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Contents
1.1 Background and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Research problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Research objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
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1.1 Background and motivation

Public transport, which earns a reputation for its large capacity and environment-friendly with much
greater success than private transport, has been growingly embraced in cities. It works as both a
supporter of private transport, which facilitates personal mobility and leverages the infrastructures
by carrying many more passengers in one run, and a competitor, which seizes the road capacity and
land usage from private transports. To raise the image of public transport, apart from promoting the
idea of its economic, social and environmental benefits, an improvement in service quality becomes
more significant. The expectation on public transport travelling is a call for a multi-modal public
transport system, where different transport modes covering bus, train, metro, air, and ferry have been
introduced in cities to distribute various trips at the same time, while passengers are free to choose any
suitable or preferred mode and route for travelling. Facilitating multi-modal public transport networks
maximises mobility for various travel requirements, and the linked transportation solution along one
direction largely expands the connectivity between locations. These benefits allow people to think
about travelling alternatives apart from private vehicles.

However, an unexpected service disruption on a multi-modal public transport network would sig-
nificantly affect the movement just because of the large capacity of the vehicles and the interconnection
between networks of different transit modes. Due to the bond between networks, the propagation of
the impact would deteriorate not only the current network but also the networks of other transit modes.
Such disruption propagation works as a cascading failure where the breakdown of a node in an inter-
connected system can cause the downfall of other nodes through links, and continuously the initial
failure of a node or link becomes a widely-impact disruption. This is the reason why network dis-
ruption needs to be explored. Presently, such network disruption propagation problem belongs to a
widely-impact disruption problem because the impact of such disruption ends up lasting for a long
period of time within a large range of areas. The network cascading failure phenomenon is a prob-
lem viewed from a dynamic level. The initial disruption itself can be a large disruption problem that
impacts a large area for a long time, as well.

The integrated multi-modal public transport networks connect each entity by links, and the study
regarding these connections in a complex network is known as the complex network theory. Under
the field of complex network theory, various transport networks have been assessed and analysed to
capture their configuration-oriented features by considering the degree of nodes, which means the
number of connections a node has with other nodes (see Yi et al., 2021). Much evidence shows that
the degree distribution approximately follows a power law, which means that the change of the degree
is proportional to nodes, known as scale-free (see PastorSatorras and Diaz, Guilera, 2003; Clauset,
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Shalizi, and Newman, 2009). The power law of the degree distribution followed means that a large
number of nodes connect only a few links while only a few nodes connect with a large number of
links, and the subset nodes tend to have a small degree. Therefore, the scale-free network comes
with a hierarchy of failure tolerance, reflected by the phenomenon that the scale-free network has a
higher failure tolerance if the failure occurs at low-degree nodes because the impact of the failure can
be limited to a small scale due to the limited number of connections, while the rest of the nodes are
still functional enough to maintain the level of services roughly. On the contrary, the failure of those
high-degree nodes commonly results in a traffic disruption against the travelling in a complex multi-
modal-public transport network as more other nodes will be influenced via the connections (see the
article conducted by Ortuzar S. and Willumsen, 2011; Shen, Ren, and Ran, 2019; Shang et al., 2020.
The property in the scale-free transport networks is one of the reasons why traffic disruptions are more
likely to be found in complex transport networks, and it is significant to provide targeting solutions for
releasing the impacts.

Transport disruptions fall into two major categories according to the severity of their impact:
small and large-scale disruptions. Most of the small-scale disruptions are recurrent disruptions, while
large-scale disruptions can be either recurrent or, more oftentimes, current traffic disruptions. Small
disruptions refer to those situations when road capacity and traffic flow are reduced for a short period
of time within a certain range of areas. These traffic disruptions are relatively easy to solve, and the
impacts on the individual, economy and society are limited. Common reasons that lead to small-scale
disruptions include single-car accidents, traffic accidents due to the rear-end, side-impact or sideswipe
collisions, failure of single public transport and short-term or partly road constructions.

On the other hand, large-scale disruptions themselves often catch more attention due to the con-
siderable consequences. The large-scale disruptions associated with traffic interruptions often last for
a long time or repeat much time. The consequences of this type of impact on traffic cover a larger
area with a higher cost to the socioeconomy or even with the psychological influence on individuals.
Typical examples of large disruptions can be found when natural hazards occur, such as bushfires,
earthquakes, floods, tsunamis and extreme weather, or artificial disasters occur, such as significant
accidents that lead to major individual injuries and major property damage, infrastructure collapses,
terrorist attacks, large-scale transport services failure or significant traffic congestions.

Apart from major disasters, a minor traffic issue on a busy road can lead to a slowdown in traffic
for a large area and a long time. If the vehicles involved in a small incident are moved, the disruption
to the flow of traffic can persist for a long time afterwards and spread to a large area (see Saberi et al.,
2020). Small road maintenance works can also lead to a major and repeated disruption. Even if it is
just a single-lane closure, it can significantly slow down the overall flow of traffic, especially during
peak hours (see Zhao et al., 2022). This is due to the connection between transport networks. When
transport networks operate near their capacity during peak hours, even a small disruption can quickly
saturate the system, leading to congestion and delays. The multi-modal public transport network offers
travellers higher freedom in choosing where, when and how to travel; however, a disruption in one
mode can have a ripple effect across others. This leads to delays in one part of the network and can
propagate to other areas due to interconnected routes and shared resources.

The large-scale traffic disruption that resulted from a minor incident still impacts our daily travel.
Although a growing awareness regarding this issue has triggered a number of research contributions,
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the same obstacles, such as the natural process of a disruption impacts the transport networks, the
mechanism of disruption propagating into different networks and the way to model the impact of
disruption for management purposes, are still existing and requiring to be addressed.

1.2 Research problems

Different causes lead to different types of traffic disruption and relevant impacts on network perfor-
mances, which therefore require different modelling approaches and treatments. The consequences of
disruption depend not only on the type and scale of the disruption itself but also on the circumstance
and environment it involves. This is because of the heavy interaction between the internal entities and
the structure of the complex networks. As mentioned in previous literature, some studies presented
the disruptions based on a single network, while others modelled them in a multi-modal network but
only considered public transport modes without considering impacts from the private transports; some
studies showed the disruption in a small close network, while others suggested displaying them in an
open network. The different modelling background environments summarised a different model of
disruption. This phenomenon also raises a further question: can we unify the modelling methods not
only against different types or scales of disruptions but also against different networks? Otherwise,
can we summarise the regularity of the impact of network structure on the consequences of disruptions
that result from road disruption?

The complexity of the disruption problem can also be displayed in their complicated dynamic fea-
tures. The change of traffic can be split into three major phases at a disruption, where the first phase
includes the process of traffic flow dropping because of the base disruption, the second phase covers
the process that the traffic maintains low while the interventions are required for the journey recovery,
and the third phase describes the situation when disruption is controlled, and traffic is returning back
to normal. In practice, the degradation or closure of the roads due to disruptions may also result in
difficulty of resupplying to the damaged areas, which broadly impacts emergency responses and in-
cident recovery. Such post-disruptions against recovery indirectly exacerbate the impact of the base
disruption on the networks, which has been commonly found in large-scale disruptions against differ-
ent transport modes’ networks. However this post-disruption impact can hardly be found in existing
modelling methods in the literature, majorly due to the lack of data. The mechanism of the disruption
impact locally and globally, especially when multi-modal public transit networks are considered, is
still requiring more estimation. With the unbalanced demand and supply and the inadequate synergy
of different transit mode networks, network recovery and passenger journey recovery have become
another major challenge.

In addition to the complexity, large-scale disruptions are commonly considered as low probability
events. This lack of data makes such sporadic disruptions difficult to be qualified or regularised into a
model. Such a challenge forced most research studies to establish their disruption models according to
the natural rule, but how accurate are the models compared to reality? Are those models with the as-
sumptions still workable against today’s transport networks? The challenging questions have sparked
many endeavours, and this research study is also one of these endeavours that attempts to address the
questions from a new angle. Since the availability of incident log and traffic state data (including travel
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flow and speed), more empirical evidence can be found based on data-driven approaches in order to
support the work of modelling disruptions.

1.3 Research objectives

To understand the disruption impact as well as the propagation on current urban multi-modal public
transport networks, the focus on a single mode of the transport network is no longer sufficient. Mod-
elling the multi-modal public transport networks and the movement relying on different services is
highly required before the in-depth study of disruption, as the configuration of the network plays an
important role in network performance under transport disruptions. The public transport modelling
is often separately treated by modes as an open network with strong failure tolerance. In fact, if the
modelled network is extended by integrating all available transport networks in an area, the integrated
network could be seen as a close network whose failure tolerance may be less satisfied. Therefore,
the modelling of multi-modal public transport that accurately reflects the real network infrastructures
is required. Disruption modelling applied to the model of the transport networks is required to accu-
rately reflect the impact on traffic states such as traffic delay, mean travel time, flow, density, etc. Such
impact analysis relies on both empirical and statistical analyses that are obtained from conventional
impact analysis algorithms and incident or disruption log data. By combining both empirical and sta-
tistical results, the mechanism of disruption impact can be comprehensively abstracted to establish a
disruption model for assessing or proposing the disruptions and disruption impacts’ control strategies.

The major objectives of this research study include:
• Provide accurate multi-modal public transport demand estimation that reflects travel patterns in

urban areas;
• Model accurately the temporal and spatial impact of the different types and scales of traffic

disruptions on networks and provides the simulation model which is capable of abstracting the
relationship between the network and the travel behaviour against disruptions;

• Estimate the disruption impact and the impact propagation in a multi-modal public transport
environment which are reflected by the change in traffic states and travel efficiency;

• Deliver the impact functions and optimise the disruption model by investigating real disruption,
traffic states and public transport patronage data.



6 Chapter 1. Introduction

1.4 Thesis organisation

After the research introduction, a comprehensive literature review is presented in Chapter 2, where
previous research studies regarding OD estimation for public transport and traffic incident modelling
methods are summarised. The following research is divided into three subsequent chapters. The
Chapter 3 is related to estimating the large-scale OD matrices for multi-modal PT in urban areas. The
proposed method relies on a novel model calibration method using Entropy-weighting, which con-
siders both the traffic characteristics (travel time, travel distance, and fare cost) as well as the graph
topological features (connections, closeness and straightness). In Chapter 4, we introduce a novel
method for dynamically modelling PT patronage patterns by incorporating the Fourier transformation
to effectively reduce the influence of noise and enhance the accuracy and reliability of the model.
This model combines analytical techniques with data-driven methods to help identify the impact of
incidents on PT passengers. The aim of Chapter 5 is to capture the spatial-temporal disruption im-
pact via a multi-modal transport simulation model. In this chapter, we focus on a mode shift impact
modelling to evaluate the best mitigation strategies and employ different disruption impact indicators
such as delay time, flow, density and travel time for identifying the impacts. Finally, in Chapter 6, we
provide concluding remarks based on our research findings and outline directions for future research
endeavours.
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Chapter 2

Literature review

This chapter is based on an edited edition of the following article: Zhao, D., Mihaita, A.S., Ou, Y.,
Shafiei, S., Grzybowska, H., Qin, K, Tan, G., Li, M., Multi-modal transport modelling under various
disruptions: a comprehensive literature review, Under review at the Journal of Accident Analysis.
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2.1 Public transport Origin-destination matrix estimation

Public transport (PT), which earns a good reputation for its large capacity and environment-friendly
configuration in comparison to the road transit modes, has been increasingly embraced in cities sup-
porting transport modes to carry many passengers every day, as stated in reports provided by the
Department of Infrastructure and Regional Development, 2016 and OECD, 2018. Moreover, differ-
ent transport modes, including bus, train, metro, air, and ferry, have been put forward across cities
to distribute trips effectively. The advantages of using multi-modal public transport networks (PTNs)
maximise passengers’ mobility for various travel requirements between any location.

However, an unexpected service disruption would significantly affect mobility due to the system
complexity and the interconnection between different transit mode networks. A disruption may propa-
gate in a cascading manner where the breakdown of a node in an interconnected network can cause the
downfall of other directly linked nodes. In transport networks, a failure of a node or a link may cause
cascading disruption. However, in the literature, the way the impact of a disruption is captured at a
local and/or global level is scant. Most studies model and analyse the problem by looking at individual
transport modes in isolation from the rest of the transport system instead of applying a comprehensive
and systematic approach. With the unbalanced demand and supply and the inadequate synergy of
different transit modes, both network recovery and passenger journey recovery are a major challenge.

PT modes are often modelled separately as an open network with strong failure tolerance. How-
ever, to understand both the impact of a disruption and its propagation in current urban multi-modal
PTN, the focus on a single mode of transport is no longer sufficient. In fact, if the modelled network
is extended by integrating all available transport networks in an area, the integrated network could be
seen as a close network with lower failure tolerance.

PTN modelling is a critical component of PT management and planning. Quality modelling can
accurately reflect the current traffic states and existing problems, and help identify possible improve-
ments to enhance overall system performance. These benefits have attracted significant attention from
the transport community bringing about a transport modelling approach including trip generation, trip
distribution, modal split and trip assignment. This approach first appeared in the 1950s and is also
known as the four-step model (see Mitchell and Rapkin, 1954). The model ventures to catch up with
the speed of change in mobility demand and supply, and considers the aggregation of trips and travel
choices to simulate the travel behaviour that matches the reality in the network. With the use of specific
methods and algorithms for each step, researchers not only can estimate the dynamic traffic demand
of the network at anytime but also predict the future traffic circumstances under various scenarios.
However, the efforts fall short of all the achievements as most transport and traffic problems are still
striking our daily routines through congestion and ongoing incidents.

Greater confidence in PT modelling relies primarily on advanced demand estimation technologies.
By knowing when and where a trip will take place, which transit mode will be chosen as well as
which route will be picked by users, researchers will be able to understand the general travel pattern
and distribution in the network. This process is known widely as the Origin and Destination (OD)
estimation problem. In transport modelling, the OD matrix per transit mode is widely used to explicitly
display the number of trips originating from and visiting specific zones or places. Consideration of
multi-modal PT significantly raises the level of difficulty not only because it expands the number of
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OD pairs that need to be estimated but also because it introduces a new challenge towards the mode
choice as well as the interaction between networks of different modes. These challenges request more
data from the real world. They also require more attention on the estimation side of trip patterns
that reasonably considers the interplay among trips that use different modes. However, the lack of
sufficient data and the limitation of effective methods when forecasting and estimating this multi-
model trip matrix have been a repetitive problem that blocked the way towards conducting quality
demand modelling for multi-modal PT. It is challenging, especially in large cities with a large number
of daily commuting trips, to obtain the OD matrix by directly merging the trips of a large number of
individuals, either due to a high computational effort or to a privacy issue. To date, there is still a high
need for a better modelling approach.

A great many publications have reported on the attempts to improve transport modelling methods.
This chapter contributes to the current body of knowledge by providing a comprehensive overview
of the most recent contributions in the field of PT and demand modelling. The review starts by pre-
senting the existing methods for creating an integrated network representation that matches the real
multi-modal PTN (Section 2.1.2). The methods of network modelling are categorised by the traditional
graph theory (Section 2.1.2), the layer-based theory (Section 2.1.2) and the Supernetwork theory (Sec-
tion 2.1.2). The second part of this literature review covers the demand modelling approaches used
in the recent research studies (Section 2.1.3), where the methods are grouped into the gravity model
(Section 2.1.3), historical data-based models (Section 2.1.3 and Section 2.1.3) and other data-driven
modelling approaches (Section 2.1.3). Finally, based on the knowledge obtained from the previous
literature, this section provides comments on limitations, gaps and future directions in multi-modal
disruption management research (see Section 2.3).

2.1.1 PRISMA diagram for PT OD estimation

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) is the review
method that has been applied when organising and analysing literature for this section Page et al.,
2021. This method was selected as it is well designed and organised for reporting systematic reviews
with objectives, and the clear checklist and flow diagram for review was handy in use. The major
processes for reviewing literature are illustrated in Figure 2.1. The first step aims to identify the
relevant literature from the databases and other resources, such as websites, organisation publications
and citation searching, based on keywords covering multi-modal transport network disruption, disaster
impact on the transport network, large scale impact on the transport network, accident impact on the
transport network, transport network failure and public transport network cascading failure in the
transport network. The databases accepted for this stage were:

• ScienceDirect
• Taylor and Francis Online
• American Society of Civil Engineers(ASCE) Library
• SpringerLink
The database was accessed through the University of Technology Sydney, and the publication data

was limited between 2015 to 2022 (the same condition was applied when searching other resources).
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FIGURE 2.1: Flow diagram for systematic review based on the PRISMA approach.

From this process, 1779 pieces of literature were collected, where 1690 pieces of works were picked
from databases and 89 works were found from other resources (25 articles were found on websites,
three articles were published in organisations’ official websites, and 61 articles were found based on
citation searching). In this step, the selected literature was primarily screened by removing duplicates
(33 works were removed), the ones marked as ineligible by automation tools (74 works were removed)
and the ones not highly related to the subjects (1394 works were removed). The second step further
removed 126 articles from databases, while 53 articles were removed from the database of citation
searching because the articles were of a relevant low quality or out of the scope of this review article.
The last step showed that the total number of literature that was ensured to be included in this review
article was 99. For each article in the database, the initial review process started from the subsection of
abstract, introduction and ended at the subsection of discussion or conclusion. Depending on the initial
review, the highly related articles were identified as the systematic review article, and the secondary
review covering the subsections of the methodology followed by the results was completed.

According to the literature, the focus on disruption analysis started in 2001, while most of the
contributions were established between 2001 and 2013, followed by years between 2015 and 2017.
Therefore, concerning this work’s contribution, most attention has been made to the recent litera-
ture from 2015 to 2022, prioritised by the most recent works. Since 2019, more research studies
have focused on the analysis of disruptions in multi-modal transport networks, where the agent-based
transport simulation method was mostly used. Among all the literature, up to 48% of literature only
focus on railway network disruptions, followed by a focus on road network disruptions which account
for 22% and only 17% of research studies considered more than one transport modes network when
analysing the traffic disruptions.
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2.1.2 PT Network modelling

Graph theory-based modelling approach

The graph theory is a study of graphs, which aims to describe and help to understand the structures
created by the relationships between the elements of a network, such as networks with multiple topo-
logical features. With the development of the graph theory, an increasing number of elements as well
as the complex connection and interaction between elements are able to be illustrated using just nodes
and edges. Such a study of graphing and analysing complex networks further delivers a complex net-
work theory. The complex network theory first appeared as a speculation in the analysis of computer,
biology, power grid, brain, climate and social networks before attracting the attention of transport
networks experts.

In the early days, the transit networks tended to be established in the form of either lattice (by
increasing its randomness) or a random graph (see Renyi, 1959). With the development of graph
theory, Watts and Strogatz, 1998 introduced for the first time the small-world structured network that
had randomness between regular and random networks. After the analysis of three different real-world
network architectures, this research concluded that all studied networks have a high vertices clustering
tendency and low characteristic path lengths. The high vertices clustering tendency means that nodes
in the network tend to gather together, and the low characteristic path lengths mean that the length
of path connecting any pair of nodes in the network tends to be small. Following this, the clustering
coefficient and the average path length have become the main indicators of the small-world network.

Followed by the small-world network concept, a scale-free network had been proposed and ex-
plained by Barabási and Albert, 1999. The scale-free network was named after the authors as the
Barabási–Albert (BA) model. This research provided some empirical evidence indicating that the in-
teraction between vertices decreases following the power law in the independent and large networks
instead of the Poisson distribution, which had been commonly used in previous research studies. This
feature was derived from a finding that most of the nodes are only connected to a few nodes (i.e.,
low connectivity), yet very few of the nodes are connected to an extremely large number of other
nodes (i.e., high connectivity). The scale-free phenomena have two derived features: growing char-
acter (network tends to be extended by adding more nodes) and preferential attachment (new nodes
tend to be added and connected to old nodes). These two breakthrough models, the small-world and
scale-free network model, triggered the development of complex network theory-based modelling and
analysing on transport networks, and further enabled the study of the impacts of network structure on
both network dynamics and elements interactions.

The study of graphical representation directs the research studies to topological analysis and net-
work analysis in most of the relevant publications; however the details regarding the following network
measurement and analysis are out of the scope of this section, interested readers can find more ref-
erences in literature by Lin and Ban, 2013 and Shanmukhappa et al., 2019. The Section 2.1.2 of
this section aims to conclude the graph theory-based network modelling approaches that appear in the
most recent publications, and summary the reason why such modelling approach is selected in specific
research study.

In line with the study of complex networks, much evidence has shown that the configuration of
urban transit networks presents itself as a complex network, where the local connection and non-local
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interaction among components in a system strongly interact with each other (see Regt et al., 2018).
Such statements thus have been followed in order to build an abstraction of a real transport network,
including bus, metro, urban train, light rail and multi-modal public transport networks in Austria,
Australia, Brazil, Canada, China, England, Greece, Switzerland, Vietnam etc. The mentioned findings
facilitated the development of network modelling under graph theory.
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TABLE 2.1: Summary of graph theory-based network representation considered in
literature

Network rep-
resentations

Graph example References

Space L Space L or L-space graph is a topological graph consisting of nodes that are connected by a
single edge if there is at least one existing path between them. In public transport networks,
the PT stations or stops are represented by nodes, while the existing paths between two
adjacent stops are represented by edges. The edges only connect node pair that belong to
the same network.

Space L’ Space L’ is derived from Space L, where multiple edges are allowed to represent differ-
ent routes instead of connecting two nodes by a single edge like in Space L. In a Space
L’ graph, different edges represent different links used in different networks or the links
with different directions in the same network, which help researchers to capture the inter-
network properties.

Space P Space P is the graph in which the nodes are connected by an edge if they can be reached
from other nodes by services in the network; all the nodes of one line are connected to
each other to show accessibility, even though there is no direct path. This means that the
Space P graph also includes the transfer information and such graph is able to illustrate a
multi-modal transport network.

Space P’ Similar to the definition of Space L’, Space P’ is the graph that includes edges from dif-
ferent networks or edges that are classified by structure characteristics such as directions.

Space B Space B graph, also known as the bipartite graph, is a type of graph that uses nodes to
represent both the paths and the PT stations, while the edges are used to connect the linked
paths and stations. In Space B, the nodes are split into path or route nodes and station or
stop nodes, and each station node is connected to multiple path nodes that it serves. In this
type of graph, the black nodes are PT stations, while white nodes represent paths between
each pair of stations, and the edges represent the connecting relationship between routes
and stations.

Space C In a Space C graph, the edges are used to connect two routes if they both link to a PT station.
The nodes in Space C represents links, thus the nodes is also known as route-nodes in such
space-based graphs. This type of representation only abstracts the relationship of routes
from the network. Therefore, Space C is the most simplified graph representation.

According to the literature concerning graph theory and complex network theory, the transport
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TABLE 2.2: Overview of the recent research studies considering graph theory-based
network modelling

References Layer objec-
tive

Type of
network
analysis

Weight objective Space Case study

Dimitrov and
Ceder, 2016

Bus, train,
ferry

Static Unit demand-
weighted edges

Space L Auckland,NewZealand

Shanmukhappa,
Ho, and Kong,
2018

Bus Static Bus flow-weighted
edges; demand-
weighted nodes

Space L Hong Kong, China; Lon-
don, UK; Bengaluru, India

Regt et al., 2018 Coach and
train

Dynamic Mean shortest path
distance-weighted
edges

Space L Bristol, Manchester, West
Midlands and London, UK

Luo et al., 2019 Tram Static In-vehicle travel times
and waiting times-
weighted edges

Space L Melbourne, Australia;
Vienna, Austria; Milan,
Italy; Toronto, Canada;
Budapest, Hungary;
Zurich, Switzerland; Am-
sterdam and The Hague,
Netherlands

Abdelaty2020 Bus Static Bus frequency-
weighted edges

Space L Cities in Canada

Du et al., 2020 Metro Dynamic Passenger volume-
weighted edges;
centrality-weighted
nodes

Space L Guangdong, China

Huynh and
Barthelemy,
2021

Bus Static Average travel time-
weighted edges

Space L Ho Chi Minh, Vietnam

Zhang and Ng,
2021

Train Static Shortest path travel
time-weighted nodes

Space L Hong Kong, China

Kopsidas and
Kepaptsoglou,
2022

Metro Static Travel time-weighted
edges

Space L and
Space P

Athens, Greece

Yang et al., 2014 Bus Static Minimum geographi-
cal distance-weighted
edges

Space L’ and
Space P’

Beijing, Shanghai and
Hangzhou, China

De Bona et al.,
2016

Bus Static Unweighted Space P Curitiba, Brazil; Beijing,
Shanghai and Guangzhou,
China; GOP, Warszawa,
and Ł´od´, Poland

Zhang et al., 2006 Bus Static Unweighted Space B Beijing and Yangzhou,
China

Sun, Lu, and Lee,
2015

Bus Static Overlapping bus stop-
weighted edges

Space C Singapore

network representations consist of various elements, such as nodes, edges or interactions between
nodes and edges. An emphasis on different elements or interactions across elements generates dis-
tinctive directions toward network structural and topological characteristics analysis, which requires
a targeted network abstraction when interpreting. To date, seven network representations have been
found to best describe transport networks using the graph theory, namely, Space L, Space L’, Space
P, Space P’, Space B, Space C and Space R, as summarised in Table 2.1, and have been used in the
publications, see Table 2.2.
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Layer-based modelling approach

Network modelling and representation have been largely improved thanks to continuous developments
in digital, mathematical and geographical modelling. Concurrently, the role of network modelling has
been maintained: to accurately represent the real-world transport networks. Due to the need of display-
ing a network’s geographical structure, layers containing different structural elements of the network
have been chosen to separate the network information and abstract the feature of each network ele-
ment, which are normally symbolised by vertices, lines or polygons. Different layers contain distinct
elements - this is the initial and essential concept of the layer-based modelling approach, it also an
non-trivial extension of graph-theory network modelling approach. A variety of work has been done
in relation to layer-based network modelling and analysis, which is summarised in Table 2.3.

TABLE 2.3: Overview of the recent research studies considering double or multiple
layer-based network modelling

References Layer objective Type of
network
analysis

Weight objective Space Case study

Gallotti and
Barthelemy,
2015

Rail, coach, air, ferry for
inter cities; bus, metro and
rail for inner cities

Static Minimal travel-
time weighted
edges

Space L UK, London,
UK

Feng et al., 2017 Metro, metro service and
passengers

Dynamic Passenger flow-
weighted edges

Space L ’ Beijing,
China

Yildirimoglu and
Kim, 2018

Bus and passengers Dynamic Unweighted Space L Brisbane,
Australia

Sui et al., 2019 Bus, passengers and trans-
fer

Dynamic Passenger flow-
weighted edges

Space P Chengdu and
Qingdao,
China

Tang et al., 2021a Bus and metro Static Passenger flow-
weighted edges

Space L and
Space P

Shenzhen,
China

Yang and An,
2021

Bus and metro Dynamic Passenger flow-
weighted edges

Space L Qingdao,
China

Liu et al., 2022b Bus and metro Dynamic Passenger flow-
weighted edges

Space L Xi’an, China

Pu, Li, and Ma,
2022

Bus and metro Static Unweighted Space L Lanzhou,
China

The idea of using a layer to store geographical information has been soon extended to traffic in-
formation by appending more layers that describe transport users, transport services, traffic services
or management. Following this, a layer-based framework model that separates activities, transport
services, and traffic services have been firstly introduced by Schoemaker, Koolstra, and Bovy, 1999.
Binsbergen and Visser, 2001, Nes, 2002, Kivelä et al., 2014 and Boccaletti et al., 2014 further in-
vestigated the transfer modelling, dynamic modelling, in-depth network structure analysis regarding
the network robustness and the resilience towards private cars, taxis, freight transports, metros, trains,
buses, trams and airlines networks.

