obtain the
equivalent of the initial probability vector ~π0, which we use in (23):

~πOH
= [πOH

(1) πOH
(2) . . . πOH

(N)]
T
, where

~πOH
(j) =


~πH(j)∑

k∈SH

~πH(k) , if rj > 0 and SH = {k|rk > 0}

0, otherwise.
(24)

More explicitly, ~πOH
is the normalized restriction of the state subset, having posi-

tive transition rates (SH ). Equation (21) now becomes:

Rs
d ~Te(x)

dx
+ QT ~Te(x) + ~πOH

= 0. (25)

which can be solved similarly to the equation (12), using the boundary conditions
from (18):

~Te(x) = eW(x−XH) ~Te(XH)−
∫ x

XH

eW(x−τ)R−1H ~πOH
dτ (26)

The sum of all the T je (x) gives the total high control period that we are searching
for in this section (or the total time that the systems spends in the high control states
when applying the HC), and which corresponds to the T2 time from Figure 4:

T2(x) = T8(x) =

N∑
j=1

T ke (x) (27)

A similar method can be implemented to obtain the low control periods: T4 = T6.
This section completes the calculation of the restart period (Tr). Therefore, the exit
times from the control zone, as well as the control period can now be computed.
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3.4. Control energy

The last parameter still to be determined in equation (6) is the energy consumed
for applying the high or the low control. In the previous sections, we computed all the
parameters needed to express the control energy as:

Enjtot = pj1
ej1

T j1 + T ju
+ pj2

ej2
T j3 + Td

+ pj3
ej3

T j5 + Td
+ pj4

ej4
T j7 + T ju

where {ej1, ej2, ej3, ej4} are the control energies of each scenario, for a state j:

ej1 = ej4 =

∫ T j
u

0

QH2
j dt = QH2

j · T ju

ej2 = ej3 =

∫ Td

0

QL2
jdt = QL2

j · Td

T ju is the high control period that we obtained in (26), and T jd is the low control pe-
riod that can be achieved in a similar manner. We now express the total control energy
of the system during Tr, by also taking into consideration the stationary probability
vector ~π0:

Entot =

N∑
j=1

πjEn
j
tot. (28)

This completes the analytical computation of the three main parameters involved
in the calculation of the quadratic cost criterion: Tr, u2(t) andE[x2(t)] (6). We notice
the complexity of the quadratic cost JTr , as many control parameters, stopping control
boundaries and exit times have specific constraints that need to be respected.

4. Numerical example

In this section, we give a numerical example of the event-driven method applied
over a two-state stochastic switching integrator, for which we apply the analytic meth-
ods presented above. These analytical results have been used to conceive an event-
driven simulation algorithm, proposed in (Mihăiţă, Mocanu, 2011).

Let us consider a two-state SSI having the following parameters: r1 = 7, r2 = −4,
λ = 9, µ = 5, Xmax = 1, Xmin = −1, XL = −0.7, XH = 0.7. The quadratic cost
JTr (6) can be expressed as:

JTr
= q ·

(∫ Tr

0

E
[
x2(t)

]
dt

)
+ r · E

(∫ Tr

0

[u2(t)]dt

)
where the first part of the equation relates to the second order moment of the state vari-
able (11), while the second part to the total control energy which has been consumed
when applying the EDC during the Tr restart period (28).



Event-driven control for stochastic switching systems 17

The results for the simulated and analytical energies, as well as for the performa-
bility moments using certain fixed control measures and stopping limits can be seen in
Table 1. The small errors we have obtained encourages a future study and extension
of the analytic methods proposed in this paper for higher order systems.

Table 1. Quadratic costs for the two-state SSI.