More recent research studies were largely inspired by the concept of multiplex network modelling.
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For example, Aleta, Meloni, and Moreno, 2017 compared two network modelling schemes: (1) lay-
ering by the PT lines, (2) layering by the transport modes, including walking, bus, tram and metro.
However, this graph representation still ignored the interplay between road transport and the PT.

To understand and model the interaction and relationship between road transport and PT, Yildiri-
moglu and Kim, 2018 applied the Voronoi polygons to create small scale zones to cluster and unify
the OD of the road transport and the PT trips (Von Landesberger et al., 2016). The road transport
data was obtained from a Bluetooth data collector rather than a road path or link-based detector. The
lack of OD locations forced the OD matrix to be built by self-defined small cell-like zones instead of
residential or business areas following reality. The unification of the OD matrix for different means
of transport can hardly be achieved.

Another improvement in the modelling resulted from the utilisation of the real-world data, e.g.:
the vehicle GPS data allowing for tracking bus trajectories, and the smart-card data recording time,
location and number of passengers boarding and alighting a bus. In this context, Sui et al., 2019
applied a layer-based modelling approach, but the road transport demand was ignored, and the bus
network was represented by Space P (Figure 2.2).

FIGURE 2.2: Description of the three layer model [Source: Sui et al., 2019]

Most recently, Huang et al., 2021 decomposed the bus system into three layers: (1) goal layer
displaying a scenario when a passenger travels to their destination under several specific conditions
(e.g.: good or bad vehicle condition, driver condition or bus schedule), (2) event layer describing the
internal or external influence factors on movements (e.g.: road condition, bus operation reliability or
weather), and (3) treatment layer defining control strategies that improve the level of bus services. This
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study put forward a comprehensive layer-based modelling that attempted to include as many elements
in a bus system as possible.

Supernetwork approach

Although it is capable of replicating the travel behaviour based on the trip-based modelling theory, as
represented by graph-based modelling method and layer-based modelling method, the extended inter-
ests toward the diversity activities that trigger travelling still call development in transport modelling.
To cope with this, an emerging activity-based model comes with the potential of capturing the indi-
vidual travel behaviour with a time-space dependence. The activity-based modelling derives from the
activity or the need of travellers. The need of travellers can also be explained as the travel purpose;
note that in activity-based modelling, it is the travel need that leads to the action of travelling. It is
important to have this logical connection in mind as this is how trips are inferred in such modelling.
Following the activity choice, the next challenge should be to model how people respond to the activ-
ity participation. This step corresponds to the choice of the activity location, the time that travellers
should arrive at the activity location, as well as the mode choice for a movement of an individual.
Since the whole process is derived from a single activity, which is the requirement for travelling, this
modelling theory is also known as a heuristic demand modelling in some literature reviews.

The activity-based modelling is a response to the time-dependent trip (or trip chain) for an individ-
ual; the structure of modelling is similar to the traditional trip-based modelling: activity generation,
trip destination choice, mode choice and trip assignment. The only difference with traditional trip-
based modelling is that the Supernetwork considers a multilayer network framework instead of a single
network. As shown in the Figure 2.3, this is a Supernetwork representation of parking and picking-up,
the node of 𝑃𝑉 𝑁 represents private vehicle networks, and the node 𝑃𝑇𝑁 represents public trans-
port networks. The arrow lines indicate the activity between two nodes, in this example, the arrow
line from 𝑃𝑇𝑁 to 𝑃𝑉 𝑁 represents a picking-up process, while the arrow line from 𝑃𝑉 𝑁 to 𝑃𝑇𝑁
means parking process.

FIGURE 2.3: Example of parking or picking-up links by Supernetwork representation
[Source: figure taken from Liao, Arentze, and Timmermans, 2010]

The improvement in modelling for integrated transport networks has awakened the proposal of
Supernetworks since Sheffi, 1985, where the full-scale modelling on multi-modal transport networks
can display the travel patterns and behaviour within a complex system. Inspired by the Supernetwork
concept, a model that integrates different transport mode networks into one single network has been
proposed to uncover the interconnection among all modes, see the work done by Benjamins, Lindveld,
and Nes, 2001. In this model, after generating potential routes for each population group who head to
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their favourite activities, a preference weight used in the Paired Combinatorial Logit model is applied
for a route choice of each population group. The choice model was replaced by a heuristic model in
the research of Arentze and Timmermans, 2004 to represent the process of decision-making.

The concept of day-to-day travel behaviour modelling following the Supernetwork representa-
tion has been proposed since Arentze and Timmermans, 2009 in order to capture the overall travel
behaviour within a day. This was the initial attempt of using a microscopic modelling approach to
capture the network dynamic feature. Liao, Arentze, and Timmermans, 2011 put forward to the travel
behaviour modelling for a single person by using a heuristics rule related to the heading activity and
the travel cost. Such heuristic models have been further strengthened into a time-space-dependent
model by joining the time constraints so that the model is able to define the scheduling behaviour for
each trip; details can be found in the research of Liao, Arentze, and Timmermans, 2013 and Li, Lam,
and Wong, 2014.

Due to the consideration of time constraints, the computing time for travel behaviour and trip
assignment at each timestamp have challenged the modelling effectiveness for the rest of years. Such
an issue forced the insight on trip modelling to dispel the enumeration approach at a static level. One
initiative on reducing the computing time was provided by Ouyang et al., 2011. He suggested utilising
the multinomial logit function when calculating the shortest path at each interval of 10 minutes to speed
up the convergence. Lam and Yin, 2001 presented an activity choice model based on the multinomial
logistic model where the route was selected as an ideal dynamic user equilibrium model with the
Method of Successive Averages (MSA). Motivated by this, a refined Supernetwork-based trip model
was proposed by Fu and Lam, 2013 to capture the travel behaviour among cars, buses and subways; the
process of mode choice was decided by a bi-criteria related to the mean utility and the budget utility that
determines the travel time uncertainty at each iteration. The trip assignment model was build based
on a dynamic user equilibrium using the MSA algorithm. The activity-travel assignment problem
was attempted to be addressed as a discrete time-dependent event by Liu et al., 2015. However, the
previous research results were only showed the predictability of activity-travel and the case study were
all conducted based on a small-scale dummy network considering limited and simple entities such as
trips to home, work, shopping and eating.

Summary for PT network modelling

The graphical representation of the transport networks has a long and rich history because how ac-
curately the networks are displayed is heavily associated with the network analysis. As a first step of
transport modelling, the transport network representations are also related to further traffic movement
reproduction. Current contributions on the network representations when using the graph theory are
able to flawlessly abstract the structure of a single transport mode network and comprehensively anal-
yse the network structure by multiple indexes. However, the interconnection between different trans-
port mode networks is still underestimated by a simple graph theory representation. This requirement
resulted in an introduction of the layer-based modelling approach. The Layer-based transport network
representation extended the modelling objects to factors that are out of the network structure and its
properties. Such modelling method dimensional appends several graph-based layers into a compre-
hensive transport system modelling that includes physical transport infrastructure, stakeholders and
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services. Between the layers, there is also the inter-layer connection or relationship that can be mag-
nified and modelled to better represent reality. Meanwhile, the activity-based modelling approach
appeared in order to highlight the individual travel behaviour. This modelling approach turned the at-
tention to a microscopic level where the interaction between different networks can be reflected by the
travel behaviour of an individual and the travel cost spent on transferring, parking or picking up. With
the development of computing and information technology as well as the real data covering vehicle
location and demand dynamic, more and more network modelling were generated based on simulating
approaches.

2.1.3 PT demand modelling

Gravity model approaches

The purpose of demand estimation is to understand the current and future usage of transport modes
so that the designed transport management and operation schemes can be leveraged well to fit the
demand. Therefore, techniques in estimation modelling became a critical task that has been attracting
attention since the last century. Among the research contributions, the gravity model is noticeable to be
introduced to capture the relationship between the trip distribution and the microscopic zonal demand.
The development upon this estimation model and algorithm have appeared and can be classified by
given data, normally, trip end data and link count data.

Modelling with production and attraction data In the study of travel patterns, there are generally
two basic configurations: one is the OD estimation; the other one is the Production to Attraction (PA)
estimation, as described by Ortuzar S. and Willumsen, 2011. The OD matrix contains several OD
pairs, which equals the total number of trips from a specific location to another. Such representation
can be aggregated with respect to the type of users, travel purpose or transit modes. The PA matrix
refers to the attracted trips from a production place. Taking a journey to work and back during a day as
an example, two trips are produced: one trip happens in the morning, which is a trip originating from
a home point, and the other one occurs in the afternoon, which is a trip generating from the workplace
point; there are also two trips that are attracted by both home point and workplace point on that day.
While in terms of the OD matrix, there is only one trip from home to the workplace and the other trip
from the workplace back to home.

Research in investigating the travel patterns and behaviour based on OD estimation dates back to
the period when a gravity-based model was introduced to describe the relationship between towns and
retail trade (see the work of Reilly, 1931). Such application of the gravitation law triggered much
research to focus on the trip estimation between a pair of nodes, as introduced by Dieter, 1962 who
built a model based on the gravity law and clearly indicated that the number of trip between two area
was proportional to the total number of trips at origin and destination, which was the total number of
production and attraction, and revering proportion to the distance between groups.

Considering to solve the gravity model, Bouchard and Pyers, 1965 and Ben, Bouchard, and Sweet
Jr, 1965 treated the model as a singly constrained model and only the zonal attraction parameter was
considered to ensure that the modelled number of trips attracted by a zone matches the survey result.
The main drawback of using such an abridged constraint was that the model can hardly ensure that
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the calculated total trips between an OD equal the sum of the trip departing and trip arriving. This
limitation encouraged the practice of the doubly constrained gravity model, where both parameters for
trip origins and trip destinations are considered (see Evans, 1973.

Modelling with link flow data Considering the difficulty when obtaining the travel production and
attraction data for private vehicles, it is much realistic and available to track the link count for esti-
mating the car demand. This estimation method was treated as the converse or iterative process in
the trip distribution and assignment processes, while the relationship between estimated and observed
flows could be fitted by a logistic function, which represented the compassion between estimated and
observed results for calibration purposes. This concept that allies to the traditional gravity model have
been shown in the research based on link count data instead of travel attraction and production data
since Low, 1972. The model built by Low in 1972 started by collecting a large number of individ-
ual trips in a roadside interview survey as the initial link volume data. The estimated link volumes
were calculated based on a format of the traditional gravity model subjecting to zonal population,
employment and travel time instead of using the total number of trip production and attraction. The
estimated link volumes named trip probability factors in this research were used as the travel demand
in the further trip assignment process. The trip assignment ended up with the assigned link volumes,
which were compared with the observed volumes for validation purposes. Thus, the relation between
assigned volumes and observed link volumes could be expressed as a function generated by the re-
gression program. Such an approach introduced a data-driven way to calibrate a postulated gravity
model from the population, which initially put forward for estimating OD matrix from link count data.
The model has been further developed with the consideration of car possession and social-economic
level, as detailed in the book of Organisation for Economic Co-operation and Development, 1974.

More continually works focus on the solution of a mathematical equation which described the rela-
tionship between estimated traffic flow and variables that can be observed. Robillard, 1975 attempted
to represent this relationship by using both non-linear least square estimation and the linear regression
least square estimation. Högberg, 1976 has been inspired by Low’s model (see Low, 1972) and pro-
vide a optimised non-linear regression model and addressed the regression model by the least-square
algorithm.

Most of the previous research studies relied on artificial data and toy networks when validating the
methods of OD estimation. The use of fake networks largely reduced the impact of network complexity
on trip distribution and assignment. To fill the gap, Willumsen, 1981 systematically summarised
the previous work regarding OD estimation from link count data and provided empirical evidence
using real-world link flow data and a small range of real networks to verify the model feasibility. The
estimation method used in this research was entropy maximising.

The most recently the attention has focused on the provision of the OD matrix when struggling to
cope with very limited datasets. Research conducted by Thompson et al., 2019 investigated the input
data that included a part of the population, the distance of links between population nodes (cities or
towns as defined in the United States Census Bureau) and junctions, as well as the directional link
flows. Without the total production and attraction data, this research further developed a cumulative
gravity model to determine the path-based traffic flows between two population nodes. Such a model
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uses the relationship that the sum of the traffic on the path connecting a population node and its adjacent
population nodes equals the traffic between this population node and its connected junctions.

Estimation of the deterrence function Along with the development of the gravity model, the in-
fluence factors that reversely yield the total number of trips between OD pairs attracts much attention.
Rather than using a single variable such as travel time, the element was further replaced by a deter-
rence function that is broadly composed of a group of travel costs, such as travel time, distance or
trip length, the average travel speed and monetary cost, as summarised in the research of Erlander,
Nguyen, and Stewart, 1979 and Sen and Smith, 1995. Since then, the configuration and parameter
calibration has been known as a key condition when estimating the OD matrix by many researchers.

A typical "guessing" approach was applied by Hyman, 1969 who proposed a robust method trig-
gered by Bayesian estimation in 1969. The author was triggered by his experience that the initial
deterrence function parameter should be between 1 and 2 and proposed the equation to express the
relationship between parameters and total travel cost:

𝛽 = 3
2𝐶

,
where 𝛽 is the initial parameter of the deterrence function and 𝐶 is the total travel cost. The

initially calibrated deterrence function could be employed at the trip distribution process. The new
OD matrix, as the output of this initial trip distribution, generated a new total travel cost distribution
which was used in a new cycle of deterrence function calibration. Following this process, the best
value of the deterrence function parameter could be found when the proportion of the total trip origin
and total destination equals the proportion calculated based on the observed data, and the mean trip
cost of estimated data equals the observed one.

Influenced by Hyman, 1969, Evans, 1971 adopted the Exponential function as the decreasing
function and used the Maximum Likelihood estimation to calibrate the function. The main idea of this
approach was to find the parameter that maximised the probability of a situation when the estimated
mean trip cost equals the observed one. This research then suggested using the Chi-square test for
explaining the goodness of fitting, but there was no numerical evidence provided in this research.

Unlike those methods started by guessing a parameter for the deterrence function or iteratively
calibrating the functions, the method of Evans, 1971 directly calculated the parameter by solving
a polynomial function. The approximating polynomial function was solved using Maclaurin Seris
expansion about the deterrence function parameter, and such calculation process was also explained
with a toy numerical example. The Maximum Likelihood approach was proven to be reasonable
mathematically, but the workload required by the calculation limited its application on calibrating the
deterrence function from a large amount of OD trip costs.

Hathaway, 1973 also practised the Maximum Likelihood estimation to find the most probable
deterrence function parameters. He assumed that the likelihood function of the deterrence function
parameter was approximately normal. Then the maximum likelihood could be found at the mean
of parameters. This method intended to find a value that approximated the value of the deterrence
function parameter, whereas the method suggested by Evans, 1971 straightly calculate the best value
of the parameter for the deterrence function. Therefore, the accuracy of the parameter calculated by
Evans seems to be relatively higher. Further comparison among Hyman’s method, Evan’s model as
well as Hathaway’s estimation can also be found in the work of Williams, 1976.
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The idea of using only the total travel cost in finding the parameter of the deterrence function had
been proven unreasonable since Erlander, Nguyen, and Stewart, 1979. The research study conducted
by Erlander in 1979 embedded the trip distribution and assignment into one model, instead of using
the total travel cost, the deterrence function chosen in this research was a component of two monotone
functions that subjected to travel cost and entropy of the travel demand. The configuration for the
travel cost-oriented monotone function was still an exponential function. In this case, the gravity
model could generate the link flow while maintaining a minimum total travel cost and maximum
travel demand entropy before the equilibrium flows were assigned to the network. The research had
found that the unique parameter of the deterrence function could be found when using the combined
monotone functions, while the use of only total travel time was proven insufficient to calculate a unique
value for the parameter. Yet, only the mathematical formulation-based proof was provided in this
research, and there was still a need for further numerical evidence.

The expression of the travel cost was changed by using a form of the gamma function in a research
conducted by Daly, 1982. The deterrence function was calibrated using a linear regression algorithm
to find the result when the gap between the estimated total trip number and the observed one was
equal. This research also tested the impact of model size on the effectiveness of the deterrence function
calibration by reducing the number of available destinations. According to the numerical evidence,
this research stated that, compared to the result run with 20 zones, the result run by eight zones had
more standard errors. Further research or more numerical comparisons are still needed before a certain
statement on the impact of a number of zones included in the modelling on calibration effectiveness, as
a comparison of modelling by 8 and 20 randomly chose zones is inadequate to ensure the relationship.

A form of the power function subjecting to travel distance in research later carried by Shen and
Aydin, 2014, In Shen’s research, the gravity model was established to estimate the OD matrix for
highway freight transport. Similar to the calibration method applied by Daly, 1982, the least square
regression method was used to find the best parameters that enabled the model best interpret reality.

While Abdel-Aal, 2014 decided to use the Exponential function when modelling the impact of
travel distance in deterrence function to trips with different travel purposes. The difference between
the research of Abdel-Aal, 2014 and previous research studies was the extension of including the trip
purpose for each zonal travelling: the deterrence function parameters were split and defined based
on different trip purposes. An Iterative Proportional Fitting (IPF) approach was employed in this
research for model calibration. This approach is similar to the "guessing" approach introduced before.
However, this study started to use 0.1 as the initial parameter of the deterrence function, and the best
parameter was iteratively found when the estimated trip length distribution equalled the observed one.

The concentration on gravity modelling was shifted to the public transport by Tamblay et al., 2016
who inferred the OD matrix for trips by bus and metro from a stop-to-stop based smartcard data. This
research study initially considered not only the zonal information embedded into the trip departure and
arrival but also the public transport stop information. Drawn from Daly, 1982, the deterrence function
was established by two gamma functions subjecting to zone-to-stop distance and stop-to-zone distance,
separately. The Maximum Likelihood estimation directly calculated the best-fit parameter according
to the observations. Such a method saved much more time than the iteration-based trip assignment
method and, therefore, was largely approximated to reality.

A most recent research study (see Thompson et al., 2019) that focused on freight transport used
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the Power function to describe the impact of travel distance on trip distribution. Given the link count
data, the parameter of the deterrence function was calibrated by the Least Squares Regression, similar
to the method used by Daly, 1982 and Shen and Aydin, 2014. One more step that was applied in the
research of Thompson et al., 2019 was the test for parameter fitting. Common Part of Commuters
measure (CPC) and Coefficient of determination (R square) were used as a further step to test how
well the observed data were replicated by modelling.

Before using a model, it is always essential to calibrate the model. The gravity model that describes
the relationship between the number of directional trips and the total trip end information significantly
rely on the natural travel cost. Derived from this feature, a calibration of the deterrence function is as
vital as calibrating the parameters of the gravity model. Much previous research proposed different
approaches based on their given data, primarily smartcard data or survey data. However, there is a gap
in finding a way that used the minor real data to achieve the purpose of deterrence function calibration.
Most studies failed to care for the configuration of the deterrence function as well, but directly using
the most common form of function. This neglection primarily due to the limit of real data.

Maximum entropy approaches Another approach that has been instrumental in generating a
range of models to solve the trip distribution problem, such as the gravity model and market model,
is the entropy maximisation approach, as detailed by Murchland, 1966. The proposed method was
derived from the theory that a set of distributed trips that best represented the reality should have the
largest entropy. Therefore, the objective function was extended to a combined function of entropy
maximisation and travel cost minimisation, and the best parameter of the gravity model could be
iteratively determined by trip distribution entropy. Such the solving method have been proved fitability
and versatility by Wilson, 1967; Wilson, 1969; Wilson, 1971.

Fang, Science, and 1995, 1995 proposed an optimised entropy-based trip distribution model by
considering a convex quadratic cost to better describe the impact of congestion on travel cost. Real
survey data (total trip production and destination data) was used to calibrate the entropy-based model
by Wang, Yao, and Jing, 2006. Xie, Kockelman, and Waller, 2011 applied the entropy maximum
approach when treated the the travel demand as a elastic function to OD location. Li et al., 2011
further considered the situation when travel cost were fuzzy variables and the total trip production
and destination were random variables, and proposed an advanced chance constrained entropy-based
model. Tang et al., 2018 demonstrated the power of big data by employing taxi GPS trajectories data
when calibrating the entropy-based model and proved its superiority in trip estimation. More recent
research study conducted by Huang et al., 2020 considered the impact of time on trip distribution and
proposed a spatial-temporal related maximum entropy-based model.

Direct demand approaches The direct demand model for an OD estimation derived from the
demand theory and market model concept which was introduced by Kraft, 1962. The demand theory
was originally prompted in economic principle that demonstrated the connection of demand for a good
to its price in the market. When using in the field of transportation, the travel demand and supply of the
transport services depends on the travel cost that always displays as the demand curve, where low travel
costs attract travel demand while reducing supply, and high travel cost situation losses travel demand
but increase service supply. Direct demand theory follows the tendency in the demand curve and
creates demand estimation modes that are related to both the social economy and the development of
infrastructures. Several early example of research into this concept has been undertaken, as reviewed
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in Stopher and Meyburg, 1975 and Gaudry and Wills, 1977.
The major logic of this method, as described in Carey, Hendrickson, and Siddharthan, 1981,

started from randomly creating an OD matrix as the initial OD matrix and assigning the trip in the
network by static user equilibrium for obtaining the link count data. The iterative calculation for trip
assignment stops when the estimated link count data equaled the real link count data, and in this way,
the research was able to deliver a relatively capable OD estimation that matched the historical real
data. Carey put forward an approximation of the objective function towards the disparity between
estimated flow and real flow using a linear function. Such the used algorithm was also known as the
Frank-Wolfe algorithm. In his research, the objective function is solved by least square estimation.
Since the model is built in a toy network consisted of a single route, the method proposed is heavily
required to be extended for more general use. Therefore, the author included not only the cordon count
data but also ticket count data for buses and Census data that involves the individual zonal journey to
work information Carey and Revelli, 1986.

Following this work, Rios, 2001 developed a model for estimating OD matrix from link count
data by using the direct demand model. His work improved the objective function with regard to
minimising the gap between real and estimated data among origin trip ends, destination trip ends,
sample OD matrix, total OD trips and link count, instead of the origin and destination trip end only.
The model was adjusted to a non-linear function that was formed by both maximum entropy and
least square functions to reduce the iteration duration while increasing the adherence to historical
data. The solutions of the objective function introduced in this literature are the Z-approximation
heuristic which is similar to the Frank-Wolfe algorithm, and the Delta-approximation heuristic which
additionally considers the gap between previous and later iteration results of the OD matrix derived
from the trip assignments. The author also highlighted the impact of input data on modelling results
in another research Ríos, Nozick, and Turnquist, 2002. This research finding suggested that the input
data mixed with 40% origin and destination trip end data, 20% sample OD pair data and 20%link flow
data produces the most accurate OD matrix for any freight network. Kepaptsoglou, Stathopoulos,
and Karlaftis, 2017 applied the direct model when predicted the ridership of light rail transport based
on historical demand data and the OD data from a roadside survey. This research also provided a
literature review about the application of direct demand model in rail transit system that covered the
publications from year 2004 to 2014.

Since the mechanism of the direct demand approach is to uncover the relationship between social-
economic and transportation attributes-related variables and the travel demand, the machine learning
algorithms could be the superior options, as proposed by Yan, Liu, and Zhao, 2020.

Other data-driven approaches Over the past decades, studies have provided important informa-
tion and techniques on OD estimation. However, most of the previous research used directional trips
derived from the human resources-based OD survey directly, such as the endeavours contributed by
Ben, Bouchard, and Sweet Jr, 1965, which is very similar to the work of Organisation for Economic
Co-operation and Development, 1974. Moreover, the mentioned researches focus mostly on statical
OD estimation that has ignored the influence of time on the OD matrix. The study on static OD es-
timation is principally limited by the raw data itself as the technology for obtaining time-dependent
data is a challenge. But with the development of the data collection systems and technologies, it is
able to have big data that is time-dependent now.
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Modelling with historical OD matrix or link count data

The study of Yang, 1995 involved a generalised least squares (LSQR) estimation in calibrating the
estimated link flow data from the observed one. The use of LSQR largely enables the simulation
to approach reality and essentially eliminate the impact of the nature of underestimating. For the
second level of the modelling, two heuristic traffic assignment models were tested. The first model
referred to the iterative estimation assignment based on user equilibrium theory; the second one was
a direct sensitivity-based OD analysis drawn from the research of Tobin and Friesz, 1988. Triggered
by finding the best algorithm for model calibration, Cascetta and Russo, 1997 firstly compared the
methods of maximum likelihood, non-linear generalised least-square and Bayes estimation when using
observed link count data for OD estimation. The author stated that the non-linear generalised least-
square and Bayes estimation are equally effective when addressing the link flow-based gravity model.
However, since the non-linear generalised least-square is insensitive to the model misspecification
and more flexible when defining, the mentioned research recommended the linear generalised least-
squares to be the first choice. The rest of the research examined the feasibility of using the non-linear
generalised least-square method for OD estimation from link count data. The method was tested
based on real data in the multi-modal transport networks that involved the mode of pedestrians, cars
and buses separated by travel purposes: home-to-work, home-to-school and home-to-other-activities.
The objective function was iteratively solved by the gradient project algorithm of Rosen with linear
constraints.

Nielsen, 1998 turned the attention to better assign trips in the network while iteratively calculating
the OD matrix to smooth out the data error. In his research, the route search followed the prevalent
Method of Successive Averages (MSA) and Dijkstra’s algorithm, and the traffic assignment process
obeyed the Stochastical User Equilibrium (SUE) theory. Two different trip assignment models have
been proposed in the research to demonstrate the influence of the different sets of observed link count
data on the estimated result. The first method is Single Path Matrix Estimation (SPME), where only
the optimised paths selected by the MSA is assigned with trips; this is analogous to the all-or-nothing
method. On the other hand, the method called Multiple Path Matrix Estimation (MPME) considers
all possible paths and weighs the path by probability to indicate the preference of path choice. The
research proves the superiority of the second method though it takes more time to compute.

Having the time-dependent flow-based data, the vehicular OD estimation can be formulated stochas-
tically at the trip assignment process. Time dimension largely increases the workload of calculation
which triggers methods such as the Kalman Filter to effectively tackle the non-linear problem by using
a first-order Taylor linearisation, which is further discussed in Ashok and Ben-Akiva, 2002. More-
over, research conducted by Bierlaire and Crittin, 2004 recognised the significance of time and the
benefits of big data. Acknowledging the significance of time dependence in a demand prediction,
this mentioned research attempts to capture the time-dependent OD matrix from the time-dependent
historical OD matrix by using the least-square approach. Two widely adopted algorithms, namely
Kalman Filters and LSQR, for reducing the gap between estimated and observed trips were compared
in this research. Bierlaire indicated, based on the result from both theoretical analysis and the em-
pirical experiment shows, that the LSQR tends to be better when solving the dynamic least-squares
problems.

Research studies convoyed by Ashok and Ben-Akiva, 2002 and Zhou and Mahmassani, 2007 aim
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to optimise the estimated OD matrix by using Kalman filtering while iteratively assigning the trips
based on the dynamic traffic assignment model. Cantelmo et al., 2015 splitted the OD estimation
problem by applying a two-step optimisation method to produce an initial zonal production and at-
traction matrix that matches the real data through iteration before using the produced PA as input
data in a dynamic traffic assignment model to generate the most likely OD matrix. The dynamic trip
assignment model is built along with a superior path searching algorithm called Simultaneous Pertur-
bation Stochastic Approximation (SPSA) which has a strong ability in calibrating large-scale traffic
assignment model due to perturbing all the variables in the objective function at once, as reported in
the research of Balakrishna, Ben-Akiva, and Koutsopoulos, 2003 and Lu et al., 2015.

More recent research carried by Xie, Kockelman, and Waller, 2011 attempted to obtain the OD
matrix based on link flow data by using a new method combined entropy maximising and least squares
estimation. The entropy maximisation was used at the trip distribution process, while the least squares
was used to obtain estimated link flow from observed flows. The outcome of these models produced the
flow rate for each link that could be used for link flow prediction directly rather than calculating the link
flow by accumulating the trips through the trip distribution process. The demand function revealed the
relationship between estimated link flows and observed link travel costs that is analogous to the non-
constrained gravity model. Such a model on OD estimation converts the linear approximation problem
to a computable combination of maximum entropy and the least squares problem, which enormously
improve the effectiveness of calculation compared with the previous iterative trip distribution process.

The experience from recent studies has been further developed, and new insights into demand pre-
diction from the view of machine learning were proposed by Krishnakumari et al., 2019. Given the
historical OD matrix data, the author aggregated the data for zonal production and attraction before
employing the gravity model to generate the logit route choice model. The deterrence function corre-
sponds to travel time only due to the available datasets that this research has. The model describing
the relationship between the OD matrix, the trip production, the trip attraction and link flows were
solved by a constrained linear least-squares algorithm. The part of demand prediction in this research
offers an algorithm that applies an artificial neural network (ANN) model to uncover the relationship
between inputs (either individual speeds and flows or the average zonal speeds and flows) and out-
puts (trip production and trip attraction). The model training highly depends on the initial OD matrix,
which is a challenge in future research where the OD matrix is an extravagant expectation. All above
mentioned data-driven methods were achieved since the existence of proper datasets. Especially with
the details of time, the modelling result has been increasingly developed towards reality. More at-
tempts on demand prediction by machine learning can be found in the research studies of Yan, Liu,
and Zhao, 2020; Ma et al., 2019; Ou, Mihaita, and Chen, 2020; Shafiei et al., 2021b.

Modelling with historical smartcard data

In recent years, research studies on OD estimation began to emerge along with the increasing use of
smartcard data, where much accurate historical tap-on and tap-off information is available to capture
the travel pattern. Such smartcard data brings transportation modelling up to another level. Since the
possession of the OD matrix, apart from OD pair estimation, much research has been carried out in
the model and the simulation calibration, as reviewed in Hussain, Bhaskar, and Chung, 2021.
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Integrating the automatic vehicle location (AVL) data with automatic fare collection (AFC) data,
research that aims to validate a citywide transit assignment model was conducted by Tavassoli, Mes-
bah, and Hickman, 2018. The proposed assignment model was effectively calibrated by adjusting the
model parameters manually until the difference between the modelled result and real data reached its
minimum. The construction of the assignment model is accomplished in EMME, and three embed-
ded validation measures, namely R-square, root mean square error and GEH, are used to display the
effectiveness of the simulation from the perspective of a number of boarding or alighting passengers
at stops, on route travelling and by direction. Similar attempt was achieved by Ou, Mihaita, and Chen,
2020, who focused on the urban rail network and estimated the OD matrix from integrated production
and attraction data by using traditional four-step demand modelling approach. This research study also
initially introduced a method to uncover the in-station trajectory by applying the hybrid Markov model
with a consideration of the OD matrix, vehicle occupancy as well as the real time train schedule.

Modelling with other types of data

The lack of initial data can hardly stop the researchers’ passion for OD estimation. Even without access
to ready-to-use OD data, apart from the mathematical gravity model, a traditional probe vehicle can be
used to count the link flows (see the research generated by Yang et al., 2017). In the study of Yang, the
least squares estimation was utilised to calibrate the estimated flow count data from count data. Note
that in his link flow estimation, the weight of the link choice was produced based on the travel cost,
which is calculated when the trip assignment-based iteration is in use for the OD pattern estimation.

Similarly to the method of a probe vehicle, other studies used the vehicular identification system
to calculate for obtaining the Electronic Toll Collection Data, where the directional information on a
toll road can be recorded and used for OD matrix generation (see Jiang and Warita, 2009 and Kim
et al., 2014).

There is another type of big data approach derived from GPS that can be used for OD estimation:
mobile phone data. However, before the step of an actual estimation towards the travel pattern, data
processing is required to identify the production and attraction location (see Iqbal et al., 2014 and
Alexander et al., 2015). The processed data is then classified into the home, work and other locations
before generating a completed trip data based on PA. As the cell phone data only roughly provides
the arrival time and the remaining time at a location, the time that an individual departing has to be
determined from external survey data. In the research of Alexander et al., 2015, the daily number of
trips is treated as a uniform distribution. The number of trips for a period of time is simply calculated
by multiplying the possibility of travelling with the total population. To calculate the daily number
of trips, the result was obtained by being divided by the number of the simulated day. The outcome
of daily trips is reformed by hour and aggregated by weekday and weekend based on travel purpose,
namely home-based work, home-based other and a non-home-based trip. For validation purposes, the
observed trip chain was obtained from mobile phone records: the record of location pausing is the
time a passenger spending on an activity and the time when the location of a passenger was changed
was recorded as the departing time. Other applications of cell phone data can be found in a review by
Chen et al., 2016 and more recently in a research study of Ge and Fukuda, 2016 and Gadziński, 2018.

Bluetooth data that captures the vehicle trajectories also becomes a source of the traffic data. As
used in research of Yildirimoglu and Kim, 2018, the Bluetooth detectors were located at the inter
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subsections, arterials and state-controlled roads in order to record the passing vehicles. The vehicle
could be identified by its unique ID so that the trajectory can be mapped from a time-ordered sequence
of passing each Bluetooth detector. The problem with this data is that the real origins and destination
location cannot be detected as the trajectories are only detector-based.

Summary for PT demand dmodelling

Extensive evidence considers the OD estimation from total production and attraction data based on
the gravity model. Such a method has been largely developed with the improvement of mathematical,
analytical and computational skills. The model has been applied from displaying the relationship be-
tween population and trade benefit to, nowadays, demonstrating the directional trips from aggregated
production and attraction data. However, the ability of the gravity model in the transport field is still
underestimated, as most research studies attempted to investigate the OD matrix for a single transport
mode, mostly cars. There is still a need to consider the influence of other transport modes when mode
splitting and trip assigning under a multi-modal public transport environment. The challenge against
integrating the OD matrix of public transport with that of the vehicle is still out there.

Following the purpose of estimating effectively, more convergence criteria have been proposed,
such as the maximum entropy and maximum likelihood. Such methods follow the nature of the state
of a system where the most likely state of a trip assignment is the situation when the system entropy
reaches maximum; and in terms of the maximum likelihood method, the most likely state of a trip
assignment is the situation when it best matches the observed data. Both methods set the calculation
process with clear stop criteria, and it is in this way that the calculation becomes effective and the
result of the OD estimation becomes accurate. The rest of the progress on OD estimation emphasised
capturing reality and interpreting it by mathematical equations. Either using mathematical models
or data-driven approaches, they are both able to uncover the hidden pattern and trend of travelling in
networks.

2.2 Traffic disruption impacts on PT

Transport is a critical part of people’s lifestyles, especially as cities expand. To meet the growing
and diverse mobility needs, multiple public transit (PT) modes such as trains, buses, metros (un-
derground/subway), on-demand buses or cars, and micro-mobility solutions like bikes, e-bikes or e-
scooters have been introduced to support a sustainable transport system. This new era raises concerns
about the synergy between networks for both PT and private vehicles. While cooperation among dif-
ferent transit networks enhances mobility, it also introduces new vulnerabilities due to the increasing
number of entities integrated into the original network. A multi-modal PT network allows for impact
propagation, leading to large-scale disruptions due to its reliance on shared infrastructure and trans-
fer points. Additionally, disruptions can alter passenger behaviour, increasing demand for alternative
modes or routes and further weakening the network. PT schedules are often coordinated to optimise
transfers between different modes, so disruptions in one mode can cause cascading delays across the
entire network. Such negative influences produced in a multi-modal PT environment encourage an
increasing number of research studies to focus on disruption causation, measurement and disruption
modelling.
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However, we did not find any studies that compile all related works or perform a bibliometric
analysis of the literature in this field. Based on existing publications, this literature survey provides a
research framework to outline developments in traffic disruption and impact modelling as well as the
application of existing modelling and research methods. Therefore, in this literature review, we aim
to provide a comprehensive examination of existing publications concerning PT disruption causation,
measurement, disruption modelling methods and their applications. We also provide opportunities
and future directions in the field of multi-modal PT disruption study that guide future works.

While conducting the literature review, we encountered several open questions:
• What is the development of research regarding traffic disruption on PT?
• What are the essence research perspectives involved in publications?
• What are the major causes and the impact of traffic disruptions on PT?
• What are the principal methods for measuring the impact of specific disruptions?
• What is the primary focus of disruption modelling methods?
• What gaps exist in current research studies?
• What opportunities and future directions exist for multi-modal PT disruption studies?
By addressing these challenges, contributions can be achieved by conducting this research:
• Applying a novel bibliometric approach to examine existing publications on the impact of traffic

disruptions on public transport and identifying the evolution of disruption impact on the PT
network;

• Classifying the primary causes and impacts of traffic disruptions on public transport networks
and the modelling methods that quantify the impact;

• Specifying gaps and challenges and pinpointing opportunities for future research.
This review article is organised as follows. In subsection 2.2.1, we present the details of the arti-

cle review process based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines. Based on the selected publication using the PRISMA method, we conducted
a bibliometric analysis to reveal trends in related research, focusing on publication year, author, key-
words, case studies, and literature sources. The causes of disruptions involved in multi-modal PT
and the impact measuring methods are reviewed in subsection 2.2.2. subsection 2.2.3 summarises the
modelling methods used to quantify impacts, categorising them into analytical, probability, regression,
and machine learning approaches. The applications of these models reflected in response plans from
existing publications, are reviewed in subsection 2.2.4. We provide a discussion of future directions
in multi-modal disruption management in subsection 2.2.5, followed by the conclusion of the paper
in ??.
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Step 1:
Records identified from*:
Databases n = 2469
(n_Elsevier = 488)
(n_Taylor and Francis Online = 346)
(n_SpringerLink = 1503)
(n_IEEEXplore= 132)

Step 2:
Reports assessed for eligibility
(n* = 1084)

Records screened
(n = 136)

Step 3:
Records excluded by human
(n* = 1246)

Step 4:
Records identified from other
resources n = 74:
(n_websites = 5)
(n_citation searching = 69)

Step 5:
Records excluded by human
(n* = 44)

Step 6:
Studies included in review
(n = 166)

Identification of studies via databases and registers Identification of studies via other methods

Id
en

ti
fi

ca
ti

o
n

S
cr

ee
n

in
g

In
cl

u
d

ed

Records screened
(n = 30)

FIGURE 2.4: Flow diagram for systematic review based on the PRISMA approach.

2.2.1 Methodology

Literature review material and PRISMA

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) is the review
material selection method that has been applied when organising and analysing literature for this ar-
ticle Page et al., 2021. This method was selected as it is well designed and organised for reporting
systematic reviews with objectives, and the clear checklist and flow diagram for review were handy
in use. The major processes for reviewing literature are illustrated in Figure 2.4. The first step of
this method aims to identify the relevant literature from the databases and other resources, such as
websites, organisation publications and citation searching, based on keywords covering multi-modal,
PT, disruptions, incidents, modelling, disruption impacts and incident impacts for this research study.
The databases accepted for this stage were:

• Elsevier,
• Taylor and Francis Online,
• SpringerLink,
• IEEEXplore.

The database was accessed through the University of Technology Sydney, and the publication date was
limited between 2001 and 2024 (the same condition was applied when searching other resources).

From this process, 2469 pieces of literature were collected. After removing ineligible records,
1385 works were retained from the databases, with 1084 works being excluded, as shown in Step 2 in
Figure 2.4. The ineligible records were those that were not open access or to which the author did not
have full access. By being filtered by humans according to the literature title, keywords and abstract,
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1246 works were further removed, as they were not fully in relation to the purpose of this review, as
shown in Step 3. After this step, the total number of literature that was ensured to be included in this
review article was 136.

Apart from the records obtained from databases, 74 works were found from other resources (5
articles were found on websites and 69 articles were found based on citation searching), as shown
in Step 4 - 5. In this step, the selected literature was primarily screened by removing duplicates and
eligibility, resulting in 30 works being removed. Finally, as shown in Step 6, there are 166 works
included in this literature review. For each article in the database, the initial review process started
with the section abstract and introduction and ended with the section of discussion or conclusion.

Bibliometric analysis

Year According to the literature, the emphasis on multi-modal PT disruption analysis began in 2001,
as illustrated in Figure 2.5. There was an initial peak in contributions around 2010, followed by
another peak in 2017 and 2020, which observed the highest number of works delivered in a single
year. Additionally, there was an exponential increase in the number of publications from 2018 to
2021, followed by a decline to the present.

[2
00

1,
 2

00
2]

(2
00

2,
 2

00
3]

(2
00

3,
 2

00
4]

(2
00

4,
 2

00
5]

(2
00

5,
 2

00
6]

(2
00

6,
 2

00
7]

(2
00

7,
 2

00
8]

(2
00

8,
 2

00
9]

(2
00

9,
 2

01
0]

(2
01

0,
 2

01
1]

(2
01

1,
 2

01
2]

(2
01

2,
 2

01
3]

(2
01

3,
 2

01
4]

(2
01

4,
 2

01
5]

(2
01

5,
 2

01
6]

(2
01

6,
 2

01
7]

(2
01

7,
 2

01
8]

(2
01

8,
 2

01
9]

(2
01

9,
 2

02
0]

(2
02

0,
 2

02
1]

(2
02

1,
 2

02
2]

(2
02

2,
 2

02
3]

(2
02

3,
 2

02
4]

0

5

10

15

20

25

30

35

40

45

FIGURE 2.5: Histogram of publication years for the period 2001 to 2024..

Authors We present the frequency of author names in the selected database in Figure 2.6. The data
shows that the most prolific contributors are Prof. Dr. Oded Cats and Prof. Dr. Francesco Cor-
man, with up to 10 publications primarily focused on PT, capacity, disruption, network vulnerability
and subways, and disruption management, agent-based simulation, within-day replanning, computer
simulation and information availability, respectively.
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Keywords The keywords were mapped using bibliometric networks in VOSviewer. From all the
publications reviewed, the top 50 terms related to multi-modal public transport modelling under dis-
ruption were selected based on their co-occurrence in titles, keywords, and abstracts. The terms are
further colour-coded by year. As shown in Figure 2.7, terms like vulnerability, disruption, robust-
ness, and complex network related to graph theory-based analysis were more prevalent around 2018.
More recent research, around 2022, focuses on COVID-19, transport systems, numerical models and
machine learning algorithms.

within-day replanning

united states

switzerland

resilience assessment

numerical model

netherlands

metro networks

intelligent systems

forecasting

clustering algorithms transportation system

transport disruption

transport

traffic congestion
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complex networks

agent-based simulation

machine learning
disruption

urban rail transit

network vulnerability

metro system

complex network

china

disruptions

vulnerability

robustness

resilience

disruption management

covid-19
public transport

VOSviewer

FIGURE 2.7: The network of the hot keywords associated with publications incorpo-
rating multi-modal PT under disruption for the period 2001 to 2024.

Modes of transport involved in publications In the field of multi-modal PT modelling under dis-
ruption, there are more publications involving only single modes of transport, such as train, metro/subway/underground,
bus rapid transit (BRT) or buses. The proportion of publications by transport mode is displayed as
Figure 2.8, where disruption navigating the metro/subway/underground network attracts the most at-
tention.

Train
25%

Metro/subway/underground
64%

BRT
2%

Buses
9%

FIGURE 2.8: Overview of transport modes involved in single-mode PT disruption
modelling

Among the reviewed publications, 60% included only a single mode of public transport (PT),
specifically trains, metro/subway/underground, bus rapid transit (BRT) and buses. The remaining stud-
ies involved multiple PT modes, including trains, high-speed trains, trams/light rail, metro/subway/underground,
BRT, buses, bikes/shared bikes, shared e-scooters, ferries, airplanes, taxis, or motorbikes. Various
combinations of multi-modal PT used in the modelling are shown in Table 2.4. There are 31% re-
search included buses followed by metro/subway/underground, which account for 22%. 16% papers
considered trains and trams/light rail.
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Reference Trains HST Trams Metro BRT Buses Bike E-scooters Ferries Airplanes Taxis motorbikes
Abdelgawad
and Abdul-
hai, 2010

✓ ✓

Cox, Prager,
and Rose,
2011

✓ ✓

Jang et al.,
2014

✓ ✓

Cats and
Jenelius,
2015

✓ ✓

Neumanna,
2015

✓ ✓

Cats, Yap,
and Oort,
2016

✓ ✓ ✓ ✓

Challender,
2016

✓ ✓ ✓

Moylan,
Foti, and
Skabardonis,
2016

✓ ✓ ✓

Cottrill et al.,
2017

✓ ✓ ✓

D’Andrea
and Mar-
celloni,
2017

✓ ✓ ✓

Shelat and
Cats, 2017

✓ ✓

Yap et al.,
2017

✓ ✓ ✓

Cats and
Jenelius,
2018

✓ ✓ ✓

Diab, Feng,
and Shalaby,
2018

✓ ✓

Diab and
Shalaby,
2018

✓ ✓

Diab and
Shalaby,
2018

✓ ✓

Malandri,
Fonzone,
and Cats,
2018

✓ ✓ ✓

Oswald
Beiler, Asce,
and Miller,
2018

✓ ✓

Nguyen
Phuoc et al.,
2018

✓ ✓ ✓

Yang et al.,
2018

✓ ✓
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Yap et al.,
2018

✓ ✓

Ari Wibowo,
Sulistyo, and
Mustika,
2019

✓ ✓

Saxena, Hos-
sein Rashidi,
and Auld,
2019

✓ ✓

Azolin,
Silva, and
Pinto, 2020

✓ ✓ ✓

Consilvio et
al., 2020

✓ ✓

Fang, Jiang,
and Fei, 2020

✓ ✓ ✓

Jia, Zhang,
and Shi,
2020

✓ ✓

Jia, Zhang,
and Shi,
2020

✓ ✓

Leng and
Corman,
2020b

✓ ✓ ✓ ✓

Leng and
Corman,
2020a

✓ ✓ ✓ ✓

Marra and
Corman,
2020

✓ ✓

Rahimi and
Corman,
2020

✓ ✓

Tan et al.,
2020

✓ ✓

Aparicio,
Arsenio, and
Henriques,
2021

✓ ✓ ✓

Barbieri
et al., 2021

✓ ✓ ✓ ✓ ✓ ✓

Cebecauer et
al., 2021

✓ ✓

Drabicki,
Islam, and
Szarata,
2021

✓ ✓ ✓

He et al.,
2021

✓ ✓

Henry,
Furno, and
El Faouzi,
2021

✓ ✓

Rahimi et al.,
2021

✓ ✓
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Yang and
An, 2021

✓ ✓

Zhang and
Ng, 2021

✓ ✓ ✓

Cong et al.,
2022

✓ ✓

Liu et al.,
2022b

✓ ✓

Mo, Kout-
sopoulos,
and Zhao,
2022

✓ ✓

Yang et al.,
2022

✓ ✓

Yap and
Cats, 2022

✓ ✓

Yap et al.,
2022

✓ ✓ ✓

Zhao et al.,
2022

✓

Böcker et al.,
2023

✓ ✓

Drabicki
et al., 2023

✓ ✓

Feng et al.,
2023

✓ ✓ ✓

Hasiak, 2023 ✓ ✓ ✓ ✓

Marra and
Corman,
2023

✓ ✓ ✓

Othman
et al., 2023

✓ ✓ ✓

Soza-Parra,
Tiznado-
Aitken, and
Muñoz, 2023

✓ ✓

He, Tao, and
Sun, 2024

✓ ✓

Zhang et al.,
2024a

✓ ✓

TABLE 2.4: Overview of transport modes involved in ,multi-modal PT disruption
modelling.

Location of case study involved in publications Figure 2.9 illustrates the distribution of the geo-
graphical sources of case studies involved in the literature publications from 2001 to 2024. The most
frequently selected case study areas are in the United States, followed by the United Kingdom, the
People’s Republic of China, Sweden, the Netherlands and Switzerland.

Literature sources Regarding the sources of literature, the top three sources publishing research
incorporating multi-modal PT disruption for the period 2001 to 2024 are Transportation Research
Record, Safety Science and Accident Analysis & Prevention, as illustrated in Figure 2.10.
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FIGURE 2.9: The distribution of the geographical source of the case studies involved
in the literature publications incorporating multi-modal PT under disruption for the

period 2001 to 2024.

The trend lines in the chart show the growth of publications over time, with notable rises around
certain years: 2012, 2018 and 2021, shown in Figure 2.11. The number of publications by the Trans-
portation Research Record leads almost every year between 2001 and 2024. Notably, the trend for
Safety Science indicates a slow start, with minimal publications in the early years, followed by a
period of steady growth beginning around 2020. In recent years, however, the trend line has risen
sharply, indicating a significant increase in the publication rate incorporating multi-modal PT under
disruption.
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FIGURE 2.10: The total number of literature sources incorporating multi-modal PT
disruption for the period 2001 to 2024.

2.2.2 Disruption causes and impact measurement

In studies on traffic disruptions, the most straightforward method to investigate their impact on PT
is through direct observation. Depending on the cause of the disruptions, whether from natural dis-
asters or man-made incidents, the investigation covers impacts on travel reliability, including link
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FIGURE 2.11: The cumulative growth of literature sources incorporating multi-modal
PT disruption for the period 2001 to 2024.

capacity reduction, node closure, travel demand change and transport performance or supply reduc-
tion. When combined with data processing or mathematical modelling approaches, as introduced in
subsection 2.2.3, we can precisely quantify the impacts of a given disruption.

Disruption causation

The causes of traffic disruptions discussed in existing publications are summarised in Figure 2.12.
Disruptions due to transport service failures receive the most attention, followed by pandemics, and
floods, hurricanes and storms. Most research studies found that demand changes due to disruption
are the primary impact, followed by reductions in transport performance or supply, impacts on link
capacity, and finally, impacts on nodes such as stations or stops. Figure 2.12 summarise the causations
based on studies that rely on real disruption case studies; apart from the real-world cases, some re-
search relied on assumed disruptions. Specifically, 29 publications focused on assumed link capacity
reduction, 17 on hypothetical node closures and travel demand adjustments, and in 18 publications,
the transport performance or supply is manually reduced as negative impacts on the public transport
system when modelling.

Natural disaster Flood and sea-level rise
Research studies examining the impact of floods, sea-level rise and heavy rain events on public

transport primarily focus on transport infrastructure damage and also investigate the subsequent ef-
fects on link or node capacity and vehicle functionality, often reflected by speed reductions. Related
research predominantly uses a simulation-based hydrodynamic model when estimating the time or
space-dependent water depth based on the historical disaster events and defining the roads as non-
functional if the water depth around these roads exceeds a threshold (see Jang et al., 2014; Oswald
Beiler, Asce, and Miller, 2018; Zhu et al., 2022. After investigating the floods between January and
November 2021, Yang et al., 2018 identified the impacts of a tropical cyclone in Hainan, China, on bus
stations, railways and highways damage, which caused connectivity, efficiency reduction and travel



2.2. Traffic disruption impacts on PT 39

Link capacity
 reductio

n

Nodes clo
sure

Travel demand change

Transport p
erformance or su

pply reductio
n

Impact

Flood, hurricane or storm
Earthquake

Fire
Rain, snow, ice or fog

Pandemic
Accident

Transport services failure
System maintenance

Transport strike
Large event

Terrorist attach

Di
sr

up
tio

n 
Ca

us
at

io
n

0

1

2

3

4

5

6

7

FIGURE 2.12: The heatmap of the publication regarding the causation associated with
multi-modal PT disruptions.

delays. Zhu et al., 2019 captured the capacity loss of links due to Hurricane Sandy in New York
according to local taxi trajectory data.

Most research on the impact of floods has primarily focused on cars, as highlighted in review
papers by Hammond et al., 2015; Munawar, Hammad, and Waller, 2021; Bhuiyan et al., 2021). Preg-
nolato et al., 2017 reviewed and proposed a depth-disruption function to model the impact of the depth
of standing water on road vehicle speed and traffic flow.

Earthquake
When estimating the impact of earthquake/seismic events on road networks, the fragility function

was used in most of the studies, where the impact of the seismic intensities on road networks can be
qualified. Similar to the studies on the impacts of flood, historical data regarding the ground motion
of a seismic event against location or time was mostly used to determine the seismic intensities and
the threshold towards railway network degrading or damage (see Ansari, Rao, and Jain, 2024).

Fire
Regarding the assessment of disruption impacts due to fire, Ronchi et al., 2019; Wahlqvist et al.,

2021; Cova et al., 2021; Lovreglio et al., 2020 investigated the impact of bushfires or wildfires, while
Ren et al., 2019; Bjelland et al., 2021 examined the impact of tunnel fires on transit networks. Addi-
tionally, Wetterberg, Ronchi, and Wahlqvist, 2021 focused on the impact of wildfire smoke. Readers
can find more references regarding the impact of fire events on road networks from the review article
of Ronchi et al., 2019.

Climate-related
Many studies have utilised surveys and observational data to examine the impact of snow, ice,

heavy rain, or fog events on transport networks. Jang et al., 2014 created a snowfall map using snow
depth, sunny spots and shaded location data corresponding to the tram network to capture the time
and space impact of snow cover on the tracks, affecting tram link accessibility. Yasanthi and Regina,
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2018 indicates that climate-related or weather-related events most commonly result in reduced travel
speeds due to traffic congestion caused by low visibility or road closures for safety reasons. Inatsu,
Tanji, and Sato, 2020 explored the correlation between blowing snow levels and expressway closures,
while Elhenawy, Rakha, and Ashqar, 2021 analysed the effects of both light and heavy rain on travel
speed. Page-Tan and Aldrich, 2024 specifically examined the impact of the Snowmageddon event in
Boston. Previous studies on weather-related transport disruptions have been summarised in the review
by Jarmuz and Chmiel, 2020.

Pandemic
The COVID-19 pandemic is creating disruptive changes in urban mobility, especially PT. Travel

demand was largely reduced (see Aparicio, Arsenio, and Henriques, 2021; Soza-Parra, Tiznado-
Aitken, and Muñoz, 2023; Garcia-Arteaga and Lotero, 2023) or mode choice (see Du et al., 2024)
was adjusted due to the fear of the pandemic; PT supplement was reduced due to the operational staff
reduction because of the pandemic (see Soza-Parra, Tiznado-Aitken, and Muñoz, 2023). Böcker et al.,
2023 discusses the long-term impact of the pandemic on travel demand and travel behaviour change
based on a survey result. Feng et al., 2023 proposed air change rates in buses, subways, and high-speed
trains based on measured CO2 concentrations and passenger behaviours. Using these rates, the author
suggested safe times and spaces in various public transport vehicles, which differed significantly from
the patterns used in normal situations.