Type of measure Simulation Analytic Errors[%]
2ndperformability moment 0.1807 0.1809 0.07
High control energy 8.7253 8.7339 0.09
Low control energy 5.1337 51629 0.56
Quadratic Cost 66.6172 65.5179 1.65

Furthermore, one would also want to determine the optimal control values that
need to be applied in order to have a minimal consumed energy over the chosen control
interval. We can therefore write the minimization problem for our stochastic switching
integrator as:

min
uZ(t)(x(t))

q ·(∫ Tr

0

~p(0)T · ~m2(t)dt

)
+ r ·

 N∑
j=1

πjEn
j
tot

 ,with

ẋ(t) = rZ(t) + uZ(t)(x(t))

x(t) ∈ [Xmin, Xmax]

rZ(t) + uZ(t)(x(t)) < 0, if x(t) = Xmax

rZ(t) + uZ(t)(x(t)) > 0, if x(t) = Xmin

uZ(t)(x(t)) ∈ (0,∞)

When solving the minimization problem numerically using Matlab or Maple, we
obtain the optimal control parameters which can be used to apply the EDC:QH1 = 8,
QH2 = 0.5817, QL1 = 0.8193, QL2 = 5, as well as the optimal stopping control
boundaries: XL = −0.9, XH = 0.9. In this case the optimal quadratic cost becomes:
J = 64.83.

A graphical representation of the quadratic cost criterion, when all the above pa-
rameters (XL, XH , QH1, QH2, QL1, QL2) are varying, can be seen in Figure 5. The
number of variations on XL and XH has the following signification: for example, the
first variation is represented by the pair: {XH = 0.9, XL = −0.1}, while the sec-
ond variation by {XH = 0.9, XL = −0.2}, etc. In the same way, the first variation
for the control parameters is represented by the pair: {QH1 = 7.1, QL2 = 4.1},
while the second one by {QH1 = 7.1, QL2 = 4.2}, and so on, until {QH1 = 8,
QL2 = 5}. Further variations on QH and QL can also be tested for this system, but,
our experiments show that the optimal QH and QL control parameters stop around
these values.
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Figure 5. Quadratic cost for different parameter variations.

The optimal values obtained through our numerical experiences lead to the fol-
lowing observation: the control measuresQH1 andQL2 take bigger values thanQH2

and QL1, because the control is triggered when arriving at the limits from a state
having positive, respectively negative transition rates (no upper constraints have been
imposed). The EDC is therefore adapted to the transition rate of each state in order
to quickly re-establish the behavior of the system and bring it back in the no-control
zone.

We have also tested the impact of the input parameters of a two-state SSI especially
on the exit times from the control zone. As the control interval increases, one would
expect the exit times to increase as well, and therefore affect the event-driven behavior
of the system. The results presented in Annex A validate the analytical exit time
method for five other 2-state SSIs with different input parameters, and show accurate
results regardless of the values of the switching rates or the control interval.

4.1. Multi-states SSI

While the previous example is meant to facilitate the understanding of the stochas-
tic switching systems we consider in this paper, we conduct as well various exper-
iments for testing multiple-state SSIs, which can be more appropriate when mod-
elling real life systems. The number of parameters to be computed increase with the
number of states, therefore increasing the computational complexity and requiring a
more detailed analysis. Let us consider a 4-state SSI described by the following in-
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put parameters: r1 = 9, r2 = −4, r3 = 6, r4 = −8, [Xmin, Xmax] = [0, 1],
[XL, XH ] = [0.4, 0.8] and the corresponding transition rate matrix:

Q =


−45 16 12 17

9 −20 5 6
10 12 −30 8
12 13 15 −40

 (29)

For a proper analysis comparison, we conducted Nr = 100.000 replications of the
simulation algorithms, following the four evolution scenarios depicted in Figure 4
(starting randomly in XL or XH , reaching the control limits and applying the event-
driven control). Analysing final results implies various intermediary output param-
eters to be validated as well. The detailed analysis and validation of the exit times,
control times and scenario control energies is given in Annex B. Table 2 presents the
final results for the quadratic cost of the 4-state SSI we consider for this example. Al-
though the control energy errors have increased, we still obtain reasonable errors for
the quadratic cost validation (2.13).