Man-made incidents For man-made incidents, historical incident logs are the primary sources of
information for investigating the causes of disruptions. Extensive research has utilised data-driven
algorithms (regression, probability or Machine Learning (ML) algorithms) to understand the causation
of disruptions for cars (see Li, Pereira, and Ben-Akiva, 2018; Yang, Zhang, and Feng, 2022). Yap and
Cats, 2021 applied logistic regression and a Multilayer Perceptron (MLP) classifier when predicting
disruption based on historical incident log data. This author also used a supervised learning approach
to quantify passenger delays as the impact of PT disruption. However, to analyse the temporal-spatial
impact on public transport, most research relies on data analysis, including:

• time or location-dependent passenger volume count or flow data (see Zhao et al., 2022; Kopsidas
and Kepaptsoglou, 2022; Moylan, Foti, and Skabardonis, 2016; Jia, Zhang, and Shi, 2020;
Marra and Corman, 2020; Cebecauer et al., 2021; Henry, Furno, and El Faouzi, 2021; Cong
et al., 2022; Mo, Koutsopoulos, and Zhao, 2022; Yang et al., 2022; Yap and Cats, 2022; Wen
et al., 2018; Liu, Zhu, and Wang, 2021; Zhao et al., 2021; Zhao et al., 2023),

• travel behaviour (mode or route choice) (see Cottrill et al., 2017; Nguyen Phuoc et al., 2018;
Saxena, Hossein Rashidi, and Auld, 2019; Jia, Zhang, and Shi, 2020; Cong et al., 2022; Mo,
Koutsopoulos, and Zhao, 2022; Yang et al., 2022; Böcker et al., 2023; He, Tao, and Sun, 2024;
Eltved et al., 2021),

• travel speed information (see Moylan, Foti, and Skabardonis, 2016; Diab and Shalaby, 2018;
Othman et al., 2023; Shafiei et al., 2021a),

• travel time data (see Zhao et al., 2022; Kopsidas and Kepaptsoglou, 2022; Jia, Zhang, and Shi,
2020; Cong et al., 2022; Yap and Cats, 2021; Müller, Leich, and Nagel, 2020),
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• trip trajectory or vehicle GPS data (see D’Andrea and Marcelloni, 2017; Marra and Corman,
2020),

• topological features, such as link criticality (see Cats, Yap, and Oort, 2016).
According to the literature, the reason for man-made accidents that disrupt traffic in PT can in-

clude crashes between metro vehicles (see Mo, Koutsopoulos, and Zhao, 2022). According to 167
metro incident reports, Lu, 2018 found that the most frequent occurrences are train breakdowns, sig-
nal control failures, and door malfunctions. The impacts of these operational incidents on passengers
include delayed travel, unmet travel demand and accidents caused by overcrowding. After analysing
408 metro incidents, Lu, Ma, and Xing, 2021 investigated Shanghai metro disruption data from 2013
to 2016, comprising 583 samples, and found that train failures accounted for 45% of the total incidents,
followed by signal failures at 20%. Liu, Zhu, and Wang, 2021 indicated that 48.7% disruption was
directly caused by signal failure, followed by train failure (23.0%), and 12.7% disruption was due to
passengers falling into the track. For transport services failure or mode of transport shut down, the
further reason could be a power, signal or telecommunication failure (see Liu, Zhu, and Wang, 2021;
Zhao et al., 2021). Yang, Dong, and Guo, 2023 analysed incident log data and found that metro dis-
ruption was majorly due to train failure (29%) followed by a signal failure (22%), and more disruptions
occurred during the morning peak due to the frequency of services.

The disruption reason of large events includes in related literature majorly investigate the demand
change and PT supplement change due to events like the 2014 Commonwealth Games (Cottrill et al.,
2017) and 2017 Lyon’s “Festival of Lights” (Henry, Furno, and El Faouzi, 2021).

Other causes for traffic disruption include system maintenance, transport strikes or terrorist attacks,
which have been documented in the literature, as summarised in Table 2.5.

In addition to analyses based on real events, numerous research studies have focused on the impact
of assumed disruptions. These studies primarily relied on simulation models and applied assumed
impacts, such as link capacity reduction, node closure, travel demand or behaviour changes, transport
performance, or supply reduction, during the scenario analysis stage. By comparing traffic states
before and after the inclusion of the disruption, these models can visualise the impact of the disruption
properly.

Disruption
causes

References
Link capacity reduction Nodes closure Travel demand change Transport perfor-

mance or supply
reduction

Natural disaster
Flood, hurri-
cane or storm

Jang et al., 2014; Challender,
2016; Oswald Beiler, Asce, and
Miller, 2018; Zhu et al., 2019;
Pregnolato et al., 2017

Challender, 2016;
Yang, Dong, and
Guo, 2023

Zhu et al., 2022 Yang et al., 2018; Zhu
et al., 2022; Pregno-
lato et al., 2017

Earthquake Ansari, Rao, and Jain, 2024
Fire Ronchi et al., 2019; Wahlqvist

et al., 2021; Ren et al., 2019;
Bjelland et al., 2021

Ronchi et al.,
2019

Cova et al., 2021 Wahlqvist et al., 2021;
Cova et al., 2021; Ren
et al., 2019

Rain, snow,
ice or fog

Jang et al., 2014
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Pandemic Aparicio, Arsenio,
and Henriques, 2021;
Böcker et al., 2023;
Soza-Parra, Tiznado-
Aitken, and Muñoz,
2023; Garcia-Arteaga
and Lotero, 2023; Du
et al., 2024; Borowski
et al., 2023

Soza-Parra, Tiznado-
Aitken, and Muñoz,
2023

Assumption Papangelis et al., 2013 Zhang and Ng,
2021; Yang and
An, 2021

Yang and An, 2021;
Böcker et al., 2023

Yang and An, 2021

Man-made incident
Accident Zhao et al., 2022; Mo, Kout-

sopoulos, and Zhao, 2022
Mo, Koutsopou-
los, and Zhao,
2022

Zhao et al., 2022;
Mo, Koutsopoulos,
and Zhao, 2022; Sun
et al., 2016; Liu, Ma,
and Koutsopoulos,
2021

Othman et al., 2023;
Yap and Cats, 2021;
Liu, Ma, and Kout-
sopoulos, 2021; Yap
and Cats, 2019

Transport
services
failure

Cats, Yap, and Oort, 2016 Jia, Zhang, and
Shi, 2020

Saxena, Hossein
Rashidi, and Auld,
2019; Liu, Zhu, and
Wang, 2021; Zhao
et al., 2023; Zhu et al.,
2017

Diab and Shalaby,
2018; Zhao et al.,
2021; Lu, 2018; Lu,
Ma, and Xing, 2021;
Khadilkar, 2017;
Mahdavi, Bhouri,
and Scemama, 2020;
Zhang et al., 2022

System
maintenance

Yap and Cats, 2022; Eltved et
al., 2021

Transport
strike

Moylan, Foti, and Skabardonis,
2016

Yang et al., 2022;
He, Tao, and Sun,
2024

Moylan, Foti, and
Skabardonis, 2016;
Nguyen Phuoc et al.,
2018; Yang et al.,
2022; He, Tao, and
Sun, 2024

Large event Cottrill et al., 2017 Cottrill et al., 2017;
Henry, Furno, and El
Faouzi, 2021

Cottrill et al., 2017

Terrorist at-
tack

Tokuda et al.,
2006

Cox, Prager, and
Rose, 2011
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Assumption Cats and Jenelius, 2015; Shelat
and Cats, 2017; Yap et al.,
2017; Malandri, Fonzone,
and Cats, 2018; Consilvio
et al., 2020; Leng and Corman,
2020b; Rahimi and Corman,
2020; Müller, Leich, and
Nagel, 2020; Wang et al.,
2021b; Liang et al., 2019;
Kepaptsoglou and Karlaftis,
2009; Jin, Teo, and Odoni,
2016; Zhu and Goverde, 2019;
Lu and Lin, 2019; Xu and
Liang, 2020; Leng, Liao, and
Corman, 2020; Tang et al.,
2021b; Malandri et al., 2021;
Shao and Song, 2022; Tan
et al., 2023; Massobrio and
Cats, 2024; Chen et al., 2024;
Zhang et al., 2024b

Kopsidas and
Kepaptsoglou,
2022; Cebecauer
et al., 2021;
Drabicki, Islam,
and Szarata,
2021; Cong
et al., 2022; Jin,
Teo, and Odoni,
2016; Tang et al.,
2021b; Zhang
et al., 2023;
Shi et al., 2019;
Xing et al., 2017;
Zhang, Wang,
and Wang, 2018;
Yin et al., 2018;
Zhang et al.,
2018; Wang,
Yuan, and Yin,
2019

Kopsidas and Kepapt-
soglou, 2022; Ce-
becauer et al., 2021;
Drabicki, Islam, and
Szarata, 2021; Cong
et al., 2022; Jin, Teo,
and Odoni, 2016;
Tang et al., 2021b;
Zhang et al., 2023;
Shi et al., 2019; Xing
et al., 2017; Zhang,
Wang, and Wang,
2018; Yin et al., 2018;
Zhang et al., 2018;
Wang, Yuan, and Yin,
2019

Abdelgawad and
Abdulhai, 2010; Ari
Wibowo, Sulistyo,
and Mustika, 2019;
Azolin, Silva, and
Pinto, 2020; Marra
and Corman, 2020;
Tan et al., 2020;
Marra and Corman,
2023; Othman et
al., 2023; Liu, Ma,
and Koutsopou-
los, 2021; Zhu and
Goverde, 2019; Leng,
Liao, and Corman,
2020; Srikukenthi-
ran and Shalaby,
2017; Placido, 2017;
Dollevoet et al., 2018;
Dekker and Panja,
2021; Corman, 2020;
Miristice et al., 2023

TABLE 2.5: The disruption causes and their impacts investigated in the literature.

Disruption measurement

Traffic disruptions can lead to accidents and hazardous conditions that result in inefficiencies in the
transportation network and economic repercussions, including lost productivity, increased operational
costs for businesses and higher transportation costs. According to the existing publications, the typical
impacts on travel reliability are majorly reflected by:

• roads or links fully or partially closed or link capacity reduction,
• PT stations or trip production or attraction nodes fully or partially closed,
• change in travel demand or travel behaviour,
• transport performance or supply reduction.

In order to better compare the publications on disruption impacts, we summarised various impacts in
Table 2.5, where transport performance reduction refers to the impact that reduces the number of PT
runs or trips or PT vehicle travel speed reduction.

In terms of acquiring the impact on road networks, including the degrading of road links, net-
work nodes, demand and travel behaviour as well as the transport supply, assorted data processing
approaches are selected for measuring the impact of disasters on transport networks, the methods
include:

• simulation-based experimental approaches,
• survey,
• lab-based experimental approaches,
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• detected,
• field observations.
Various measurement methods capture multiple types of disruption impacts. As summarised in

Figure 2.13, simulation-based experimental approaches are commonly used in existing research stud-
ies. By using simulation-based approaches, roads or links that are fully or partially closed or link
capacity reduction and changes in travel demand or travel behaviour are mostly obtained as negative
impacts on PT networks. Data collected from detectors and field observations help capture the impact
on transport performance decay or supply reduction. Surveys are a robust method for collecting data
on demand changes in response to transport disruptions.

FIGURE 2.13: The Sankey Diagram of the measurement methods associated with
multi-modal PT disruption impacts.

Simulation-based experimental approaches The impact analysis using the transport simulation-
based models tends to simulate the change in network performance or the change of movement in
a post-disruption situation. The changes are treated as the impact of disruptions. The disruptions
are often described by hypothesis attacks that refer to link failure, PT station or node failure, change
of demand or travel behaviour or transport supply reduction, as summarised in Table 2.5. The use
of this experimental approach is mainly due to the lack of historical disruption or incident log data.
Since analytical results highly rely on the quality of both the transport modelling and the disruption
modelling, the way to prove the accuracy of modellings always challenges the researchers who apply
such an experiments-based approach. This type of modelling method can be categorised as discrete
or continuous by time or space and can be applied at the macroscopic (see Yang and An, 2021; Yang
et al., 2018; Tan et al., 2020; Henry, Furno, and El Faouzi, 2021; Yap and Cats, 2022; Liu, Zhu,
and Wang, 2021; Zhao et al., 2021; Zhao et al., 2023; Liang et al., 2019), mesoscopic (combined of
macroscopic and microscopic) (see Abdelgawad and Abdulhai, 2010; Sun et al., 2016), or microscopic
(see Leng and Corman, 2020b; Yap et al., 2022; Othman et al., 2023; Müller, Leich, and Nagel, 2020;
Liu, Ma, and Koutsopoulos, 2021; Wang et al., 2021b; Wang, Yuan, and Yin, 2019) levels.

Those research studies that rely on a discrete event model, such as D’Andrea and Marcelloni, 2017;
Consilvio et al., 2020; Tan et al., 2020; Drabicki, Islam, and Szarata, 2021; Soza-Parra, Tiznado-
Aitken, and Muñoz, 2023; Zhu and Goverde, 2019; Chen et al., 2024; Yin et al., 2018; Corman, 2020,
tend to simulate transport systems where changes occur at distinct points in time. These changes, or
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events, are discrete and represent significant occurrences that alter the state of the system. A con-
tinuous model, regardless of the event or state change at a certain time point, mimics the continual
change of system states following the natural time progression. The state of the system is described
by differential equations that are solved over continuous time intervals.

In macroscopic modelling methods, variables such as average speed, flow, and density are pri-
marily used to represent traffic conditions. Traffic is often modelled as a continuous flow rather than
focusing on individual vehicles or users. Conversely, microscopic modelling methods concentrate on
individual units, such as vehicles or users, and their specific trips. Mesoscopic modelling serves as a
hybrid approach, combining elements of both macroscopic and microscopic modelling. It may focus
on individual vehicles but aggregate their behaviour over larger segments. Among simulation models
used in existing publications, the microscopic modelling method is the most popular. There is much
mature commercial software that is able to simulate networks relatively accurately. The commonly
used simulation software mentioned in the literature is demonstrated inFigure 2.14.

FIGURE 2.14: The simulation software mentioned in the literature associated with
multi-modal PT disruption impacts.

A trip distribution simulation model can also be programmed by using C++ (see Wang, Jin, and
Sun, 2022), Python (see Yin et al., 2022) or Matlab (see Fang, Jiang, and Fei, 2020; Mahdavi, Bhouri,
and Scemama, 2020; Lu and Lin, 2019), based on the programmed testbed, a remove of the node or
blocked link can be applied to capture the impact on trip distribution or travel delay.

Using the simulation model, scenarios before and after a disruption can be simulated. By compar-
ing these changes, it is possible to uncover the impact of such disruptions. Malandri, Fonzone, and
Cats, 2018 compared the change in Passenger Volume Over Capacity (VOC) ratio before and after
an unplanned service segment disruption to analyse its evolving impact. Zhao et al., 2022 relied on
a model developed using commercial software (Aimsun) while providing a framework for testing the
impacts of various road section blockages on the changing traffic states, including delay, flow and den-
sity over the entire study area. Three types of experiments were considered to understand the impact
of disruption duration, scale, and the reaction of PT users under a disruption. Wetterberg, Ronchi, and
Wahlqvist, 2021 applied the VR simulation developed by the game engine Unity3D when capturing
the impact of fire smoke on driving behaviour reflected in vehicle speed. The agent-based simula-
tor named BusMezzo was adopted by Malandri et al., 2021 when modelling trajectory for individual
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travellers and effects of traffic disruption reflected by link capacity decrease.

Survey Some research studies investigate the impact through transport surveys, where assumed dis-
asters and their potential impacts, such as post-accident scenarios, road closures, or PT delays, are
included. This approach allows interviewees to demonstrate their decision-making in response to spe-
cific impacts. By doing so, we can estimate changes in demand or travel behaviour resulting from the
disruption for relevant research. Generally, the data collected by a transport survey targets individual
opinions, which helps obtain information for building microscopic models. In existing research stud-
ies, surveys have been used to collect performance data in areas including Australia, China, France,
Sweden, the United Kingdom and the United States, as shown in Figure 2.15.

© Australian Bureau of Statistics, GeoNames, Microsoft, Navinfo, Open Places, OpenStreetMap, TomTom, Zenrin
Powered by Bing

1 3Number of publications

FIGURE 2.15: The distribution of the geographical source where surveys are conducted
for obtaining demand change.

Cox, Prager, and Rose, 2011 studied the decrease in journeys following subway and bus bombings
in London, particularly due to partial or full station closures. Approximately 22.7 million passenger
journeys were reduced, with about 9 million attributed to station closures and the remaining 13.6
million attributed to fear factors.

Papangelis et al., 2013 conducted 52 interviews in rural areas of Scotland and England to explore
passenger preferences regarding route and mode choice during disruptions, aiding demand estimation
under such conditions. The disruptions considered in the survey included accidents reducing link
capacity, bus delays, heavy winds reducing link capacity, and congestion.

Cottrill et al., 2017 investigated the impact of the 2014 Commonwealth Games in Glasgow on
transport control and interviewed and explored the role of social media, such as Twitter, in managing
travel behaviour.

Saxena, Hossein Rashidi, and Auld, 2019 conducted interviews in Chicago to understand attitudes
toward alternatives in response to delayed or cancelled transit services. The alternatives considered
included waiting for the same transit service, ride-sharing (e.g., Uber or Lyft), taking a taxi, getting
picked up by family or friends, changing the destination, and cancelling the trip.

Nguyen Phuoc et al., 2018 investigated the likelihood of mode shifts resulting from service can-
cellations during a strike in Melbourne, Australia, through survey-based research. The study found
that during such disruptions, 39.4% of train users would shift to driving a car, approximately 40%
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would switch to other public transport modes (tram and bus), and 6.6% indicated they would cancel
their trips altogether.

Auld et al., 2020 ran a survey to obtain responses about the change in travel behaviour against ser-
vice disruptions in the Chicago metropolitan area. The results showed that travellers intend to maintain
using the transport mode, either waiting for service recovery or bridging shuttles (the alternative shut-
tles provided for journey recovery); fewer travellers would turn to another available transport mode,
such as taxis.

Hasiak, 2023 analysed changes in student travel behaviour in France due to the pandemic, using
data from 13 household travel surveys.

Böcker et al., 2023 conducted interviews with the public in three Nordic cities, Oslo, Bergen and
Stockholm, comparing surveys from 2020 (N=2,718) to 2018 (N=3,523). The study found a signifi-
cant mode shift from public transport to private cars post-pandemic, leading to a demand adjustment
for future transport modelling.

Du et al., 2024 conducted a survey of 1,045 residents in NSW, Australia, between October 2021
and May 2022 to understand changes in travel behaviours due to the pandemic. The results identi-
fied factors influencing travellers’ choices regarding travel mode, travel purpose, and acceptance of
emerging mobilities such as on-demand transport, autonomous vehicles and drones.

He, Tao, and Sun, 2024 collected questionnaire surveys from late June to early July 2020 to inves-
tigate the disruptive effects of Hong Kong social movements on a transit system.

Lab-based experimental approaches The lab-based experimental approaches literally refer to the
method of conducting physical experiments aiming to build the disruptions in the laboratory and anal-
yse the actual impacts. Due to the limited lab capacity, experiments can only capture the impact of an
individual vehicle due to an incident, which means that this method can hardly be applied to uncover
the impact on transport networks. Liu et al., 2022a focused on the impact between car and e-bike
crashes, and the experiments-based impact data was fitted to a multiple linear regression model.

Detected or field observation-based approaches Detectors
Under this category, and besides the infrastructure-based detectors, the sensor installed inside a

vehicle should also be contained; such techniques are employed to capture travel speed, including
acceleration or deceleration, location and travel or driving environment, including vehicle tempera-
ture, on-road obstacles or potential transport hazards Rettore et al., 2019. The typical technologies
used as in-vehicle sensors include global positioning system (GPS) and Bluetooth (see SUWANNO
et al., 2021), where the information captured can be utilised to illustrate travel trajectories that image
the travel reliability from the individual vehicle point of view. Zhang et al., 2022 used a Gaussian
Mixture Model (GMM) on headway deviations captured by AVL data to identify clusters of abnormal
headways. The minimum probability of an observation falling into the abnormal cluster was used to
classify it as disrupted.

The General Transit Feed Specification (GTFS) is a common standard format for PT schedules and
associated geographic information. GTFS is divided into two main parts: GTFS Schedule and GTFS
Real-time. GTFS Schedule includes information about routes, schedules, fares, and geographic transit
details. GTFS Real-time provides trip updates, vehicle positions and service alerts. This data is widely
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used in PT modelling for disruption identification and impact measurement reflected by demand; see
Aparicio, Arsenio, and Henriques, 2021; Soza-Parra, Tiznado-Aitken, and Muñoz, 2023; Zhao et al.,
2023. Research conducted by He et al., 2021; Soza-Parra, Tiznado-Aitken, and Muñoz, 2023; Yap and
Cats, 2021; Zhang et al., 2022; Massobrio and Cats, 2024; Srikukenthiran and Shalaby, 2017 focused
on the change in PT performance reflected by headway or PT reliability.

Regarding PT usage and individual trip trajectories, smartcard data is essential as it captures pas-
senger volumes and travel behaviour. These datasets illustrate the trajectories of PT users and the
demand for specific transport modes. This information helps infer the impact of disruptions on pas-
senger flow and network behaviour. Research by Zhao et al., 2023; Sun et al., 2016; Liu, Ma, and
Koutsopoulos, 2021 focused on changes in passenger flow, while Yap et al., 2017; Mo, Koutsopoulos,
and Zhao, 2022; Eltved et al., 2021 examined travel behaviour and decision-making related to mode
changes. Sun et al., 2016 investigated the change of station choice based on smartcard data and found
that under two selected incidents, the detour probability for passengers who chose the neighbouring
station was about 13.5% and 11.5%, respectively.

Rusmawati and Rismala, 2016 collected text data from the official Twitter account of the commuter
line to identify disruption categories, dates, days, times, locations, number of affected trains, directions
(bound for), and positions where the disruptions occurred.

Field observation
Field observation includes the actual in-person examination of the impacted area and recording

the features of the area to construct an impact description or record reported to the authorities (see
Challender, 2016; Ansari, Rao, and Jain, 2024; Lu, Ma, and Xing, 2021; Tokuda et al., 2006; Zhang
et al., 2016).

The data known as an incident log is one typical authority-provided data, where it includes not
only the details related to the incident, such as start and end time, duration, location or incident types
or reasons but also the scale of the incident embodied by the number of impacted section lanes. Louie,
Shalaby, and Habib, 2017 investigated the probability of subway delay based on the incident log data
from Toronto’s subway system for the year 2013. Lu, 2018 investigated 167 operational incidents that
were reported in the metro system in Shanghai, China. Diab, Feng, and Shalaby, 2018 investigated
924 streetcar and 144 subway incidents in Toronto, causing daily delays of 216.7 and 34.4 minutes,
respectively. Wen et al., 2018; Grigorev et al., 2022b trained an ML-based incident prediction model
based on historical incident log data. Liu, Zhu, and Wang, 2021 investigated 408 incident records
in the metro in order to capture the major causes and impacts of metro disruption on passenger flow
change. Mo, Koutsopoulos, and Zhao, 2022 measured the change of mode and route choice of metro
passengers under incident based on the record in incident log data. Yin et al., 2022 gathered field data
that recorded all the disruption events in the Beijing Metro network from 2013 to 2018 and proposed
a probability graph-based Bayesian Network (BN) model to predict the disruption.

2.2.3 Disruption modelling methodology

Traffic disruptions impact the performance of road networks, which directly disturbs mobility, city
productivity and the growth of the economy. Such consequences have attracted increasing attention
and brought learning from observation of previous traffic disruptions, in particular, to uncover the
details of transport networks and passenger movement subjected to the traffic disruptions. Apart from
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observation data, the accuracy of modelling disruption heavily depends on the development of the
transport network representation and the transport network modelling approaches, as the estimated
impact of a modelled disruption is calculated according to the mathematical relationship between
entities involving modelling a transport network. In previous section 2.2.2, we summarise the common
methods of collecting impact data; in this section, we extend the topic and provide a summary of
modelling methods that are commonly employed for impact quantification.

Based on the literature, the commonly used disruption modelling approaches include analytical
approaches, probability-based approaches, regression analysis approaches and ML-based approaches.
The applications of the mentioned network and disruption modelling approaches are summarised in
Figure 2.16. Based on the figure, a majority of research studies rely on a simulation method, followed
by initial stage regression and ML algorithms.

FIGURE 2.16: The type of disruption modelling methods involved in the existing
literature.

Analytical modelling approaches

The analytical-based modelling method refers to the methods that rely on scenario experiments, where
various disruptions are applied to the network with a given network model, and the change in flow or
traffic mobility on the network is the impact of such disruption. The disruptions are hypothesised in
time, location and duration according to incident log data or experiences, where these three elements,
time, location and duration, are the disruption features that define a type of disruption. The hypothesis
demonstrates the impacts described in subsection 2.2.2. Therefore, with the change of disruption time
or location or the increase in duration, we are able to analyse the relationship between different types
of disruptions and their impacts on modelled networks. The analytical approach suits any type of
network model, even if it is not a comprehensive simulation model.

Cost matrix
Modelling a disruption based on a travel cost matrix is a typical example. The cost matrix is

filled with variables that change along with the adjustment of other variables. This approach offers a
means to observe the discrete changes in the transport system performance before and after a traffic
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disruption or before and after a disruption intervention management. The cost matrix method does
not require establishing the network representation or flow representation; all it needs is the costs
at nodes or links according to the logical relationship within a transport system. Typical elements
of the cost estimation include travel time, travel distance, the charge for travelling, delay, transfer
time, transfer distance, walking time, walking distance and so on. Bell et al., 2017 found a capacity-
weighted adjacency matrix representation of a graph by considering the Laplacian matrix. The use
of the Laplacian matrix was able to abstract the networks’ structure properties while exposing the
network performance on node connectivity. A hypothesised reduction of link capacity captured the
road section vulnerability. Khadilkar, 2017 developed a delay probability vector based on observed
delay data. Azolin, Silva, and Pinto, 2020 discussed the impact of disruptions on travel demand and
bus service reliability by assuming the impact distance for each bus route using a region-based matrix.
Aparicio, Arsenio, and Henriques, 2021 compared the demand matrix before and after a disruption
to capture the change in travel patterns. Garcia-Arteaga and Lotero, 2023 proposed a directed graph
to represent travel patterns before and after the pandemic lockdown for a Bus Rapid Transit system
in Bogotá. Zhu et al., 2022 converted the nationwide railway network and flooding depth into cost
matrix layers and matched these layers to capture the impact of floods using a failure threshold based
on flood depth.

Graph theory
The cost matrix is an application in graph theory to demonstrate the travel cost against locations.

More detailed analytical transport models utilising graph theories at their cores tend to include the
entire network. The graph theory-based modelling approach abstracts the topology of a network and
makes use of the topological properties and indicators to represent the performance of the transport
system. In a traditional graph theory-based model, transport networks are described by nodes and
edges, where nodes are used to represent intersections, residential centres, business centres, PT stations
or terminals for freight transport, while edges are used to represent the connections between nodes.
The usage and capacity of the transport system are represented by weights on nodes or links. Since the
components of a theory-based model are nodes and links, the removal of the nodes or links can simply
simulate the disruptions on those nodes or links (see Yang et al., 2018; Massobrio and Cats, 2024; Shi
et al., 2019; Xing et al., 2017; Zhang et al., 2018; Jiang, Lu, and Peng, 2018). Most of the previous
transport network statistical analyses that aimed to identify the vulnerable links or nodes also highly
relied on this theory-based modelling approach. Apart from node or link failure (removal), a reduction
of link capacity can be one impact of disruption. Shelat and Cats, 2017 proposed that a disrupted link
results in a reduction of link load due to infeasible interchanges and simulated the disruption scenarios
by using an L-space graph.

Among the studies of disruption impact considering graph theory, some models are built dynam-
ically to display the cascade effect of a disruption in the network. This concept depends on the node
capacity, where a failure of a node results in a flow re-assign to its adjacent nodes; the extra flow would
further result in excess capacity at the adjacency, which, in this way, the node failure is spread in the
network. This model is known as the load-capacity model: the failure of a node resulted in an increase
in load (see Chen et al., 2021). In research studies of Cao and Cao, 2020 and Wang et al., 2021a, the
node failure was simulated by the removal of nodes either randomly or intentionally to demonstrate
the random attack and malicious network attacks. A similar modelling method was adopted by Tang
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et al., 2021a; Xing et al., 2017; Zhang, Wang, and Wang, 2018 and Zhang and Ng, 2021, but they
only simulated the random attack on a network. In a study of Cumelles, Lordan, and Sallan, 2021, the
failed node was set by reducing the node capacity to zero.

The impact of transfer capacity between rail and bus services on cascade failure in a network was
estimated by Liu et al., 2022b. In research of Liu et al., 2022b, the failure of nodes was simulated by
limiting the access to rails or buses, while the cascade failure was triggered by passengers transferring
to another means of transport in the multi-modal PT network. Such cascade failure of disruption by
relative time is fundamental to dynamic impact modelling that is absolute time-dependent. Rather
than completely removing a node from the network, reducing a node’s capacity also negatively af-
fects network robustness. This was demonstrated by Yang and An, 2021, who investigated the impact
of node capacity on network failure. Corman, 2020 simulated a train delay spread within the net-
work. Yang, Dong, and Guo, 2023 modelled the flood-triggered cascading failure of a metro system
in Zhengzhou, China. The model used a graph where each node was weighted by the probability of
impact, identifying the vulnerable nodes in the metro network against flooding. Zhang et al., 2023
investigated the bus network vulnerability towards stop failures.

The reduction of network links’ capacity is also a reason for traffic disruption. Nguyen Phuoc
et al., 2018 applied the four-step transport model within the Cube software platform to compare trip
assignments before and after service cancellations due to disruptions, capturing how these disruptions
influenced changes in travel patterns. In a study of Ma et al., 2021, a train delay model against time and
space was created by considering the max-plus algebra theory, where train disruptions were modelled
by a hypothesised reduction of transport capacity or train speed.

On the other hand, the failure of the network is also in relation to unexpected flow.Shen, Ren,
and Ran, 2019 played with extra flow as the perturbation in the cascading failure model to mimic and
investigate the cascading failure spread in a metro network.

Other analytical model
Research studies conducted by Zhao et al., 2022; Moylan, Foti, and Skabardonis, 2016; Jia, Zhang,

and Shi, 2020 focused on data-driven analysis and compared the traffic states before and after the
disruption to visualise the impact. Liu, Ma, and Koutsopoulos, 2021 investigated the impact of a
metro incident by examining demand changes, passenger accumulation at stations, and travel delays
using smartcard and metro AVL data. The impact was demonstrated by a Time Series model. Zhao
et al., 2023 using smartcard estimated in-vehicle passenger numbers to capture the impact of bus
breakdown on travel behaviour change. The author relied on a Fourier transform method to model
the PT travel patterns before and after an incident. Yap et al., 2017 proposed an optimisation model,
Transfer Inference Algorithm, with the objective of minimising travel time to capture the mode shift
under disruption.

Probability-based approach

The probability-based approach applies stochastic variables that describe the event processes or phe-
nomena that appear to vary randomly. This approach is commonly found in quantitative data analysis
where the events or processes, such as the disruption occurrence time or location, are required to be
defined by probability distributions. Rusmawati and Rismala, 2016 utilised the Bayesian Network to
explore the disruption probability based on train incident log data. Louie, Shalaby, and Habib, 2017
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developed an accelerated failure time (AFT) hazard model to describe the relationship between vari-
ous factors and the resulting delay duration, using incident log data from the Toronto subway system
for the year 2013. Saxena, Hossein Rashidi, and Auld, 2019 conducted a survey to explore alternatives
during public transport disruptions and generated probabilities for each alternative choice calculated
using an Error Component Logit (ECL) model. Zhu et al., 2019 focused on the capacity loss of links
due to Hurricane Sandy in New York and created a Monte Carlo model to model the impact. Yap and
Cats, 2019 explored a 13-month metro incident log data and identified the probability of each disrup-
tion type per station and per time period. In a research study of Dong et al., 2020, the likelihood of
node failure was estimated by the Bayes rule, where the failure of a node is assumed to be in relation
to the node (intersection) location, flood states, rainfall level and weather.

Wu et al., 2021 described the probability of node failure that was related to a probability of direct
failure and cascading failure. Direct failure refers to the actual node failure. The probability of a
direct failure was obtained by the historical incident log, while the cascading failure was the failure
on sub-nodes passed from the initial directed failed node. The probability of failure for each sub-node
is equal, and following this, the static failure cascading can be obtained. Liu, Zhu, and Wang, 2021
introduced a weighted-directed graph to represent regional changes in public transport passenger flow
during metro disruptions. For each region (represented by node), the annual number of incidents, the
likelihood of incidents occurring on different lines, the occurrence time and the recovery time were
calculated based on historical incident data. A Monte Carlo approach and the fitted incident parameter
functions were then used to generate stochastically simulated incident events. Rather than fit incident
data to certain distribution functions, Mo, Koutsopoulos, and Zhao, 2022 compared travel patterns on
normal days versus incident days and proposed a trip cancellation probability to represent the impact
of a metro disruption.

Other research begins by assuming a disruption and then uses a probability-based approach to
assess its impact. Sun et al., 2016 employed the Bayesian detection method to determine the number
of affected PT users and to calculate the probability of passengers choosing to go to a neighbouring
station during a disruption based on smartcard data. After processing this data, both pre-disruption
and post-disruption scenarios were examined using a simulation model to demonstrate changes in
travel reliability. Similarly, Zhao et al., 2021 proposed a demand change ratio based on smartcard
data to represent the impact of unplanned events on passenger demand. Cong et al., 2022 employed
a logit model to determine the travel behaviour of affected PT users. Yang et al., 2018 estimated
the probability of occurrence of a tropical cyclone in Hainan, China, based on the criticality index.
Similarly, Yap and Cats, 2022 considered a criticality assessment reflected by passenger betweenness
centrality (PBC) to measure the probability of disruption in a multi-modal PT environment.

Regression analysis approach

Owing to causation variables, using the regression analysis approach is able to estimate the relationship
between predicted and targeted variables. In transport disruption modelling, this approach is able to
describe and predict the severity or impact of disruptions based on the historical disruption data,
including the influence factors in relation to the driver, vehicle, road infrastructure and environment
(see Zhu et al., 2019; Lovreglio et al., 2020; Yang, Zhang, and Feng, 2022; Tang et al., 2020) or the
exposure or frequency of the disruption according to the observed transport states data (see Zhu et al.,
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2019; Yap and Cats, 2021). Zhao et al., 2021 presented empirical findings demonstrating that event
delays are positively correlated with the variability of passenger demand based on extensive smartcard
data. Yang et al., 2018 employed a linear regression model to describe the change in bus travel speed
due to a subway disruption. Borowski et al., 2023 applied a three-level regression model to define
the change in the disrupted ridership over the baseline as the impact of disruption on demand. He,
Tao, and Sun, 2024 collected attitudes toward a mode of transport confronting a social event using
questionnaire surveys and proposed a regression model to describe the relationship between decision-
making on travel mode and social events to show the potential demand change due to a social event.

Machine learning approaches

Due to the abundance of big transport data, data-driven analysis is shifting from conventional statistical
models to ML and deep learning algorithms, which can be automatically enhanced based on training
data. The statistical models, such as the regression analysis, are preferable in less complex analyses
with limited historical data compared to other ML algorithms. Commonly used ML and deep learning
algorithms include:

• Random forest (RF) (see Yang, Zhang, and Feng, 2022; Yap and Cats, 2021; Zhao et al., 2021;
Tang et al., 2020),

• Dynamic Bayesian network (DBN) (see Wen et al., 2018),
• Back propagation neural network (BPNN) model (see Tang et al., 2020),
• Gradient-boosting decision trees (GBDTs) (see Zhao et al., 2021),
• K-Nearest neighbours (KNN) (see Yap and Cats, 2021; Tang et al., 2020),
• Long short-term memory (LSTM) (see Zhao et al., 2021),
• Multilayer perceptron (MLP) (see Yap and Cats, 2021),
• Support vector machine (SVM) model (see Yang, Zhang, and Feng, 2022; Tang et al., 2020),
• Single-task deep neural network (Single-Task DNN) (see Yang, Zhang, and Feng, 2022),
• Multi-task deep neural network (Multi-Task DNN) (see Yang, Zhang, and Feng, 2022),
• Spatial-temporal Density-Based Spatial Clustering of Applications with Noise (ST-DBSCAN)

(see Marra and Corman, 2020),
• Spatial-Temporal Graph Convolutional Network (STGCN) (see Othman et al., 2023).
Proven by previous research studies, the ML-based disruption modelling approach has superior

performance to statistical analysis (see Yap and Cats, 2021; Tang et al., 2020). Yap and Cats, 2021
collected PT disruption data containing start time, location and line of disruption occurrence to predict
exposure to different disruptions at stations during each time period by two ML algorithms: logistic
regression and a Multilayer Perceptron (MLP) classifier. The research study by Yap and Cats, 2021
summarised a framework for analysing the disruption data for predicting the disruptions occurrence
and their impacts that have been applied in the majority of related works, where
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• predicting disruption exposure by using the supervised ML algorithms, such as logistic regres-
sion and MLP, to build the relationship between all available influence factors (such as time of
day, day of the week, season, metro lines passing a station, the terminal station, transfer station,
passenger volume per station, metro frequency, etc.) and the probability of each disruption type
per metro station and per period of time;

• predicting disruption impact by using the supervised ML algorithms, such as the regression,
KNN, RF and MLP, to establish the relationship between the available influence factors and the
disruption impact subjected to passenger delay per disruption type, per metro station and per
period of time;

• establishing a station criticality cluster by using unsupervised ML algorithms, such as hierar-
chical agglomerative clustering, to develop the relationship between expected annual station
criticality per disruption type and period of time and the station clusters.

Zhao et al., 2021 employed the Synthetic Minority Over-sampling Technique (SMOTE) to gen-
erate additional observations of disruption events, suitable for machine-learning analysis (RF, GBDT
and LSTM algorithms) when predicting the relationship between demand changes and disruption oc-
currences. Apart from the commonly used ML algorithms, Aparicio, Arsenio, and Henriques, 2021
proposed a discriminative pattern mining algorithm to explore changing urban mobility dynamics
before and after the pandemic situation.

Earlier applications of the ML approaches for flood impact were summarised in the review article
by Munawar, Hammad, and Waller, 2021.

The major problem when estimating by ML algorithms comes with the data. The quantity and
quality of the data limit the quality of the model training and testing, and the quality of data processing
or cleansing also similarly impacts the modelling.

2.2.4 Disruption management

Traffic disruptions in transport networks heavily reduce travel reliability and degrade the "image" of
the transport system. These negative impacts are unfortunately unavoidable in practice, so the idea
of disruption management was born together with the expectation of achieving a more effective, reli-
able, comfortable and safer travelling environment. The impact management approaches vary widely
against the reason for disruptions, which covers rescheduling, rolling stock management, rerouting,
signal control methods and bridging transport in order to provide more travelling capacity, as sum-
marised in Table 2.6. By plotting the publications over time, as shown in Figure 2.17, we observe that
2021 to 2022 marks the peak of publishing activity. During this period, more research studies focused
on bridging transport, with bus bridging for metro trip recovery being the most frequently mentioned.

Rescheduling

In terms of scheduled PT services, such as buses, trains, trams or metros, the most commonly used
service control strategy is rescheduling. This method includes three types of implementation:

• tactical scheduling, which is the published planned timetable that is followed by the operators;
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FIGURE 2.17: Time series of various disruption management approaches proposed in
the literature.

• operational scheduling, which is used for temporary or auxiliary services for congestion miti-
gating;

• rescheduling, which is used when emergencies or disruptions occur, and further remedy is ex-
pected.

The objective function required by the rescheduling approach often aims to minimise the travel delay
and time needed to schedule or dispatch. The existing body of disruption management for railway
networks has provided many comprehensive studies in relation to the rescheduling approach. Recent
evidence provided by Veelenturf et al., 2016 applied the integer linear programming model to resched-
ule the train services that were blocked on one or all tracks within the study area for up to two hours.
This research took large-scale disruption (full track block) into account and verified the feasibility of
the method by conducting scenario-based experiments. Following the concept of cost minimising,
Yang et al., 2019 developed a new approach that also took the energy cost and delay disturbances into
account when rescheduling metro services.

Rolling stock

The other major management approach that is commonly seen in rail networks is rolling stock. Since
the crews are coming with the vehicles, the rolling stock method is sometimes combined with the crew
scheduling. Therefore, the cost of work, as well as the cost of labour on the rolling stock approach, tend
to be less attractive than the simple, practical and economic rescheduling approach. A comprehensive
research study on rolling stock has been undertaken by Wang et al., 2021b with a full review on the
subject of rolling stock planning, scheduling and also application.

Rerouting

The methods of rerouting stem from the trip assignment approach, where the ideal trip assignment
should maintain minimum travel cost, which requires all assigned trips to have the minimised travel
cost. Compared with the trip assignment in a normal situation, the impact on road capacity should be
considered in the scenario when traffic disruption occurs. The idea of rerouting should be subjected
to the total travel time and the maintenance of travel purposes, as in practice, passengers need to
reach their destination as fast as possible. Dobler and Nagel, 2016 proposed a method of within-day
re-planning for simulating trip reassignment processes based on the information of traffic disruption.



56 Chapter 2. Literature review

TABLE 2.6: Various disruption management approaches involved in the literature

Management ap-
proaches

References

Rescheduling Yap et al., 2017; Yap et al., 2022; Wang et al., 2021b; Leng, Liao,
and Corman, 2020; Zhang et al., 2024b; Placido, 2017; Corman,
2020; Meng and Zhou, 2011; Zhan et al., 2015; Veelenturf et al.,
2016; Ghaemi, Cats, and Goverde, 2017; Li et al., 2021

Rolling stock He et al., 2021; Zhang et al., 2022; Wang et al., 2021b; Leng,
Liao, and Corman, 2020; Dekker and Panja, 2021; Veelenturf et
al., 2016; Nielsen, 2011; Melo et al., 2011; Cadarso, Marín, and
Maróti, 2013; Schipper and Gerrits, 2018

Rerouting Leng, Liao, and Corman, 2020; Veelenturf et al., 2016; Luo and
Xu, 2021

Signal control Qi, Zhou, and Luan, 2018; Mihăiţă, Dupont, and Camargo, 2018;
Mao et al., 2021

Bridging transports Diab, Feng, and Shalaby, 2018; Tan et al., 2020; Zhang et al.,
2024a; Liu, Ma, and Koutsopoulos, 2021; Liang et al., 2019;
Kepaptsoglou and Karlaftis, 2009; Jin, Teo, and Odoni, 2016; Xu
and Liang, 2020; Tang et al., 2021b; Shao and Song, 2022; Tan
et al., 2023; Chen et al., 2024; Yin et al., 2018; Wang, Yuan, and
Yin, 2019; Wang, Jin, and Sun, 2022; Luo and Xu, 2021; He et al.,
2019

The transport system was modelled by an agent-based model in MATSim, and the trip assignment
was calculated once to simulate the reaction of passengers against a current incident event. A similar
application of this rerouting control has been found in the research study by Rahimi and Corman,
2020, who proves its effectiveness on journey recovery and reduction of total delay by re-planning the
trips in a multi-modal PT network. <empty citation> considered both the pre-disruption and post-
disruption processes and proposed a rerouting model based on iterative trip reassignment optimisation
against the impacted trips, non-impacted trips and time of clearance in rerouting.

Signal control

Signal control plays a vital role in balancing the flow and capacity of the intersection by modifying
the timing plans. This method is often required to be used as the real-time approach that is able to ad-
just the timing by real-time traffic states or temporarily nearby incidents. Similar to the rescheduling
approach, the signal control also belongs to the stochastic optimisation-based approach that is sub-
jected to minimising the variables such as travel cost, travel time, delay or length of the queue. The
signal control has limited ability to adjust traffic density because of the limited buffer time available
to be used in the timing plan, while an overlong buffer time would decrease the intersection capacity.
Therefore, such a control approach is often used for preventing congestion and will assist in releasing
crowding. With the development of telecommunications for storing, retrieving and sending informa-
tion, real-time signal control has been encompassed by transport control.
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Bridging transport

Bridging transport is often used as a response plan after long-lasting railway disruptions when there
is a need to reconnect the origin and destination train stations with an alternative, which normally
refers to the buses. In common practice, bus bridging is a pre-defined response strategy consider-
ing the disruption location, duration, number of impacted trips, available bridging buses or shuttles,
available labourers and road conditions when designing the bus bridging plan that maintains the mini-
mum travelling cost for both operators and passengers. The general framework of a bus bridging plan
includes:

• Step 0. Initialise the network and identify the impacted paths and train stations.
• Step 1. Generate the candidate set of bus bridging routes and service frequencies.
• Step 2. Calculate the expected total travel cost and unsatisfied travel demand of the candidate

routes.
• Step 3. Identify the best bus bridging route and alternative bus bridging routes.
• Step 4. Evaluate the best route following the four-step travel model.
• Step 5. Update the total travel cost and unsatisfied travel demand as the control performance.
• Step 6. If the control performance satisfies the pre-defined criteria, then stop; otherwise, select

the best route from the set of alternatives from Step 3, then go to Step 4.
Among publications on disruption response plans, many focus on bus bridging. Some research

studies have worked on scheduling feeder buses using optimisation procedures, such as the column
generation solution (see Liang et al., 2019; Jin, Teo, and Odoni, 2016; Xu and Liang, 2020; Shao and
Song, 2022; He et al., 2019). Alternative travelling routes for bus-disrupted commuters are generated
using a multi-modal k-shortest path model (see Luo and Xu, 2021), and heuristic algorithms have
been used to investigate response plans (see Tan et al., 2020). Earlier contributions regarding the bus
bridging approach were summarised in a review article by Zhang et al., 2020.

2.2.5 Discussion and future directions

Findings on disruption causes and impacts measurement

In subsection 2.2.2, an overview of the disruption causes and the methods of measuring their impact
have been presented. Based on the related publications, the causes of traffic disruptions can be divided
into two major categories, namely natural disasters and human-related failures. Both of them can result
in the disruption of travelling by obstructing or damaging the access. For most of the disruptions due
to natural disasters, the costs of the impact are often more than that of the man-made incident. The
cost of travel disruption typically includes the impacts on travel efficiency, society or the economy.

Disasters occur unpredictably, resulting in limited cases for study. Numerous publications have
shown that floods and storms are more frequent worldwide, leading to more research on these topics.
Such disasters primarily affect road function and infrastructure, with studies often focusing on the
impact on link or node capacity from a network perspective. Reviews indicate that research on cars
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has garnered more attention than public transport, with more causes related to natural disasters and
transport disruptions, such as fires or sea level rise, being discussed. However, there is no literature
addressing the impact of fires or sea level rise on public transport. Apart from the causes, the impact on
car function was also discussed. For example, research conducted by Pregnolato et al., 2017 explored
the travel speed reduction in relation to the depth of flood. However, there is a lack of research on the
impact of such factors on PT travel speed.

Some works have measured the disruption impacts on road networks by using data-driven ap-
proaches, but those research studies tended to assume that the impacts followed a uniform distribution
or the impacts were maintained static. Some research has studied the impact of car travel speed re-
duction and identified a bathtub model, which divides the impact into three stages: the starting phase,
requiring a transition plan; the disruption phase, where travel is impacted; and the end phase, where a
recovery plan helps restore the network to normal. Such analysis methods have been applied to railway
networks, as discussed in the review by Ghaemi, Cats, and Goverde, 2017. This detailed disruption
modelling approach has the potential to be applied to other networks as well.

The previous research studies have captured mostly the impact propagation from the space point of
view; few of them modelled the change of impacts in time. There is little published data on large-scale
disruptions due to natural disaster events, and the relevant quantitative analysis of the disruptions is
mostly based on traffic state data, such as travel speed and traffic flow, for a single network. There is
a lack of analysis and comparison of the impact of a single disruption on a single network, a single
disruption on multiple networks, multiple disruptions of different networks on multiple networks,
etc. There is still a gap when it comes to the clear categorisation of the impact of disruptions on PT
networks with regard to time and space.

Furthermore, existing research has not extensively explored the impact of disruption on different
modes of PT. This area presents a potential direction for future research, particularly regarding transfer
inference. Some research has considered the idea of transferring from rail to road transport during
disruptions, mainly focusing on metro-to-bus transfers. More solutions could be included, such as
shared bicycles, e-bicycles, e-scooters, cars, or other on-demand private or public transport options.

Over time, research on the impact of disruptions on PT has shifted from changes in the network
reliability or supply to passenger demand and travel patterns. Particularly due to the pandemic, con-
cerns about health impacts have influenced mode or route choices, highlighting the need to explore
short-term adjustments in transport supply, and the power of lead by propaganda in order to leverage
the PT infrastructure wisely.

Apart from disruption impact identification, according to previous studies, the definition of small
and large-scale disruption is still vague. Some research studies referred to the closures of multiple
roads as a large-scale disruption. Others define large-scale disruption as a disruption that lasts for
a long time and impacts traffic for a long time. These nebulous definitions raise a concern when it
comes to qualifying the disruptions by their temporal and/or spatial impacts. Much of the research
up till now has not been able to draw on any systematic research into establishing the comprehensive
causation or correlation between various causes and their consequence under large-scale disruptions.
A large-scale disruption can be one that impacts a large area, multiple links or nodes; it can also be
one that lasts for many hours; it can also be one that a large number of passengers, a large number of
vehicles, properties or other fixed objects is affected by; the consequences of the impact on society
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and economy can be used as the criteria; the recovery time and cost or the recoverable damage to the
transport network can also be considered as the standards. The work of defining disruptions assists in
the categorisation of the events and saves effort when selecting a proper response plan accordingly.

Findings on disruption modelling methodology

So far, network modelling and disruption modelling have more capability in imitating real-world trav-
elling and transport processes. Assisted by advanced information and computing technologies, the task
of modelling has been led by simulation and data-driven methods. Multiple computer-aid software
tools have also become accessible to mitigate the workload on data processing and modelling. The
development of the network modelling approach failed to encourage disruption modelling as most of
the disruption modelling was limited by a node or link removal based on the graph theory. There were
empirical evidence-based initiatives on treating disruption modelling as a process consisting of three
phases: pre-disruption, disruption, and post-disruption. The impact before and after the occurrence
of the disruption also matters. Moreover, the propagation of the disruption has only been achieved
based on the concept of failure cascading, and there is still a gap in propagation estimation with the
consideration of traffic and movement states in the network.

Both the objectives and methods used for network modelling depend on the type and quality of
the available data. Due to limitations in data quality and quantity, most disruption modelling in the
literature focuses on a single transport mode network. Furthermore, constraints in modelling and pro-
gramming methods often prevent multi-modal network-based disruption modelling from effectively
combining the impacts on road and public transport networks. This is particularly true for networks
isolated to specific modes, such as train or metro systems. However, for bus networks that share links
with general traffic, the impact between cars and buses can be more easily considered.

Some studies, such as those reviewed by Pregnolato et al., 2017; Jarmuz and Chmiel, 2020), use
time-dependent travel speed to identify impacts, a method often applied to car disruptions. Conversely,
Zhao et al., 2023 found that disruptions reflected in smartcard data are less apparent. This research fo-
cuses on modelling public transport patronage patterns by analysing changes in swipe data to identify
reductions in counts due to disruptions. In modelling disruption impacts, data quality and quantity are
crucial. However, if a public transport network is designed to resist disruption propagation, how does
this affect the analysis? For research studies focusing on network vulnerability or resilience, a promis-
ing future direction could be to evaluate how robust the network remains even during disruptions.

Current literature shows that network modelling has been addressed according to a variety of con-
cepts or theories, such as the concept of cost matrix, graph theory, probability theory, concept of
optimisation, simulation or the concept of data-driven analysis. The modelling approaches derived
from the above ideas have a growing ability to illustrate reality as increasing numbers and levels of
detail have been able to be considered in a model. However, this development in network modelling
disregarded the modelling of network disruptions. The vast majority of the work on disruption mod-
elling has been limited to instant nodes or link removal when modelling rather than following the fact
of temporally and spatially gradual changes in impacts. A few studies simply considered the scenario-
based approach to uncover the change in disruption impact in time or space. These scenario-based
experiments provided a good foundation when it comes to understanding the impact of change in time
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and space, but the reliability of the result highly depends on the quality of modelling and how the
network is built.

Assuming that the disruption results in road closures for a period of time, the trip reassignment
to the network that follows the disruption is the most commonly used method when examining the
temporal and spatial difference in disruption impact on network performance. Such a scenario-based
approach also has the potential to illustrate the impact propagation; for instance, the hypotheses on the
location of road closures can be arranged radially, either following the connected links or diverging in
lines from a common centre. The closure of the road can also be replaced by a road degrading. The
degrading level is also manipulable and is also available when representing the impact propagation in
the network.

Findings on disruption management

Analysis by scenario-based approaches includes manipulating a variable to determine the exact cause
that changes another variable or leads to a specific consequence. This method heavily depends on the
control variable and the relevant hypothesised scenario defined in the experiment. By comparing the
result of each scenario to that of the base scenario, it is possible to uncover the relationship between
cause and result. The base case scenario often refers to a set of basic assumptions that are supposed to
bring about the most realistic representation of an event. In traffic disruption modelling, the scenario-
based approach often considers an intervention plan that mitigates the negative impact of transport
disruptions on the networks. The most common control approaches that appear in the literature consist
of rescheduling, rolling stock, rerouting, signal control and bridging transport. These are operation-
level approaches, which balance the level of supply to release the demand in a disrupted network.

The previous studies mentioned the need to clearly and systematically identify the impacts of
disruption, which leads to another gap in guiding the match of the proper intervention plans towards
each type or scale of disruption. Transport infrastructure is limited in its capacity; thus, a plan ahead
that leverages the existing resources when maximising the performance of the transport network and
journey recovery becomes way more important.

Current intervention plans include the re-scheduling of PT services to mitigate the impact of dis-
ruption. This method offsets the disruption cost from the operation side, which also involves the
arrangement of the rolling stock and labour re-scheduling. A method considering the point of view of
the passengers is re-routing for the trips. This method comes from the natural behaviour of a passenger
to save the travel cost when confronting a journey disruption. The other common method that seems
far from the transport users and operators is signal control, where the buffer time is employed to cope
with the unbalanced traffic flow in both directions. Bridging transport is often used when large trans-
port disruption occurs, but there is a great demand between the origins and destinations. However,
the extra vehicles and labour costs and the costs of route redesigning always force operators to think
twice before implementation.