Table 2. Quadratic costs for the 4-state SSI.

Type of measure Simulation Analytic Errors[%]
2ndperformability moment 1.3890 1.3952 0.44
Total control energy 8.0282 7.9117 1.47
Quadratic Cost 193.3807 189.3401 2.13

Limitations: The main limitation when validating the current method for higher
order systems is related to numerical problems that might appear when computing
the control periods in Matlab/Latex. The exit times provide accurate results when
computed for multiple state SSI, but the singular transition rate matrix which appears
in the analytical solution of the control times might affect the numerical computation
of the control energies. We have noticed that this kind of errors may appear in general
when the control zone is bigger than the uncontrolled zone (which means the system
is controlled almost all the time), and is not directly related to the number of states of
the SSI.

As an observation, if we compare the current system with queueing models, then
the discrete states of our model correspond to the state of the "variable service rate
server" in a queue. The state of a queue (number of clients) is here modelled by
the continuous state variable x(t), and we do not assume initial constraints on the
system state which could cause scalability issues. For a good review on modelling
discrete queues with switched linear stochastic models, the user can refer to (Dallery,
Gershwin, 1992).

5. Conclusions

In this paper we have presented a probabilistic method for computing the con-
sumed energy when the event driven control is applied over a stochastic switching in-
tegrator. The stochastic behavior of the system is represented by the random switches
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between the states, or the sudden events that trigger the EDC. This aspect complicates
the application of the control command and leads us to the construction of the prob-
abilistic energetic model, which can be determined using various parameters such as:
the first and second performability moment, the exit times and probabilities, as well
as the control periods. The quadratic cost criterion using the above parameters can be
further used in the conception of optimal event-driven control techniques. The above
analytical methods have been validated for the case of a two and four state stochastic
switching integrator.

Perspectives: We observe that for certain system parameters, numerical problems
might be encountered due to the singular transition rate matrix appearing in the analyt-
ical solutions (26). This aspect motivates our future work to improve the calculation
method with respect to the system requirements. We further concentrate on approxi-
mation methods for the optimal control, using for example the division of the working
space in sub-spaces, depending on the sign of the transition rates which are associated
to each state of the system.

We make the observation that in this current study we assume we have full knowl-
edge of the current state of the Markov Chain, and therefore trigger the associated
event-driven control. Using Continuous-time Markov Chains indicates that we know
the current state of a system which only depends on the previous state and transition,
and not on the historical behaviour of the system. Considering uncertainties in the
knowledge of such a state can be seen as a future study of our current research work
and we could imagine, for example, building a state observer or using Hidden Markov
Chain for the considered SSI. This would require further analysis and integration with
our current observations and could make the subject of a new research article.
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Annex A

In order to test the impact of the input parameters of the system on the exit times
from the control zone, we have conducted various tests on multiple two-state SSIs, as
presented in Table 3. We have tested larger switching rates values associated with the
states of the model (see Experiment 5 from Table 3), or even larger control intervals
(Experiment 4) which would assume longer exit times, therefore multiple switching
events between the states.

Table 4 shows the results we obtain for the above experiments, when computing the
total exit time taken for the system to exit the control interval [Xmin, Xmax]. As the
control times follow a similar behaviour when triggered, we consider more important
to show the results of the total exit times from the control zone. For simplification,
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Table 3. Various input parameters for 2-state SSI experiments.

Nr. r1 r2 λ12 λ21 Xmax Xmin XH XL

1 8 −5 0.7 0.4 60 −60 25 −25
2 10 −15 0.4 0.8 100 −100 50 −50
3 5 −6 0.6 0.7 200 0 150 50
4 20 −20 0.5 0.5 500 −500 200 −200
5 100 −150 0.7 0.3 300 −300 100 −100

we denote, for example, Ttot(XL) as the total exit time needed to exit either Xmin or
Xmax, when departing in XL:

Ttot(XL) = Σi∈S [T iup(XL) + T idw(XL)]

Table 4. Total exit time error comparison for experiments in Table 3.