A number of previous studies demonstrated the effectiveness of using bridging transport for jour-
ney recovery. However, there remains a need to clarify the potential increment in the delay on roads
due to the extra load added by the bridging transports. In a multi-modal PT environment, passengers
are provided with more travelling methods. Passengers can choose to wait for the service recovery,
transfer to another transport mode, or expect bridging transport. Therefore, when the operator should
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consider using the bridging transports and how to route them in multi-modal PT networks becomes a
next-level challenge.

2.3 Conclusions

The main motivation of transport modelling is the requirement of transport planning, management
and operation. There is a need for a testbed to uncover the current network deployment, infrastruc-
ture usage and travel pattern. The transport network modelling enables the network deployment to
be illustrated in detail to display the topological features as well as the geometry parameters of the
network.

As mentioned in this review chapter, three key network modelling methods were mostly men-
tioned in the literature, namely the Graph theory-based modelling approach, layer-based modelling
approach, and Supernetwork approach. The layer-based modelling approach has originated from the
Graph theory approach, where the Graph theory approach produces one graph that represents a net-
work, all network elements are included in this single graph, while the layer-based approach generates
multiple graphs that represent different elements of a network and each graph is called a layer of the
network. In some cases, each layer contains the integrated configurations of a network, in this way, a
layer-based modelling approach can demonstrate the multi-modal transport networks or combination
of a network model and other models, such as the demand model.

According to the review, the powerful modelling approach as the layer-based approach has been
limited to represent a single public transport network in most of the literature. The research studies
have indicated the success in displaying the network interplay, such as transferring (e.g. walking to
public transport stations), by using such a layer-based approach. Such the attemption on uncovering
the interplay can be further broadened by adding more transport mode’ networks so that the interaction
between different transport mode’ networks can also be investigated. Thus, the demand propagation
within a multi-modal public transport network can be estimated at a macroscopic level. More efforts
can therefore focus on the modelling of the interplay between different transport modes’ networks.
For instance, in a traditional Space P network representation, distinguishing the weight of edges that
connect two nodes in the same network and the weight of edges that connect nodes in different networks
can be a new research question. When considering the layer-based modelling approach, the layer for
representing the transferring between nodes that are in the same network need to be separated from
the representation of transferring between different networks.

The Supernetwork modelling approach is essentially an agent-based modelling approach. The
Supernetwork approach focuses on the individual travelling; it has a strong ability in representing the
trip chain. However, individual trip modelling at the microscopic level cost much in time, but the
concept is worth keeping when mesoscale or macroscale modelling. Future research can focus on the
quantification of transferring between different networks or the interaction of different agents within
a network.

With the availability of the real transport data, researchers can calibrate the network model better;
the definition of the edge weight in Space L, for example, might largely benefit from the real data.
So does the weight for transferring or other information in relation to the interplay within the same
network or between different networks.
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The quality of the demand modelling could also benefit more from the real data. Most of the
method was proposed to estimate the demand due to the lack of such data. However, the story might
differ when infrastructure usage data are unrestricted: real data can be used to calibrate the OD estima-
tion model, it can also be used to train the model and discover the new and more accurate relationship
between the OD matrix and its influence factors. Among the publications, the forms of the deterrence
function were proposed based on experiences, and there is still a gap in testing and comparing the
different forms of the deterrence function by using the real data.

Regarding the demand modelling methodology, the travel behaviour between different networks
in the mesoscopic and macroscopic levels are still underestimated, compared with the microscale
modelling. The mode choice and the decision-making when transferring in a multi-modal public
transport network are maintaining lacking in exploring. Understanding the nature of the decision-
making is only halfway towards success; the method of accurate behaviour prediction is the solution
that needs to be chased.

In recent decades, the structure of public transport has changed from a single network and separate
networks to integrated multiple networks. Along with the change in advancing mobility, it is also
more likely to witness many disruptions in such multi-modal public transport networks due to their
complexity. Since networks are connected, the disruptions can potentially propagate through joined
nodes or links in a multi-modal public transport network, and in effect generate large-scale disruptions
that require more effort to address. In the literature, large-scale incidents, such as natural disasters or
man-made catastrophes, are the major causes of large-scale disruptions. The impact of disruption
propagating in a complex transport network, as well as the resulting post-disruption, has become an
increasingly important problem. This chapter presents a review of the published literature discussing
multi-modal public transport network modelling and disruption modelling. The existing contribution
towards the subjects is categorised by particular perspectives, namely, modelling approach, disruption
reason and impact on the network, and relative intervention plans.

The existing literature demonstrates that network modelling has been approached through various
concepts and theories, such as the cost matrix concept, graph theory, probability theory, optimization
concept, simulation, and data-driven analysis. These modelling approaches have improved their abil-
ity to depict reality by considering an increasing number of details and levels of complexity in the
models. However, there has been a lack of emphasis on modelling network disruptions. The majority
of research in disruption modelling has focused on the instant removal of nodes or links rather than
capturing the gradual temporal and spatial changes in impacts. Some studies have employed scenario-
based approaches to explore the evolving impact of disruptions over time and space. While these
experiments provide valuable insights into the temporal and spatial changes, the reliability of the re-
sults depends heavily on the quality of the modelling and network construction. The most commonly
used method to analyze the temporal and spatial differences in disruption impact on network perfor-
mance is trip reassignment to an alternative network following the disruption. This scenario-based
approach also allows for illustrating impact propagation, such as arranging road closures in radial
patterns, following connected links, or diverging from a central point. Road closures can also be sim-
ulated by degrading road conditions, with the level of degradation being adjustable and facilitating the
representation of impact propagation in the network.

Previous research has primarily focused on railway networks, with most disruptions involving link
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closures. However, road networks are more susceptible to link degradations in practical scenarios.
The situation is similar for multi-modal public transport networks, where different transport modes
can collaborate to handle increased demand, allowing for dynamic changes in road capacity. Nev-
ertheless, there is still a gap in measuring the impact of disruptions on multi-modal public transport
networks, as previous studies mainly concentrated on single transport networks without considering
impacts on other modes of transportation. Data-driven approaches offer a more reliable and accurate
analysis. By utilizing real-world data that captures traffic flow characteristics such as density, flow,
speed, and volume, researchers can establish relationships between variables such as time or location
and the consequences of disruptions. This data can aid in determining the extent of link degradation by
assessing changes in traffic flow. Furthermore, the availability of real-world data enables the calibra-
tion of transport demand models, facilitating the assessment of disruption impacts on other transport
modes networks. One possible approach is to employ the classic four-step model, considering network
configurations as variables. By assigning trips to different networks and observing the decrease in traf-
fic flow or passenger travel time delays, one can infer changes in network impact. Another valuable
application is the scenario-based approach.

Apart from this, according to previous studies, the definition of small and large-scale disruption
still needs to be clarified. Some research refers to the closure of multiple roads as a large-scale dis-
ruption, while others define it as a prolonged disruption with long-lasting impacts on traffic. These
vague definitions create challenges when categorizing disruptions based on their temporal and spa-
tial effects. Previous research has yet to systematically establish a comprehensive understanding of
the causation or correlation between different causes and their consequences during large-scale dis-
ruptions. A large-scale disruption can be characterized by its impact on a wide geographical area,
multiple links or nodes, long duration, significant effects on passengers, vehicles, properties, or fixed
objects, as well as its societal and economic consequences. Recovery time, cost, and the extent of
damage to the transport network can also be considered criteria for defining large-scale disruptions.
As mentioned in the introduction, large-scale disruptions often stem from major incidents such as
natural or man-made disasters. Additionally, the direct reason for the disruption can be used as a cri-
terion, regardless of its socioeconomic impact. Establishing clear definitions for disruptions aids in
event categorization and facilitates the selection of appropriate response plans.

The previous studies mentioned that the need to clearly and systematically identify the impacts of
disruption, which leads to another gap in guiding the match of the proper intervention plans towards
each type or scale of disruption. Transport infrastructure is limited in its capacity; thus, a plan ahead
that leverages the existing resources when maximising the performance of the transport network and
journey recovery becomes way more important. Current intervention plans include the re-scheduling
of public transport services to mitigate the disruption impacts. This method offsets the disruption
cost from the operation side, which also involves the arrangement of the rolling stock and labour re-
scheduling. A method considering the point of view of the passengers is re-routing for the trips. This
method comes from the natural behaviour of a passenger for saving the travel cost when confronting a
journey disruption. The other common method that seems far from the transport users and operators
is signal control, where the buffer time is employed to cope with the unbalance of traffic flow in both
directions. Bridging transport is often used when large transport disruption occurs, but there is a great
demand between the origins and destinations. However, the extra vehicles and labour costs and the
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costs of route redesigning always force operators to think twice before implementation. A number
of previous studies demonstrated the effectiveness of using bridging transport for journey recovery.
However, there remains a need to clarify the potential increment in the delay on roads due to the extra
load added by the bridging transports. In a multi-modal public transport environment, passengers
are provided with more travelling methods. Passengers can choose to wait for the service recovery,
transfer to another transport mode, or expect bridging transport. Therefore, when the operator should
consider using the bridging transports and how to route them in multi-modal public transport networks
becomes a next-level challenge.

Although previous research studies have already covered the traditional topics related to general
transport modelling, there are still many open questions about a standardised methodology to deal
with multi-mode transport disruptions. The modelling methods need to be improved, the mechanism
of disruption still needs to be uncovered via real data, the disruption details need to be clarified, and
the response plans need to be categorised. Future studies may consider these requirements and extend
the topic to a more complex multi-modal transport network modelling.
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Chapter 3

Origin-destination matrix estimation for
public transport

Estimating the large-scale Origin-Destination (OD) matrices for multi-modal public transport (PT) in
different cities can vary largely based on the network itself, what modes exist, and what traffic data is
available. In this chapter, to overcome the issue of traffic data unavailability and effectively estimate
the demand matrix, we employ several data sets like the total boarding and alighting, smart card as
well as the General Transit Feed Specification (GTFS) in order to capture the PT dynamic patronage
patterns. First, we propose a new method to model the dynamic large-scale stop-by-stop OD matrix for
PT networks by developing a new enhancement of the Gravity Model via graph theory and Shannon’s
entropy. Second, we introduce a method entitled “Entropy-weighted Ensemble Cost Features” that
incorporates diverse sources of costs extracted from traffic states and the topological information in
the network, scaled appropriately. Last, we compare the efficiency of a single travel cost versus various
combinations of travel costs when using traditional methods like the Traverse Searching and Hyman’s
method, alongside our proposed “Entropy-weighting” method; we prove that our method coupled with
a multi-modal PT OD matrix modelling is superior to traditional methods.

This chapter is based on an edited edition of the following article: Zhao D, Mihaita AS, Ou Y,
Grzybowska H, Li M. Multi-model Origin-Destination Matrix Estimation for Public Transport via
a Weighted Graph and Traffic Features Integration. Under review at the Journal of Transportation
research part C: emerging technologies.
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3.1 Introduction

3.1.1 Background and motivation

Public Transport Origin-Destination matrices (PT OD), also known as trip matrices, serve as a foun-
dational element for traffic demand estimation, providing insights into how the travel demand is dis-
tributed in space and time. This information is crucial for planning, designing and managing trans-
portation systems in a way that is responsive to the actual needs and behaviours of the population.
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Therefore, several techniques for trip matrix estimation have been attracting scientific attention since
the last century (Balcombe et al., 2004).

The choice of what OD matrix estimation model should be adopted largely depends on the data
availability. The smart card data (Hussain, Bhaskar, and Chung, 2021), mobile phone tracking (Ge and
Fukuda, 2016; Wismans et al., 2018) or Bluetooth and Wi-Fi tracking data (Ta et al., 2018; Huang, De
Villafranca, and Sipetas, 2022) provide comprehensive information on each trip from an origin stop to
a destination stop following a certain PT route, which enables it to be one of the ideal data resources
for PT demand modelling. However, such extensive data may not be accessible in many cities. In
cases where full trip matrix data are unavailable, the total trip generation and attraction (GA) data are
often derived from census data or surveys (Tamblay et al., 2016). Alternatively, aggregated data from
smart card transactions is often utilised, as demonstrated in this chapter for practical considerations.

Given the total trip GA from smart card transactions, there is a need for an estimation model
to derive the OD matrix. The Gravity Model is a conventional modelling approach suitable for this
purpose (Ortuzar S. and Willumsen, 2011). Originating from the gravity law, this model was first
introduced in 1931 by William to delineate the connection between trip distribution and microscopic
zonal demand (GA). The accuracy of the estimated OD matrix hinges on the model’s calibration;
therefore, subsequent to the introduction of the Gravity Model, numerous endeavours have been made
to enhance the calibration of this model.

Past studies on the Gravity Model have two main categories for model calibration: a) the first
involves the calibration of balancing factors, which are weights against the total generation and attrac-
tion in the model. These factors aim to ensure that the model accurately reflects the real-world travel
volume; b) the second category focuses on calibrating the deterrence function, which is a model that
represents the resistance or travel cost associated with travelling between OD pairs. By calibrating
this function, transportation planners can consider various factors influencing travel behaviour, such
as travel time, distance, and speed. However, due to limitations in the travel cost data, different cali-
bration methods have been proposed to compensate for biases in the travel cost features, reflect travel
preferences, and enhance the model performance. This chapter delves into the relationship between
the form of the deterrence function and the travel cost features, aiming to deepen our understanding
of this crucial aspect of the model calibration.

In the existing literature, travel cost features primarily focus on traffic-related factors, see Liter-
ature Review in Chapter 2. Only one research study, conducted by Rubio-Herrero and Muñuzuri,
incorporated fuel, driver, tyres, and maintenance costs into OD estimation for freight networks. How-
ever, this study did not assign weights to each of these travel cost features. The inclusion of multiple
travel cost features presents another calibration challenge: determining the weight assigned to each
feature. To address this gap, we introduced an entropy-ranking method to determine the weight for
each travel cost feature effectively. This enables the model to derive maximum benefit from multiple
travel cost features, thereby enhancing overall accuracy.

In our work presented in this chapter, we also consider, in addition to the traffic states, that the trip
distribution is also associated with the network topology because the geometric properties can affect
the node and the link capacity, as well as the passenger accessibility in the network; this can further
influence the link travel capacity and the travel efficiency. Especially when considering a dynamic cost
matrix, the pre-defined timetable can interfere with timely access for travellers in specific locations.
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Therefore, this intuition raises our initiative to employ the topological features for the cost matrix esti-
mation as well, as this will reflect the network accessibility and the inter-modality between all modes
inside an interconnected PT graph. The graph theory-oriented features have not been explored exten-
sively in the past, the exceptions being some recent studies regarding network vulnerability analysis;
only one recent study has explored their potential by separately using the betweenness and the travel
time as travel costs (see Lu, 2018). Furthermore, by using the Gravity Model, we conduct a compar-
ative analysis to assess the efficacy of various travel cost features in OD estimation. This evaluation
encompasses the utilisation of both traditional Traverse Searching and the Hyman method, as well as
our proposed entropy-ranking method for calibrating the deterrence function.

In line with the method of weighting by the friction factor, the entropy measurement has the po-
tential to estimate accurately the friction factor (see Ai, 2017). Entropy was initially proposed in the
information theory as a measure of the uncertainty or randomness in a system, it can be used in order
to quantify the degree of variability or diversity for each travel cost feature. It measures the average
amount of information required to draw an outcome from a probability distribution. Therefore, by
ranking the travel cost features based on their entropy, it is able to identify the factors that are most
important in shaping travel behaviour. Once we have ranked the travel cost features by entropy, we
can integrate various impacts into one index, which can be used to calibrate travel patterns in a Grav-
ity Model. This approach allows us to capture the overall impact of different travel cost factors on
the travelling pattern and to develop more accurate and reliable models for estimating travel demand.
So far, the entropy measure has only been used in ranking or for evaluation purposes in the current
literature (see Zhang and Ng, 2021; Ai, 2017; Qi et al., 2021; Wei et al., 2022); to the best of our
knowledge, no publication indicates the feasibility of using the entropy to rank the travel cost features
and the advantage of using the entropy weighted cost matrix in the OD estimation.

To fill the gap in PT OD estimation, this chapter introduces a framework for dynamically estimating
the stop-by-stop OD matrix for large-scale PT networks. We enhance the traditional Gravity Model
by incorporating entropy-weighting on travel cost features. Our study investigates the influence of
various PT network travel cost features on OD estimation, encompassing traffic characteristics such
as travel time, travel distance, and fare cost, as well as graph topological features like connections,
closeness and straightness. We evaluate the performance of different forms of deterrence function
used in the Gravity Model, and we compare traditional calibration methods like Furness and Hyman
against our proposed Entropy-weighted method. The results demonstrate significant improvements in
terms of RMSE, MAPE and MAE.

In prior research studies, the deterrence function was typically associated with a single type of
travel cost due to the challenges of determining the optimal weightings for multiple cost features
(Tamblay et al., 2016; Suprayitno, 2018). Some studies incorporated multiple travel costs but without
assigning weights to each cost feature (Rubio-Herrero and Muñuzuri, 2021). Expanding upon pre-
vious research, in this research chapter we introduce a new innovative approach to rank and assign
weights to various travel cost features more efficiently. By incorporating multiple travel cost features
into the Gravity Model, we aim to significantly enhance the model’s overall performance and show its
efficiency as compared to more traditional techniques.
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3.1.2 Challenges and contributions summary

In order to obtain accurate public-transport-related OD matrices that are multi-modal, we encounter
several challenges (open questions):

• How to dynamically model the spatial and temporal travel patterns of PT passengers?
• How to effectively obtain accurate OD matrices for multi-modal PT networks using a minimum

data availability?
• What factors have a critical influence on the PT OD estimation across various types or modes

of the PT networks?
To address these challenges, in our current work we propose:
• a new framework to dynamically estimate the stop-by-stop PT OD matrix for multiple transport

modes;
• an extended version of the Gravity Model for our multi-modal PT OD estimation. This relies

on a novel model calibration method using Entropy-weighting, which considers both the traf-
fic characteristics (travel time, travel distance, and fare cost) as well as the graph topological
features (connections, closeness and straightness);

• and finally, we show that our new proposed PT OD calibration method outperforms the tradi-
tional approach, namely Hayman’s and Traverse Searching methods, in terms of RMSE, MAPE
and MAE.

3.1.3 Organisation of chapter

The rest of this chapter is organised as follows: in Section 3.2 we first present the framework of the
large-scale stop-by-stop OD estimation for PT. Following the framework, the details of the extended
Gravity Model are further highlighted in Section 3.2.2, where we show the modelling method for
aggregated GA vectors (see Section 3.2.2) and deterrence function considering “single travel cost fea-
ture” and “multiple travel cost features”. Then, the classical deterrence function calibration processes
are discussed in Section 3.2.2 against the proposed method of “Entropy-weighted” in Section 3.2.2.
Finally, the topological features’ modelling methods are included in Section 3.2.2. The performance
of an OD estimation is validated using MAE, RMSE and MAPE, shown in Section 3.2.3. The ap-
plication of the estimation methods involving the three deterrence function calibration methods to a
real network is presented in Section 3.3 with results shown in Section 3.4, where The ideal parameter
configurations for the deterrence function and the most appropriate form of the function tailored to
various travel cost features are presented in this. Finally, Section 3.5 is provided to clarify the research
limitations and offer future directions in this field.
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FIGURE 3.1: The framework of our proposed dynamic stop-by-stop OD estimation for
large-scale multi-modal PT.

3.2 Methodology

3.2.1 Modelling framework

The framework presented in Fig. 3.1 illustrates our approach to dynamically estimating the stop-by-
stop OD matrix. This framework comprises three stages. In Stage 0, we collect, filter, and clean
all input datasets, including smart card data and Global Transit Feed Systems (GTFS) data. At this
stage, we also integrated total counts of boarding and alighting. This integrated data serves as an ideal
alternative for GA vector generation in Stage 1; Stage 2 illustrates the deterrence function calibra-
tion process considering three types of data resources: the “Deterrence Function Considering Single
Cost Features”, “Deterrence Function Considering Multiple Cost Features” and “Entropy-weighted
Ensemble Cost Features”. When it comes to individual travel cost features, we employ two cali-
bration methods, namely Traverse Searching and Hyman’s methods. Conversely, when dealing with
multiple costs, we adopt a fusion approach by utilising the Hyman method alongside our proposed
Entropy-weighted method to demonstrate the effectiveness of OD estimation. Our proposed method-
ology leverages entropy ranking to assess and weigh various travel cost features, aiming to optimise the
accuracy of the deterrence function and, consequently, OD estimation. For each calibration process,
we evaluate the efficacy of three function forms: power, exponential, and Tanner; at the Stage 3, we
employ the Gravity Model for the OD estimation and further validate the feasibility of the proposed
deterrence function calibration method. At this final stage, the best cost matrix estimation method and
the most accurate OD matrix are selected according to MAE, RMSE and MAPE.
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3.2.2 PT OD Estimation using the Gravity Model

The Gravity Model

For PT such as buses or trains, the unit of its OD matrix is defined as the number of passengers, and
the content of the OD matrix is the total number of passenger trips. Unlike the OD matrix for cars, the
origins and destinations for the PT network are the PT stops. Adjacency Matrix: The existence of trips
between each OD pair depends on the predefined paths for routing the PT in the network. Therefore,
the PT network is defined as a Space L’ graph, where the nodes are represented by the PT stops and
the links between nodes are the routes between any PT stops. In a graph of Space L’, different edges
represent different links used in different networks with different directions Yang et al., 2014. To
capture the nature of dynamic timetables, such information is recorded in a time-dependent adjacency
matrix:

𝐻(𝑡) = [ℎ𝑚𝑖,𝑛𝑗 (𝑡)], 𝑖, 𝑗 = {1… 𝐽}, 𝑚, 𝑛 = {1…𝑁}, (3.1)
where 𝐽 is the total number of statistical areas inside the sub-network; 𝑁 represents the total number
of PT stops in the network; and

ℎ𝑖,𝑗(𝑡) =

⎧

⎪

⎨

⎪

⎩

1, if (𝑖, 𝑗) is an accessible link at t,
0, otherwise

(3.2)

The Gravity Model: The number of time-dependent trips made by a public transit mode 𝑝𝑡 is obtained
based on the placement and existing routing between PT stops, where 𝑝𝑡 is considered as buses (𝑏),
train and metro (𝑡𝑛). Therefore, the total number of trips departing from an origin stop 𝑚 ∈ {1…𝑁}
to a destination stop 𝑛 ∈ {1…𝑁} can be calculated based on the Gravity Model with a given total
number of trips departing from the origin stop 𝑚 by a mode 𝑝𝑡, denoted by 𝑜𝑝𝑡𝑚𝑖

, and that of trips
arriving at a destination stop 𝑛 by mode 𝑝𝑡, denoted by 𝑑𝑝𝑡

𝑛𝑗 . The PT trip matrix can be represented
by 𝑂𝐷𝑝𝑡(𝑡) = [𝑜𝑑𝑝𝑡

𝑚𝑖,𝑛𝑗
(𝑡)], 𝑖, 𝑗 = {1… 𝐽}, 𝑚, 𝑛 = {1…𝑁}. The total number of trips departing is

also known as the trip generation. In contrast, the total number of trips arriving is known as the trip
attraction in the traditional four-step OD estimation. The most common form of the Gravity Model is
expressed as:

𝑜𝑑𝑝𝑡
𝑚𝑖,𝑛𝑗

(𝑡) = 𝐴𝑝𝑡
𝑚𝑖
(𝑡) 𝑜𝑝𝑡𝑚𝑖

(𝑡)𝐵𝑝𝑡
𝑛𝑗
(𝑡)𝑑𝑝𝑡

𝑛𝑗
(𝑡)𝑓

(

𝑐𝑝𝑡𝑚𝑖,𝑛𝑗
(𝑡)
)

, (3.3)
where 𝐴𝑝𝑡

𝑚𝑖
and 𝐵𝑝𝑡

𝑛𝑗 represent the time-dependent weights towards the total number of origins (𝑜𝑝𝑡𝑚𝑖
) by

PT and the total destinations (𝑑𝑝𝑡
𝑛𝑗 ), respectively; 𝑓

(

𝑐𝑝𝑡𝑚𝑖,𝑛𝑗

)

is the travel cost function that represents
the time-dependent travel cost between two zones by a mode 𝑝𝑡. three cost matrix calibration methods
are compared in this chapter, as detailed in Section 3.2.2, Section 3.2.2 and Section 3.2.2. The origin
stop 𝑚 belongs to the origin zone 𝑖 while the destination stop 𝑛 belongs to the arrival zone 𝑗. The

constraints: Two constraints are employed in the Gravity Model to enable the estimated trips to match
the real number of trips, two constraints are employed in the Gravity Model. Firstly, the total number
of departures by a PT mode from a public stop 𝑚 should be equal to the sum of trips that originate
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from that particular stop to each possible destination stop 𝑛:

𝑜𝑝𝑡𝑚𝑖
(𝑡) =

𝑁
∑

𝑗=1
𝑜𝑑𝑝𝑡

𝑚𝑖,𝑛𝑗
(𝑡), (3.4)

and secondly, the total number of trips taken by PT arriving at a stop 𝑛 at the time interval 𝑡 equals the
sum of trips that terminate at that particular destination from all possible origin stops 𝑚:

𝑑𝑝𝑡
𝑛𝑗
(𝑡) =

𝑁
∑

𝑖=1
𝑜𝑑𝑝𝑡

𝑚𝑖,𝑛𝑗
(𝑡) (3.5)

The parameters: The time-dependent weights (𝐴𝑝𝑡
𝑚𝑖

and 𝐵𝑝𝑡
𝑛𝑗 ) are the parameters of the Gravity Model

that are estimated iteratively. The estimation equations can be transformed from Equation 3.3 and
Equation 3.4 to:

𝐴𝑝𝑡
𝑚𝑖
(𝑡) = 1

∑𝑁
𝑗=1 𝐵

𝑝𝑡
𝑛𝑗 (𝑡)𝑑

𝑝𝑡
𝑛𝑗 (𝑡)𝑓

(

𝑐𝑝𝑡𝑚𝑖,𝑛𝑗 (𝑡)
) (3.6)

and from Equation 3.3 and Equation 3.5 to:

𝐵𝑝𝑡
𝑛𝑗
(𝑡) = 1

∑𝑁
𝑖=1𝐴

𝑝𝑡
𝑚𝑖
(𝑡)𝑜𝑝𝑡𝑚𝑖

(𝑡)𝑓
(

𝑐𝑝𝑡𝑚𝑖,𝑛𝑗 (𝑡)
) (3.7)

The criterion: The criterion of the convergence follows either the maximum number of iterations that
have been reached:

𝜁 ∈ {1, ..., 𝜁𝑚𝑎𝑥}, (3.8)
or the functions of acceptable distance between iterative count 𝜁 and 𝜁 + 1:

𝑐𝑐𝑝𝑡 ≥ max
𝑖,𝑗

⎛

⎜

⎜

⎝

max
𝑖

(

𝐴𝑝𝑡,𝜁+1
𝑚,𝑖 −𝐴𝑝𝑡,𝜁

𝑚,𝑖

𝐴𝑝𝑡,𝜁+1
𝑚,𝑖

)

, max
𝑖

⎛

⎜

⎜

⎝

𝐵𝑝𝑡,𝜁+1
𝑛,𝑗 −𝐵𝑝𝑡,𝜁

𝑛,𝑗

𝐵𝑝𝑡,𝜁+1
𝑛,𝑗

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

(3.9)

where 𝑐𝑐𝑝𝑡 is the criteria of convergence that defines the acceptable distance of the last two time-
dependent weights, and 𝜁 is the count of iterative calculations. The 𝜁𝑚𝑎𝑥 used in this research is
defined as shown in Assumptions (see Section 3.3.2).

GA vector estimation

The trip generation and attraction (GA) estimation is known as the first step in the traditional four-step
demand estimation. This step aims to produce a GA vector that can be used as the total number of
departing trips (𝑑𝑝𝑡

𝑛𝑗 ) and total arriving trips (𝑜𝑝𝑡𝑚𝑖
) in the Gravity Model-based OD matrix estimation.

As introduced in Ortuzar S. and Willumsen, 2011, in practice, the GA vector is initially obtained from
the demographic data through a regression analysis. For our research study, the total generation from
a stop is the total number of departing trips; thus, the vector of generation is the total number of tap-
on at each stop. Meanwhile, the total attraction of a stop is the total number of arriving trips; thus,



3.2. Methodology 73

the vector of attraction is the total number of tap-offs at each stop. Therefore, the GA vector can be
captured from historical smart card tap-on/tap-off data as follows:

𝑜𝑝𝑡𝑚𝑖
(𝑡) =

𝑁
∑

𝑗=1
𝑜𝑑𝑝𝑡,ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙

𝑚𝑖,𝑛𝑗
(𝑡), (3.10)

𝑑𝑝𝑡
𝑛𝑗
(𝑡) =

𝑁
∑

𝑖=1
𝑜𝑑𝑝𝑡,ℎ𝑖𝑠𝑡𝑜𝑟𝑖𝑐𝑎𝑙

𝑚𝑖,𝑛𝑗
(𝑡) (3.11)

and the GA vector can be represented as 𝐺𝐴𝑝𝑡
𝑚𝑖,𝑛𝑗 = [𝑜𝑝𝑡𝑚𝑖

, 𝑑𝑝𝑡
𝑛𝑗 ].

The chapter aims to demonstrate the effectiveness of using the Gravity Model for estimating the
PT OD matrix with the most accessible data: total generation and attraction and travel cost data. The
data provided for this research study is stop-based smart card data, we process it as stop-based GA
vectors. The travel cost data obtained from both traffic states and topological graphs is calibrated
following the deterrence function-based Gravity Model by the Traverse searching method (Ortuzar
S. and Willumsen, 2011), Hyman’s method Hyman, 1969 and the new proposed Entropy-weighted
method. We compare the performance of travel cost features following “single travel cost feature”,
“multiple travel cost features” and the “entropy-weighted multiple travel cost features”.

Deterrence Function Considering Single Cost Features

In the OD estimation method via the Gravity Model, the deterrence function, 𝑓
(

𝑐𝑝𝑡𝑚𝑖,𝑛𝑗

)

, is the negative
function limiting the number of trips generated from origins to destinations in a network. Following
three classical forms of the deterrence function, the friction elements can be described as:

Power function:
𝑓
(

𝑐𝑝𝑡𝑚𝑖,𝑛𝑗

)

= 𝛾(𝑐𝑟,𝑝𝑡𝑚𝑖,𝑛𝑗
)𝛼 (3.12)

Exponential function:
𝑓
(

𝑐𝑝𝑡𝑚𝑖,𝑛𝑗

)

= 𝛾𝑒−𝛽𝑐
𝑟,𝑝𝑡
𝑚𝑖,𝑛𝑗 (3.13)

Tanner function:
𝑓
(

𝑐𝑝𝑡𝑚𝑖,𝑛𝑗

)

= 𝛾(𝑐𝑟,𝑝𝑡𝑚𝑖,𝑛𝑗
)𝛼 𝑒−𝛽𝑐

𝑟,𝑝𝑡
𝑚𝑖,𝑛𝑗 (3.14)

where 𝛾 is the weight of the travel cost, in the case study of this chapter, 𝛾 = 1, in order to examine
the performance of raw travel cost features in OD estimation. 𝑖, 𝑗 = {1… 𝐽}, 𝑚, 𝑛 = {1…𝑁}; 𝛼 and
𝛽 are parameters of the deterrence function that are required to be estimated.

Deterrence Function Considering Multiple Cost Features

However, in cases where travel costs such as travel time and connection are used in our situation,
due to the property of non-linearity with respect to travel distance, a simple summation, as employed
in Rubio-Herrero and Muñuzuri, 2021, is not suitable. Therefore, after fitting using a deterrence
function(Equation 3.12, Equation 3.13 or Equation 3.14), we standardise the travel cost matrix by
dividing it by the mean fitted travel cost (𝑓

(

𝑐𝑟𝑚𝑖,𝑛𝑗

)

). This normalisation ensures that all travel cost
features have a consistent mean value of 1. Consequently, we can aggregate all travel cost matrices
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to create a fused travel cost matrix that encompasses the effects of multiple types of travel costs. The
fusion travel cost can be represented by:

𝑓
(

𝑐𝑝𝑡𝑚𝑖,𝑛𝑗

)

=
𝑅
∑

𝑖=1

𝑓
(

𝑐𝑟𝑚𝑖,𝑛𝑗

)

𝑓
(

𝑐𝑟𝑚𝑖,𝑛𝑗

)

. (3.15)

Deterrence function calibration

The calibration of the deterrence function is significant as it directly impacts the subsequent perfor-
mance of OD estimation. In our effort to verify this idea and determine the most suitable calibra-
tion approach for our specific case study, we conduct the calibration analysis involving the Hyman’s
method.

Deterrence function calibration by the Hyman method: The technique introduced by Hyman
has proven to be effective due to its fast convergence. Such a method initialises the parameter by:

𝛽0 =
3
2�̄�

, (3.16)

where 𝛽0 is the parameter of the deterrence function and �̄� is the mean travel cost. In a new cycle of
calibration,

𝛽𝜁 =
𝛽0𝑐0
�̄�

, (3.17)
where 𝑐0 is the mean estimated travel cost. For the following run of the calibration with 𝜁 ⩾ 1,

𝛽𝜁+1 =
(�̄� − �̄�𝜁−1)𝛽𝜁 − (�̄� − �̄�𝜁 )𝛽𝜁−1

�̄�𝜁 − �̄�𝜁−1
, (3.18)

where 𝑐0 is the mean estimated travel cost. Such an estimation method is investigated in this chapter
for comparison purposes, as well.

Following the Hyman method, we engage in an iterative adjustment of the parameters 𝛼 and 𝛽 in
three common forms of the deterrence function: power (request a calibration on 𝛼 in Equation 3.12),
exponential (request a calibration on 𝛽 in Equation 3.13), and Tanner (request a calibration on both 𝛼
and 𝛽 in Equation 3.14). The calibrated deterrence function, which accurately models travel cost and
influences trip distribution, will be utilised in Equation 3.3 for iteratively estimating the OD matrix
until the specified objective is achieved (as defined in Equation 3.8 and Equation 3.9).

According to Hyman, 1969 and Williams, 1976, the solution of Equation 3.4 and Equation 3.5
follows an iterative calculation process. Since the mean observed travel cost should equal the estimated
one, we introduce another constraint:

𝐽
∑

𝑖,𝑗
𝑜𝑑𝑖,𝑗𝑐𝑖,𝑗 =

𝐽
∑

𝑖,𝑗
𝑜𝑑∗

𝑖,𝑗𝑐𝑖,𝑗 . (3.19)
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where the exponential function is given as the deterrence function. For the power function, the con-
straint should be defined as:

𝐽
∑

𝑖,𝑗
𝑜𝑑𝑖,𝑗 log 𝑐𝑖,𝑗 =

𝐽
∑

𝑖,𝑗
𝑜𝑑∗

𝑖,𝑗 log 𝑐𝑖,𝑗 , (3.20)

for Tanner function, both Equation 3.19 and Equation 3.20 need to be considered.
To adjust the travel cost matrix using the deterrence function, it requires an initial 𝛽0; according

to Hyman, 1969,
Step 0:

𝛽0 = 3
2𝑓 (𝑐)

(3.21)

where the mean observed travel cost 𝑓 (𝑐) is defined as:

𝐶 =
𝐽
∑

𝑖,𝑗
𝑐𝑖,𝑗 . (3.22)

Step 1: Therefore, the initial friction factor matrix can be converted from the cost matrix to Equa-
tion 3.12, Equation 3.13 or Equation 3.14. According to Ortuzar S. and Willumsen, 2011, the initial
trip matrix can be obtained by:

𝑜𝑑0
𝑖,𝑗 =

∑𝐽
𝑖,𝑗 𝑓 (

(

𝑐𝑖,𝑗
)

)𝑜𝑖
∑𝐽

𝑖,𝑗 𝑓 (
(

𝑐𝑖,𝑗
)

, (3.23)

and the time-dependent weights (𝐴𝑝𝑡
𝑚𝑖

in Equation 3.6 and 𝐵𝑝𝑡
𝑛𝑗 ) in Equation 3.7 can be updated accord-

ingly.
Step 2: With the base matrix, we can update the initial mean estimated travel cost, following the

method proposed by Williams, 1976:

𝐶0 =

∑𝐽
𝑖,𝑗 𝑓 (

(

𝑐𝑖,𝑗
)

)𝑜𝑖𝑑𝑗
∑𝐽

𝑖,𝑗 𝑓 (
(

𝑜𝑑𝑖,𝑗
)2

, (3.24)

and the mean observed travel cost becomes:

𝐶𝑠 =

∑𝐽
𝑖,𝑗 𝑜𝑑

𝑠
𝑖,𝑗𝑐𝑖,𝑗

∑𝐽
𝑖,𝑗 𝑜𝑑𝑖,𝑗

, (3.25)

where 𝑠 represents the iterative number in gravity estimation.
Step 3: According to Hyman, 1969, the parameter for the deterrence function can be computed

by:
𝛽1 =

𝐶0 ∗ 𝛽0

𝐶
0

, (3.26)

then the cost matrix can be re-adjust using the 𝛽1, returning to Step 1. However, for 𝑠 ≥ 1, the
discrepancy of deterrence factor between two iterations should be proportional to that of mean travel
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costs to avoid calculation error according to Williams, 1976; therefore:

𝛽𝑠+1 = 𝛽𝑠 +
(�̄� −𝐶𝑠)(𝛽𝑠 − 𝛽𝑠−1)

𝐶𝑠 −𝐶𝑠−1
. (3.27)

Deterrence function calibration by the Traverse Searching method: The decision to employ
the traverse method for determining optimal parameters in research depends on the complexity of
the problem and the characteristics of the dataset (Suprayitno, 2018). In light of our experience and
the outcomes of applying the Hyman method, we observed that the parameters’ impact on the OD
estimation can be unpredictable. Hence, we conducted a traverse sensitivity test to explore the optimal
parameter that best estimates the OD matrix. The range of parameters used in this research is defined
in Assumptions (see Section 3.3.2).

Based on the outcomes derived from Hyman’s methodology, we confirm the most suitable form
of the deterrence function for fitting purposes. This selected function is then utilised for Traverse
Searching. Subsequently, guided by the suggested parameters of the deterrence function following
Hyman’s method, we define a range of potential parameters for exploration. Within this range, our
objective is to identify the optimal set of parameters that enhance estimation accuracy to a greater
extent.

Entropy-weighted Ensemble Cost Features

Assigning weights to travel cost features ensures their appropriate impact on OD estimation, thereby
enhancing the accuracy of the estimation. However, weighting requires considerable information,
which has historically posed a challenge. Our results from testing different travel cost features in-
dividually in the deterrence function (as discussed in Section 3.2.2) reveal that various travel costs
perform differently when fitted to the same deterrence functions, which underscores the significance
of selecting suitable travel cost features in OD estimation.

Our proposed method is the initiative to consider weighing various travel cost features to maximise
the accuracy of OD estimation. Such a feature resemble method is derived from the principles of
Shannon’s entropy Shannon, 1948; McClean, 2003 which has been used for feature ranking (see Ai,
2017; Qi et al., 2021; Wei et al., 2022; Nie et al., 2016). In this way, our current research study
takes a further step and applies entropy when weighing various travel costs and evaluating their true
importance for the final trip demand estimation process.
In the following, we detail our proposed weighting method via Shannon’s entropy:

Network representation: The transport network is captured by an unweighted non-directed graph
which we denote 𝐺 = (𝑉 ,𝐸), and which follows the Space L’ representation. The set of vertices is
represented by 𝑉 (𝐺) = {𝑣1, 𝑣2,… , 𝑣𝑁}, where 𝑁 is the total number of PT stops, while the elements
of 𝐸 are the edges following 𝐸(𝐺) = {𝑒1, 𝑒2,… , 𝑒𝑙}. For a PT mode 𝑝𝑡, let 𝐺𝑝𝑡 be the graph where
𝑉 𝑝𝑡 is the set of vertices, and 𝐸𝑝𝑡 is the set of edges.

Travel cost feature representation: Each network has its unique topological feature reflected by
centrality and global characteristics (see Lin and Ban, 2013). Currently, the most used centrality
measures in the literature are connection, closeness and network straightness. The details of these
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topological features are described in Section 3.2.2. In this research, the travel cost feature represen-
tations also include the traffic features such as the fare costs, the travel distance and time. Therefore,
the travel cost features of the graph 𝐺 include both topological and traffic features, which are further
represented by 𝐶(𝐺) = {𝑐1, 𝑐2,… , 𝑐𝑅}, where the total number of travel cost features is 𝑅.

According to the graph features, the matrix following travel cost features by nodes (𝑐𝑚,𝑟) can be
expressed as:

𝑆 =

⎡

⎢

⎢

⎢

⎣

𝑠(𝑣1, 𝑐1) 𝑠(𝑣1, 𝑐2) … 𝑠(𝑣1, 𝑐𝑅)
… … … …

𝑠(𝑣𝑁 , 𝑐1) 𝑠(𝑣𝑁 , 𝑐2) … 𝑠(𝑣𝑁 , 𝑐𝑅)

⎤

⎥

⎥

⎥

⎦

(3.28)

where for each value of the cell, 𝑠 is the travel cost value defined by the location, which is the PT stop
𝑣 (ordered as 1…𝑁), and the travel cost feature 𝑐, either topological or traffic features (represented
by 1…𝑅). In this way, for each row in this matrix, the row number represents the stop name; for each
column, the column name represents either topological or traffic features. Therefore, the 𝑠(𝑣1, 𝑐1)
means the value of the first travel cost feature for the first stop, and 𝑠(𝑣1, 𝑐2) is the value of the second
type of travel cost feature for the first stop. To simplify computation, we convert origin-destination
travel costs (𝑐𝑚𝑛), like travel time, into one-dimensional factors. Each value is assigned to its origin
stop (𝑐𝑚), aligning its dimension with other one-dimensional features such as closeness. We employ
(𝑠𝑚,𝑟) to represent the origin stop-based travel cost.

Standardised travel cost matrix: To standardise a feature 𝑟 for each node (PT stop), the ratio is
estimated by using the mathematical formula below:

𝑢𝑚,𝑟 =
𝑠𝑚,𝑟 −𝑚𝑖𝑛(𝑠𝑚,𝑟)

𝑚𝑎𝑥(𝑠𝑚,𝑟) −𝑚𝑖𝑛(𝑠𝑚,𝑟)
(3.29)

The standardisation technique described is called max-min scaling, also known as max-min normali-
sation. Through normalisation, each feature contributes to the final distance roughly in proportion to
its range. The scaling range following max-min scaling is set to [0, 1].

Thus, the standardised travel cost matrix is denoted as:

𝑈 =

⎡

⎢

⎢

⎢

⎣

𝑢1,1 𝑢1,2 … 𝑢1,𝑅
… … … …
𝑢𝑁,1 𝑢𝑁,2 … 𝑢𝑁,𝑅

⎤

⎥

⎥

⎥

⎦

(3.30)

Entropy measure: According to Shannon’s entropy (see Ai, 2017; Shannon, 1948; McClean,
2003), the ratio of each standardised travel cost feature 𝑢𝑚,𝑟 is denoted by impact probability 𝑝𝑚,𝑟,
where:

𝑝𝑚,𝑟 =
𝑢𝑚,𝑟

∑𝑅
𝑟=1 𝑢𝑚,𝑟

(3.31)

which helps us to estimate further the entropy of each travel cost measure, which is denoted by:

𝐼𝑟 = − 1
𝑁

𝑁
∑

𝑚=1
𝑝𝑚,𝑟 log(𝑝𝑚,𝑟). (3.32)
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We apply the max-min scaling again to standardise the weights, as can be expressed by:

𝑤𝑟 =
𝐼𝑟 −𝑚𝑖𝑛(𝐼𝑟)

𝑚𝑎𝑥(𝐼𝑟) −𝑚𝑖𝑛(𝐼𝑟)
. (3.33)

Considering that the weights are entropy-based factors representing uncertainty, where features with
higher entropy exhibit greater uncertainty and unpredictability, we aim to prioritize features that are
stable and predictable in OD estimation. Therefore, we calculate the importance of each feature as
1 −𝑤𝑟. Therefore, according to Equation 3.15, the scaled fusion travel cost features becomes:

𝑓
(

𝑐𝑝𝑡𝑚𝑖,𝑛𝑗

)

=
𝑅
∑

𝑖=1

(1 −𝑤𝑟)𝑓
(

𝑐𝑟𝑚𝑖,𝑛𝑗

)

(1 −𝑤𝑟)𝑓
(

𝑐𝑟𝑚𝑖,𝑛𝑗

)

. (3.34)

where each importance factor is assigned to the travel cost feature accordingly.
As the weighted travel cost features are constructed, serving as a calibrated friction matrix that

can be readily applied in the Gravity Model. Consequently, utilising the Gravity Model to explore the
optimal balancing factor that maximises estimation accuracy, with the goal of minimising disparities
between the estimated and historical OD matrices, as demonstrated in this chapter, or trip length
distributions, as utilised in prior literature.

Topological Features

In the discussion in Section 3.2.2 and Section 3.2.2, we include multiple travel cost features, in this
section, we discuss those features in detail. Apart from the connection derived from the adjacency
matrix, additional topological cost features captured from the network graph including closeness and
straightness are also selected to enhance the accuracy of OD matrix estimation in this study. These
features capture attributes related to travel distance that influence passengers’ route choices and, con-
sequently, impact trip distribution. The definition of each feature is expressed through the following
equations, the same as described in Lin and Ban, 2013:

Connection: property indicates the number of edges connected to a node, also known as degree
in graph theory, which is determined based on an adjacency matrix as follows:

𝑐𝑐𝑛,𝑝𝑡𝑚𝑖,𝑛𝑗
=

𝐽
∑

𝑚𝑖=1

𝐽
∑

𝑚𝑗=1
𝑒𝑑𝑚𝑖,𝑛𝑗 . (3.35)

Closeness: the characteristic defining the total travel distance from a given node to all other ac-
cessible nodes in the network and is expressed as:

𝑐𝑐𝑙,𝑝𝑡𝑚𝑖,𝑛𝑗
= 1

∑𝐽
𝑚𝑗=1

𝑑𝑚𝑖,𝑛𝑗

, (3.36)

where 𝑑𝑚𝑖,𝑛𝑗 indicates the travel distance on predefined bus routes, which is the shortest path travelled
by bus.
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Straightness: the feature displaying the ratio of the Euclidean distance (𝑑𝐸𝑢𝑐𝑙
𝑚𝑖,𝑛𝑗

) over the shortest
travel distance following the bus routes.

𝑐𝑠𝑡,𝑝𝑡𝑚𝑖,𝑛𝑗
=

𝐽
∑

𝑚𝑗=1

𝑑𝐸𝑢𝑐𝑙
𝑚𝑖,𝑛𝑗

𝑑𝑚𝑖,𝑛𝑗
, (3.37)

3.2.3 OD Matrix Evaluation

Assuming that the estimated OD matrix using our proposed approach is denoted as [ ̂𝑂𝐷𝑡], while the
observed one is [𝑂𝐷𝑡], then the OD estimation accuracy in this research is measured by using the
following three performance metrics:
Mean Absolute Error (MAE):

𝑀𝐴𝐸 = 1
𝑁

𝑁
∑

𝑛=1

|

|

|

[ ̂𝑂𝐷𝑡] − [𝑂𝐷𝑡]
|

|

|

(3.38)

where 𝑛 represents the PT stop and 𝑁 is the total number of stops in the network.
Root Mean Square Error (RMSE):

𝑅𝑀𝑆𝐸 =

√

√

√

√
1
𝑁

𝑁
∑

𝑛=1

(

[𝑂𝐷𝑡] − [ ̂𝑂𝐷𝑡]
)2 (3.39)

Mean Absolute Percentage Error (MAPE):

𝑀𝐴𝑃𝐸 = 1
𝑇

𝑇
∑

𝑡=1

|

|

|

|

|

[𝑂𝐷𝑡] − [ ̂𝑂𝐷𝑡]
[ ̂𝑂𝐷𝑡]

|

|

|

|

|

× 100% (3.40)

where 𝑡 is the iteration number and 𝑇 represents the total number of iterative times.

3.3 Case Study

3.3.1 Geography and Data Information

The zones covered in the study are located to the Northwest of Sydney, along the M2 motorway, which
includes several major residential and business areas, as shown in Figure 3.2 upper-left. This area
is defined following the digital mapping according to the Statistical Area Level 2 (SA2) Australian
Bureau of Statistics, 2021. The zones used by the car network are defined in the software Aimsun
according to a Voronoi diagram Xiao et al., 2016; Nikolić and Bierlaire, 2018, which is denoted as
𝑍𝑗 , 𝑗 ∈ {1… 𝐽}, as shown in the Figure 3.2 (up left). As of 2017, there are 76 bus routes, two train
routes and a metro route spread within this area. There are 3799 bus stops and seven train and metro
stations, as shown in Figure 3.2 (down). To simplify notations, we will further refer to our case study
as the M2 area in the following sections. The smart card data system combines records for both trains
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FIGURE 3.2: Zones in M2 area (up left) and the 2017 Sydney M2 area PT, including
buses, trains and metro networks (down).

and metros. Consequently, this chapter treats trains and metros as a single mode of transport, referred
to as "train", throughout this study.

The trip distribution is captured from the local smart card data. The raw smart card data has
been processed and filtered in advance to eliminate outliers and anomalies. The trip distribution in
Figure 3.3 is drawn by using as an example one month of smart card data (June of 2017) for the M2
area in Sydney. The upper figure in Figure 3.3 illustrates the distribution for trips by bus, and the
rest figure in Figure 3.3 illustrates the distribution of train trips. As shown in the Figure 3.3, for both
transport services, the morning peak hour starts from 7:00 and lasts until around 11:00. In contrast,
the afternoon peak hour spreads from 16:00 to 20:00. In the case study exemplified in this chapter,
we focus mainly on the morning peak hour (as the afternoon can follow a similar approach); therefore
the data for 7:00 to 11:00 is collected and used for the estimation method.

The topological feature data for the cost matrix estimation is captured from historical PT GTFS
data provided by the OpenData OpenData, 2017 and another open source TransitFeeds TransitFeeds,
2017. The data include the information of the PT agency, its calendar, the routes information, the PT
stop times and stop location, as well as all the information regarding the PT trips and stops. The data
for June 2017 is collected and used in this section as an exemplification.
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FIGURE 3.3: Ground truth PT trip distributions by time for buses (up) and trains
(down).

3.3.2 Assumptions

External nodes: In this research study, an external node is inserted in the OD estimation approach
using the Gravity Model detailed in Stage 3 to balance the total generation and attraction trips. Since
the M2 area is only a tiny part of the Great Sydney area, apart from the trips completed within the
study area, there are still trips that solely start in the M2 area, which requires a match of an external
node to attract those trips. In contrast, for those trips that simply end in the M2 area, an exterior node
is also required to generate these trips. This way, we can reach a balanced GA vector that matches the
constraints of Equation 3.4 and Equation 3.5.

Convergence criteria: In the case study, the maximum iteration time for each experiment is 20, and
the convergence criteria are reached when the gap between estimated and ground-truth total generation
and attraction is less than 0.01%. In this research study, we aim to identify the most suitable method
for model calibration—one that is accessible, adaptable, and converges quickly. To achieve this, we
strive to set the value of 𝑟𝑚𝑎𝑥 as high as possible, ensuring that the model satisfies Equation 3.9 while
also keeping the computational requirements for iterative calculations manageable on our computer.
Consequently, we conduct all experiments until they meet the acceptable criteria multiple times. The
maximum number of iterative counts required for convergence in all experiments is 18. Hence, we
round up this number to 20 for input as 𝑟𝑚𝑎𝑥.

Hyman method using Tanner function: In the literature, Hyman (Hyman, 1969) demonstrated
deterrence function calibration using only the exponential function form, with a single parameter,
𝛽, defining the function. Following the same approach, we apply the calibration method to a power
function (see Equation 3.12). To streamline calculations and demonstrate the performance of the
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Tanner function (refer to Equation 3.14), we utilise identical values for 𝛼 and 𝛽 when considering the
Tanner function.

Traverse Searching method limitations: When exploring values of 𝛼 and 𝛽 using the Traverse
Searching method (refer to Section 3.2.2), according to the results following Hyman’s calibration
method, a range from 0 to 3 in intervals of 0.05 is used for the train network in this chapter. For the bus
network, in instances where a distinct pattern was not apparent, we extended the range to encompass
values from 0 to 0.2 with intervals of 0.01. For the sake of time and computational considerations, we
keep these parameter pairs constant throughout the iterative estimation processes.

3.3.3 Scenario and Experiments Configuration:

When estimating the deterrence function, we set up three main scenarios that match the three cost
matrix estimation methods presented in Stage 2, namely “Deterrence Function Considering Single
Cost Features” (S1), the “Deterrence Function Considering Multiple Cost Features” (S2), and the
“Entropy-weighted Ensemble Cost Features” (S3) considering different travel cost features covering
traffic characteristics including travel time, travel distance and fare cost, as well as graph topological
features including connections, closeness and straightness, as shown in Table 3.1

TABLE 3.1: Scenarios and experiments settings.

TABLE 3.2: Example of list of travel cost features combinations.

In S1, all six travel cost features are incorporated into three forms of deterrence functions using the
Traverse Searching method, yielding 21 outcomes. The range of potential parameters is determined
based on the outcomes using Hyman’s method, as detailed in Traverse Searching method limitations
of Section 3.3.2.

In S2, following Hyman’s searching method, all six travel cost features are incorporated into three
forms of deterrence functions, as well. Under this setup, we incorporate three sub-experiments, each
testing the efficacy of single costs, multiple costs, or optimally combined fusion costs. Specifically,
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the experiments of using single costs (S2E1) cover all travel cost features individually, whereas multi-
ple costs (S2E2) involve a fusion of these features into a unified representation. Conversely, optimally
combined fusion costs (S2E3) follow a comparative evaluation of all feasible combinations of diverse
travel costs, selecting the most optimal combination for utilisation in OD estimation. Such combina-
tion test results in 57 outcomes. An example of the combination list is shown in Table 3.2.

In S3, we assess the performance of each combination of travel cost features, resulting in 57 out-
comes. This analysis provides evidence regarding the optimal selection of travel cost features that
maximise benefits in OD estimation. Both the fusion of all travel cost features (S3E1) and the optimal
combined fusion costs (S3E2) are tested under this setup.

3.4 Results

3.4.1 Correlation across travel cost features

FIGURE 3.4: Correlation matrix across six travel cost features for bus networks (left)
and train networks (right).