Nr. Analytic Analytic Simulation Simulation Error[%] Error[%]
Ttot(XH) Ttot(XL) Ttot(XH) Ttot(XL) Ttot(XH) Ttot(XL)

1 53.97 45.57 53.83 45.35 0.26 0.48
2 188.6 170.3 188.20 170.11 0.21 0.11
3 25.69 41.64 25.65 41.85 0.15 0.50
4 287.50 287.50 290.89 284.31 1.16 1.10
5 12.43 15.55 12.57 15.34 1.11 1.35

Once again, the results confirm the validity of the approach for computing the
mean exit times, for various 2-state SSIs. The errors remain inferior to 1.35%, even
when the system has larger switching rates (experiment 5) or larger control zones
(experiment 4).

Annex B

Firstly, we present the exit times from the control zone (T iup and T idw, i ∈ S =
{1, ..4}), which we obtain for the 4-state SSI considered in Section 4.1, when applying
the analytical methods from Section 3.2. Table 5, presents the numerical results of
all the possible exit times obtained through the simulation and the current analytic
method. We recall that, for example, T 1

up(XL) stands or the exit time towards Xmax,
when departing from XL in state 1. The small errors (inferior to 0.62%) validate the
current analytical method for the exit time.

Secondly, when computing the control times for the considered 4-state SSI, we
obtain the errors presented in Table 6. These control time errors remain inferior to
1.12% and indicate good computational precision when further computing the ener-
gies consumed to apply the event-driven control.

Lastly, in Table 7 we present the scenario control energies we have obtained for
the 4-state SSI (detailed in Section 3.4). Although each individual control energy
presents higher errors when compared to the simulation results, the overall control
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Table 5. Exit times towards Xmax, Xmin for a 4-State SSI.

Exit times Simulation Analytic Errors[%]
T 1
up(XL) 0.2082 0.2085 0.14
T 2
up(XL) 0.2683 0.2697 0.51
T 3
up(XL) 0.2156 0.2159 0.13
T 4
up(XL) 0.2595 0.2592 0.11
T 1
up(XH) 0.0840 0.0844 0.47
T 2
up(XH) 0.1893 0.1905 0.62
T 3
up(XH) 0.0879 0.0874 0.56
T 4
up(XH) 0.1767 0.1772 0.28
T 1
dw(XL) 0.2482 0.248 0.08
T 2
dw(XL) 0.1863 0.1867 0.21
T 3
dw(XL) 0.2602 0.2588 0.53
T 4
dw(XL) 0.1661 0.166 0.06
T 1
dw(XH) 0.3211 0.321 0.03
T 2
dw(XH) 0.3083 0.3075 0.25
T 3
dw(XH) 0.3278 0.3276 0.06
T 4
dw(XH) 0.2833 0.2826 0.24

Table 6. High and low control times for the considered 4-state SSI.

Control time Simulation Analytic Error[%]
T2 = T8(High Control) 0.0819 0.0828 1.08
T4 = T6(Low Control) 0.1409 0.1425 1.12

energy remains in acceptable errors, as it is computed using the scenario probabilities
and exit times from the control zone, which present accurate results, as seen from
previous examples.

Table 7. Control energies for a 4-state SSI.

Control energy Simulation Analytic Error [%]
e11 2.1607 2.1552 4.77
e21 0.0047 0.0046 0.40
e31 1.5068 1.603 6.00
e41 0.0008 0.0007 1.25
e12 0.0043 0.0043 0.00
e22 1.7243 1.8667 7.62
e32 0.0009 0.0008 3.33
e42 2.6413 2.3785 9.94
Entot 8.0282 7.9117 1.47