A correlation matrix helps identify relationships between variables and is useful for understanding
patterns and dependencies in the data. In our case study, we consider six travel cost features that have
a deterrence effect on trip distribution to estimate the OD matrix for PT networks. Three of these six
features are traffic characteristic-related, while the other four features are graph topological features.
They are all related to the PT networks, but the internal relationships between each feature are still
unknown. We want to identify the overlapping features or any new correlation between features that
have never been found. In order to see the correlation between features, we visualise the assessment
using a correlation matrix.

In the correlation matrix illustrated in Figure 3.4, each cell represents a Pearson correlation co-
efficient. A coefficient of 1 indicates a strong positive relationship between variables, 0 indicates a
neutral relationship, and -1 suggests a strong negative relationship. The Pearson correlation coefficient
quantifies the linear correlation between two sets of feature data.

In the correlation matrix for bus networks, see Figure 3.4 left, we observe a notable correlation
among traffic state features, particularly between travel time and route distance, with a correlation
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coefficient of 0.96. This correlation arises because both variables capture aspects of the spatial rela-
tionship between two points within the network.

However, such a strong correlation is not as evident in the train network. This discrepancy can be
attributed to the small size of the train network that we have available for this case study. In addition,
train networks, unlike bus networks, operate more according to fixed schedules dictated by passenger
demand and constrained by infrastructure limitations (such as capacity, speed, maintenance require-
ment, and crew schedule). These factors lead to variability in travel time relative to geographical
factors, thus weakening the correlation between travel time and route distance in train networks.

Regarding the topological features in the bus network, we can observe that closeness (which re-
flects the reciprocal of the sum of distances from a node to all other nodes in the network), is related to
straightness (which reflects the ratio of the Euclidean distance over the shortest path), with a coefficient
of 0.45. Similarly, for a train network, the closeness is related to the straightness, with a coefficient
of 0.37. One possible explanation for this correlation could be that a well-connected network with
multiple routes may allow PT passengers to travel more in shorter distances.

Additionally, in small train networks, closeness shows a higher relation to connection (reflecting
the total number of links connected to a given node), where the correlation coefficient is 0.43. This
indicates that the train stations with more connections are likely to be centrally located and accessi-
ble to other stations, resulting in shorter average distances to reach other destinations in the network.
However, bus networks often have a more decentralised structure, with multiple routes and stops dis-
persed throughout the network. This decentralised nature reduces the correlation between connection
and closeness in bus stations, as there may not be a clear hub-and-spoke pattern as observed in the
train network.

3.4.2 Calibration results of deterrence function considering single travel cost

Following the Hyman’s method S2: In this section, we assess the performance of six distinct travel
cost features across three different forms of the deterrence function, as per Hyman’s approach within
the Gravity Model framework. The results based on MAPE, presented in Table 3.3, indicate that
power forms exhibit effectiveness in a large bus network, with average computation times of 138s.
The feature of closeness performs superior to all other features. By using the exponential function,
closeness and straightness perform well. The straightness suits Tanner’s function better than the rest.
The analysis of RMSE results reveals more prominent outliers in the estimated matrix when employing
the power function. According to the MAE results, the magnitude of errors between the estimated and
historical matrices is relatively low when considering a Tanner function. Notably, the Tanner function
does not align with the distribution for travel time.

For a small network such as the train network examined in this case study, we note the remarkable
effectiveness of all functions, particularly the exponential function, which displays rapid convergence
and calculation. Evidently, all function forms prove suitable for estimating OD superior performance,
depicted in Table 3.3, connection and travel time demonstrate superior performance when following
an exponential function. However, obtaining travel time by stops necessitates the timetable travel time
for all connected trips along public transport routes based on GTFS data, which consumes significant
computing time compared to the other features, posing a major drawback to its utilisation. Given that
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the connection feature also exhibits similarly superior performance, both travel time and connection
have been selected for further assessment, as illustrated in Table 3.7.

Following Traverse Searching method S1: Based on the results obtained from Hyman’s method,
we gain insights into the optimal fitting function and the ideal range of parameters. Subsequently, we
conduct a thorough investigation into parameter performance through a traverse search. We select the
exponential function for fitting purposes for both bus and train networks.

As depicted in Table 3.4, for the bus network, connection and travel time exhibit the most favourable
performance, achieving a MAPE of 35.06%. This stands in contrast to the results obtained from Hy-
man’s method, where the best MAPE of 36.20% was achieved by employing a power function con-
sidering closeness. This means the adjustment of parameters within the deterrence function proves to
enhance the performance of OD estimation. However, it is imperative to acknowledge that Traverse
Searching entails a significant drawback in time consumption. Hence, while investigating parameters
and deterrence function forms hold merit, weighing the time investment associated with such endeav-
ours is essential.

For train networks, travel time consistently exhibits superior performance, while the connection
feature appears to deviate from its optimal parameter during the search process. This underscores
the importance of incorporating the Hyman method (or other pre-search method ) for preliminary
parameter range exploration.

3.4.3 Calibration results of deterrence function considering multiple travel costs

Following the Hyman’s method S2: Acknowledging the effectiveness of integrating multiple travel
costs in prior OD estimation studies, we introduce a scenario considering multiple travel costs. We
standardise the costs by normalising their mean values to streamline the integration process. Thus, all
travel cost features share an equal mean value of 1, facilitating fusion. As demonstrated in Table 3.5,
the fusion cost notably enhances the accuracy of the OD estimation for the bus network. However, its
efficiency is reduced when applied to the train network. This observation highlights the significance
of optimal cost selection or appropriately weighing the costs. Notably, when adopting a fusion cost
approach, the exponential form emerges as particularly effective for both types of networks, while the
power function proves unsuitable for this specific case study.

Following the Entropy-weighted method S3: S3 follows the Entropy-weighted method outlined
in Section 3.2.2, where we determine the weight assigned to each travel cost feature and construct
an ensemble cost for fitting to deterrence functions. The results presented in Table 3.5 reveal that
entropy ranking is effective for enhancing OD estimation accuracy in small train networks, facilitating
convergence and improvement. However, in the case of bus networks examined in this study, while
Hyman’s method already yields favourable outcomes, further enhancements achieved through entropy
weighting are comparatively modest.
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TABLE 3.3: Calibration results of deterrence function considering single travel cost
using Hyman’s method.

Unit of computing time is second (s)

TABLE 3.4: Calibration results of deterrence function considering single travel cost
using Traverse Searching method.

Unit of computing time is second (s)

TABLE 3.5: Calibration results of deterrence function considering multiple travel costs
using Hyman’s and Entropy method.

Unit of computing time is second (s)
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FIGURE 3.5: MAPE for the combination of travel cost features in train networks, fitted
by an exponential function using the Entropy-weighted method.

3.4.4 Calibration results of deterrence function considering optimal combination of
travel costs

Determination of optimal combination of travel cost features: To further investigate the performance
of various travel cost features and their combinations on OD matrix estimation, we conducted a per-
formance comparison of various combinations of travel cost features, as shown in Table 3.2. Such
an experiment transversely estimates the OD matrix using all possible combinations of travel cost
features based on the Gravity Model.

Due to space constraints, we solely present the comparison results for the train network utilising the
Entropy-weighted approach and fitting by the exponential function, and their performance is assessed
based on the MAPE, as shown in Figure 3.5. The bars in the figure are arranged in ascending order
based on combination numbers ranging from 1 to 57. Notably, the most favourable outcomes are
achieved when utilising a combination of closeness, straightness and travel distance (Combination
number 28), see evaluation results which are summarised in Table 3.6. The performance of combined
travel cost features exhibits variability across different combinations, incorporating additional travel
cost features does not always improve the accuracy. Notably, outcomes are less favourable when
considering travel time, as evidenced by Combination numbers 48 and 56, which yield comparatively
poorer results.

In the case of train networks, when relying on Hyman’s method for calibration, the optimal feature
combination comprises closeness, straightness and travel distance (Combination number 28) and a
combination of closeness, straightness, fare cost and travel distance (Combination number 47), where
both combinations achieve a notably low MAPE value of 0.8%. As Combination 47 involves four
features, we opt for Combination 28, which comprises three features, as the optimal choice. Evaluation
results for this optimal fusion are presented in Table 3.6.

For the bus network, under both the deterrence function utilising Hyman’s method and the Entropy-
weighted approach, the optimal combinations of features consist of closeness and straightness (Com-
bination number 6). This combination demonstrates minimal MAPE values, indicating their superior
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TABLE 3.6: Calibration results of deterrence function considering optimal combina-
tion of travel costs using Hyman’s and Entropy method.

Unit of computing time is second (s)

performance, with an error rate as low as 1.50% (see Table 3.6). The consistent MAPE values across
these combinations suggest that both the Hyman and Entropy methods facilitate effective calibration
of travel costs, resulting in optimal outcomes as long as the best feature combination is found.

3.4.5 Comprehensive comparison of calibration methods performance on OD estima-
tion

TABLE 3.7: Summary of optimal calibration method with suitable travel cost features
or combined travel cost features.

Drawing from the analyses conducted above, we consolidate the optimal deterrence function cal-
ibration function and features in Table 3.7. This section overviews each experiment’s performance
metrics, including MAE, MAPE, and RMSE.

Comparison of performance using various calibration methods when optimal travel costs are
adopted for bus network: By comparing the bar charts in Figure 3.6, we observe that the method
of S2E3 and S3E2 performs the best among others in an accurate OD estimation when estimating the
OD matrix for the bus network. Their MAE value is 0.015 (see Figure 3.6 a)), which means that by
using the proposed method, we can obtain an estimated OD matrix that is approximately 97% more
accurate than that estimated by using other methods.

Examining the MAE, it is observed that the inclusion of fusion travel costs leads to increases in
the magnitude of errors. However, when considering the MAPE and RMSE, Figure 3.6 b) and c), the
utilisation of fusion travel costs demonstrates superior performance by enhancing relative accuracy and
effectively reducing large outliers. Implementing the optimal combined travel costs further amplifies
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FIGURE 3.6: Bus network errors evaluated between the ground truth and various cost
matrix estimations by using: a) MAE b) RMSE c) MAPE, and time-dependent error

distribution by using d) MAPE for the proposed Entropy-weighted method.

these benefits, resulting in a 98% reduction in MAPE error for S2E3 and S3E2 compared to other
scenarios, along with a 95%reduction in RMSE error.

Figure 3.6 d) presents the time-dependent error distribution, showcasing the MAPE for the pro-
posed Entropy-weighted method. The figure illustrates consistently low MAPE values across all time
slots. However, a slight peak is evident from 8:30 to 9:30, aligning with the peak patronage hour.

Comparison of performance using various calibration methods when optimal travel costs are
adopted for train network: In this comparison, single travel costs (specifically, travel time S2E1
and connection S2E2) outperform the utilisation of multiple travel costs within the proposed method,
as indicated by lower MAE and RMSE values. Apart from S2E1, where travel time is incorporated
into the deterrence function, the performance of the proposed Entropy-weighted method stands out
according to MAPE, which, on average, is 61.04% less than that for others. We extend our analysis
to compare the time-dependent performance of S2E1, S2E4, and S3E2, as depicted in Figure 3.7 (d).
Notably, all methods demonstrate consistently low MAPE values across all time slots, unaffected even
during peak hours, contrasting with the results observed for large bus networks.
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3.4.6 Importance of travel cost features in demand estimation

We introduced Shannon’s entropy-ranking method to evaluate the weights for certain travel cost fea-
tures. As detailed in Section 3.2.2, each travel cost feature is ranked by Shannon’s entropy derived
from the impact probability of the cost. We then treat the entropy as a measure of the importance
of assessing different travel cost features in estimating the demand matrix. The features with higher
impact probabilities and lower entropy scores would be more significant in determining demand, and
their inclusion would lead to more accurate demand matrix estimations. As shown in Figure 3.8 below,
we display the entropy of travel cost features.
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FIGURE 3.8: Normalised importance of each travel cost feature in bus and train OD
estimation based on Entropy-weighted method.

The importance of each travel cost feature depends on the entropy calculated based on Shannon’s
entropy. The entropy calculated for each feature is then processed to determine the percentage of the
total entropy contributing to the overall cost. This percentage can be used to determine the relative
importance of each feature in influencing the overall cost. Since entropy is a measure of uncertainty,
at this stage, the importance determined by the entropy means the uncertainty of the cost feature adds
to the overall cost when estimating the demand pattern. Thus, the larger the importance calculated,
the higher the influence on the demand estimation.

As shown in Figure 3.8, blue bars represent the importance of each travel cost feature for buses
captured by entropy. It is observed that closeness and straightness play a significant role in estimating
demand patterns for buses. Network closeness, as introduced in Section 3.2.2, is determined by the
connectivity between each node in the network. Therefore, a more connected network is likely to have
a higher demand as more effective travel is allowed. The straightness refers to the effectiveness of
travelling between each node pair; High straightness in a bus network indicates that routes between
stops are relatively direct and straightforward. The high importance of these features matches that
passengers are often more willing to use a bus system that provides a direct and short route between
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their OD. This is the major reason for including a bus system citywide: provide direct and short trips,
improve accessibility and offer reliable and affordable transport for more residents.

The orange bars depict the significance of each travel cost feature for trains as determined by en-
tropy analysis. In a small network such as a train network, a broader array of travel cost features
influences OD estimation, with closeness, straightness and travel time emerging as the top three influ-
ential factors. In contrast to bus networks, the stability of travel time in train networks is enhanced by
limited stops, designed schedules, pre-defined routes and adjusted travel speed. Consequently, travel
time becomes an essential factor to consider when estimating the OD matrix for train networks.

3.5 Conclusion

This chapter provides a new framework for a dynamic large-scale stop-by-stop OD estimation model
for PT. In this model, we emphasise a microscopic stop-based OD matrix, yet in order to simplify
the computing workloads, we assume that the time interval is 15 minutes and calculate the number
of trips between any OD pair for every 15 minutes to mimic the dynamic condition. The proposed
framework shows the ability of our model to examine the effects of the travel cost matrix, namely
the “single travel cost feature”, “multiple travel cost features” and the “entropy-weighted multiple
travel cost features”, reflected by various performance metrics (MAE, RMSE and MAPE) between
the ground truth matrix and the estimated matrix. The proposed large-scale OD estimation model is
established based on the Gravity Model with total generation and attraction (GA vectors) by stops,
network physical configuration data and transport services operation data on inputs. In terms of the
input data, the smart card data that enables the GA vectors’ estimation is used; and the PT GTFS data
is processed for the cost matrix data from topological-level cost features, including the connection,
closeness, straightness and efficiency, and the traffic-level cost features, such as the travel distance or
the travel time as well as the travel distance-based fare costs.

This research study proposed a novel deterrence function calibration method, where Shannon’s
entropy is employed for weighting the feature for each node (represented by a PT stop). These are due
to the fact that the method has pre-weighted the cost features before combining the impact of the cost
feature together and applying them in the process of iterative parameter calibration, and the process
of weighing the cost features can be separated from the iterative OD matrix estimation, which re-
duces the load of iterative computing. The performance of the Entropy-weighted method is contrasted
with traditional Hyman’s and Traverse Searching methods. In bus networks, the Traverse Search-
ing method demonstrates the capability to identify optimal parameters, consequently enhancing es-
timation accuracy. Moreover, the fusion of travel cost features achieved through both Hyman’s and
Entropy-weighted methods contributes to further improvements in accuracy. It is worth noting that
an optimal combination of travel costs (closeness and straightness) holds the potential to enhance the
accuracy of bus OD estimation further. Optimal deterrence function calibration for small train net-
works is achieved when utilising a single travel cost, such as travel time or connection. While the
incorporation of fusion travel costs decreases accuracy in OD estimation, the effective combination of
practical travel cost features (closeness, efficiency and fare cost when calibrating by Hyman’s method
or closeness, straightness and travel distance when calibrating by Entropy-weighting method) leads to
a notable increase in accuracy.
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Additionally, after illustrating the mean errors by time, the time-dependent tendency of error fluc-
tuation matches the timely number of trips in the network: the peak errors occur when the maximum
number of trips occurs in the network (at about 8:30-9:30). This indicates that the network over-
crowding is associated with the accuracy of the OD estimation by using the proposed model.

Limitations and Future Directions: In our research study, a framework for a dynamic stop-
by-stop OD matrix estimation for large-scale PT is provided. However, the model does not directly
include the impact of general traffic, such as the delay time. Although the travel time is captured by
using the scheduled time, we could have compared it with the historical travel time captured from
smart-card data.

The proposed PT OD matrix estimation model has the potential to be integrated into other transport
networks, such as car networks, to form a large-scale multi-modal OD matrix estimation model. In this
research, due to the data availability issue, we only establish the model for bus and train networks. The
same modelling process can be applied to estimate the OD matrix for cars, light-rails or on-demand
solutions.

Furthermore, an area for future research could involve examining transfers between bus and train
networks subsequent to OD estimation. Although our historical smart-card data contains limited infor-
mation on transfers—specifically, we can identify transfer trips but lack details on matching upstream
and downstream transfer trips. Subsequent research endeavours may concentrate on aligning upstream
and downstream transfer trips and exploring the number of transfers.

In regard to the deterrence function calibration, there is room for further exploration of parameters.
However, due to time constraints in this chapter, we have limited our focus to the Hyman and Traverse
Searching methods. Many other estimation models, such as the Competing Destination Model (see
Thorsen and Gitlesen, 1998), the Self Deterrence Model with Quadratic Cost (SDMQC) (see Fang,
Science, and 1995, 1995), or a combination of these models (see Grange, Fernández, and Cea, 2010),
hold potential for investigation. Beyond the modelling approach, the form of the deterrence func-
tion can also be expanded to include functions like Weibull, Box-Cox, or March (see Rubio-Herrero
and Muñuzuri, 2021), among others. Using smart-card data, various other methods can be tested to
generate OD matrices based on historical data. These methods include regression models, maximum
likelihood estimation, Bayesian estimation, and machine learning algorithms.

Regarding the findings from the traverse search results, we have identified a tipping point where the
MAE remains constant regardless of changes in parameter values. Investigating the underlying reasons
for this phenomenon could be a direction for future research. Additionally, exploring the tipping point
when considering travel cost features beyond those examined in this chapter may provide insights into
the relationship between travel cost and the accuracy of estimated OD matrices.
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Chapter 4

Modelling public transport disruptions
and impact by smart-card data

Evaluating disruptions in public transport utilisation is challenging due to often stochastic traveller
behaviour and missing data information on affected services. This chapter proposes a new approach
for modelling PT patronage and disruption impact using integrated data-driven modelling and the
Fourier transform technique. Firstly, using tap-on and off information of smart-card data, we estimate
in-vehicle passenger numbers to integrate as well as trips passing through the incident area. Secondly,
considering the PT patronage pattern as a periodic function, we employ the Fourier transform to con-
vert it into a sum of simpler trigonometric functions to filter out the one representing common data
noise successfully and generate an accurate profile for a typical day. Thirdly, we introduce an enhanced
sensitivity test to improve the model’s ability to identify the impact of the disruption. Finally, multiple
impact measurement methods are compared to capture the disruption impact.

The findings demonstrate the effectiveness of leveraging in-vehicle count to maximise data volume
and enhance impact identification. The PT patronage pattern can be effectively modelled using the
Fourier transform. The utilisation of the enhanced sensitivity test can effectively filter out unnecessary
trigonometric components, resulting in a refined model capable of accurately identifying the impact
of disruption.

This chapter is based on an edited edition of the following article: Zhao D, Mihaita AS, Ou Y,
Grzybowska H. Modelling public transport disruptions and impact using smart-card data. IEEE In-
telligent Transportation Systems Conference 2023.
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4.1 Introduction

4.1.1 Background and motivation

In a multi-modal transport network, a road traffic disruption always extends beyond its own network.
These disruptions can affect related bus lines, train services, and, subsequently, the overall transport
network. The bus network shares mobility rights with other road transport modes, and is very sensitive
to road traffic disruptions. If an incident occurs on public transport (PT), passengers who are affected
by the disruption may seek alternative modes of transportation to continue their journeys. This in-
creased demand for alternative transport services can create unexpected changes in the transportation
system. When disruptions occur on major transportation modes like trains, the consequences can be
significant. For example, in the case of a train strike in London (see Saberi et al., 2018), the disruption
in the train network can lead to city-wide congestion and have a widespread impact on commuters.
With limited or no train services available, hundreds and thousands of passengers are affected, and
the demand for alternative travel modes, such as shared bicycles, buses or subway services, increases
dramatically (see Yuming Ou and Adriana-Simona Mihăiţă and Fang Chen, 2022, Ou, Mihaita, and
Chen, 2020).
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These unexpected changes in demand can strain the transport network, especially if it exceeds
the network’s capacity to handle such disruptions. However, it is also essential to consider scenarios
where the impact is relatively small, such as a localized disruption caused by a road accident or a
vehicle breakdown. These situations are more common in daily life and may not have a city-wide
influence, but they could be one of the influence factors for unstable traffic (see Zhao, 2019). This
chapter aims to tackle this issue by examining the daily PT patronage profile and investigating the
impact of road incidents on this patronage pattern. By understanding the daily movement of PT users
in the network, we gain insights for making informed decisions to enhance the PT service and ease
the cooperation between private vehicles and PT.

Analyzing the patronage pattern can guide improvements in the supply of PT services, ensuring
they align with the needs and preferences of passengers. However, when compared to the travel pattern
analysis for private vehicles, analysis regarding PT travel patterns has received relatively less atten-
tion in the literature due to limited data availability and modelling methods. To model the PT travel
behaviour, data collection can be carried out through various means, such as census or surveys (see
Rahimi et al., 2021), smart-card data (see Assemi et al., 2020), or utilizing the General Transit Feed
Specification (GTFS) data (see Zhao, 2019). Data-driven methods often rely on machine learning
and deep learning algorithms (see Saleh, Grigorev, and Mihaita, 2022, Grigorev et al., 2022b, Grig-
orev et al., 2022a, Wen et al., 2018, Grigorev et al., 2022b). These techniques utilize the available
data to extract meaningful insights and make accurate impact predictions (see Ou, Mihaita, and Chen,
2020; Shafiei et al., 2021b; Wen et al., 2018), and some of them will focus on also predicting how
long disruptions will last in the network Mihaita et al., 2019, Shafiei, S. and Mihaita, A.S. and Cai,
2019. On the other hand, simulation-based methods are commonly used in the literature to estimate
PT patronage patterns. These methods involve creating simulations following assignment models that
replicate real-world scenarios, allowing researchers to observe and analyze the change in behaviour
and dynamics of PT systems (see Zhao et al., 2022; Shafiei et al., 2021b; Wen et al., 2018; Saberi
et al., 2018; Zhao, 2019; Shafiei et al., 2020) so that the essential regarding the impact on the network
can be captured and modelled. Some propose as well optimisation techniques under disruptions to
ease impact (see Mao, Mihaita, and Cai, 2019).

In this research chapter, we analyze the PT patronage patterns using real smart-card data and
compare the normal versus incident circumstances in order to estimate the impact on PT users. As an
observation, the PT patronage appears to have a daily repetitive occurrence, and we draw inspiration
from signal analysis principles. Therefore, we employ a Fourier transform function to fit the data and
filter out the noise, enabling us to model the underlying pattern of PT patronage effectively. In the past,
one study utilized the method to model road traffic patterns by analyzing traffic volumes derived from
mobile data (see Abera and Hailemariam, 2018). Another study employed the graph Fourier transform
(GFT) for a similar purpose (see Chindanur and Sure, 2018). However, these studies primarily focused
on modelling private vehicle traffic and not public transport patronage. By establishing a robust model
capable of accurately representing traffic patterns, we take an additional step in our research by not
only modelling the PT patronage pattern but also applying the model to identify the effects of incidents
on patronage.



96 Chapter 4. Modelling public transport disruptions and impact by smart-card data

4.1.2 Chapter Contributions

To summarise, the main theoretical and methodological contributions of this chapter are the following:
• We introduce a novel method for dynamically modelling PT patronage patterns by incorporating

the Fourier transformation to effectively reduce the influence of noise and enhance the accuracy
and reliability of the model;

• We employ the frequency domain following the Fourier transform to segregate the components
of PT patronage patterns, enabling us to identify and isolate the significant elements within these
patterns;

• We apply a synergistic approach that combines analytical techniques with data-driven methods
to identify the impact of incidents on PT passengers;

• We perform the ability of multiple measuring metrics, such as correlation measures (Pearson’s
correlation coefficient), distance measures (Chebyshev distance, Wasserstein metric, Minkowski
difference and Cosine similarity) and statistical tests (change, Percentage change and Symmetric
percentage change);

• We propose a new application by integrating big data resources, among which GTFS data,
smart-card and incident log data when excavating the information for analysing the network
vulnerability.

This chapter is organised as follows. In Section 4.2, the dynamic PT patronage pattern model con-
sidering the Fourier transform is discussed, and the details of incident impact identification metrics
are also included. The application of the proposed methods to a real network is presented in Sec-
tion 4.3, and the results of the case study are demonstrated in Section 4.4, where detailed modelling
processes are demonstrated. Finally, the research conclusion and the future directions are provided in
Section 4.5.

4.2 Methodology

4.2.1 Entity of PT patronage

Number of boarding and alighting

Given smart-card data, we can produce the number of boarding and alighting for each PT stop at
each time spot or for each time interval, in order to represent the PT patronage. Each record 𝑟 in the
smart-card data, based on the availability for use in this research, can be expressed as:

𝑟(𝑖, 𝑢𝑖, 𝑗, 𝑢𝑗 , 𝑏, 𝑑), (4.1)

where each parameter in a record 𝑟 represents the tap-on stop 𝑖, tap-on time 𝑢𝑖, tap-off stop 𝑗, tap-off
time 𝑢𝑗 , the bus number 𝑏 and the date of the recording 𝑑. To obtain the number of boarding and
alighting for a certain stop 𝑖, 𝑖 ∈ {1… 𝐼} during a period of time (𝜏), we only need to count the
number of records, denoted as 𝑁𝑏𝑜𝑎𝑟𝑑𝑖𝑛𝑔

𝑖 (𝜏𝑎), 𝑎 ∈ {1…𝐴}, where 𝑎 represents the 𝑎𝑡ℎ time interval
of a day, 𝐴 is the total number of time interval defined for a day; similarly, the number of alighting at
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a specific stop during a time interval can be expressed as 𝑁𝑎𝑙𝑖𝑔ℎ𝑡𝑖𝑛𝑔
𝑗 (𝜏𝑎)), 𝑗 ∈ {1… 𝐼}. The number

of boarding and alighting people under an impact of disruption can be expressed as 𝑁𝑏𝑜𝑎𝑟𝑑𝑖𝑛𝑔′
𝑖 (𝜏𝑎)

and 𝑁𝑎𝑙𝑖𝑔ℎ𝑡𝑖𝑛𝑔′
𝑗 (𝜏𝑎)). The total number of boarding persons, counted during the time interval 𝜏 can be

denoted, according to Iverson bracket notation, as:
𝑁𝑏𝑜𝑎𝑟𝑑𝑖𝑛𝑔

𝑖 (𝜏𝑎) =
𝑁
∑

𝑛=1
[𝑢𝑖(𝑛) ∈ 𝜏𝑎], (4.2)

where 𝑢𝑖(𝑛) represent the 𝑛𝑡ℎ tap-on time recorded in the data set; if this time belongs to 𝜏𝑎 is true,
then [𝑢𝑖(𝑛) ∈ 𝜏𝑎] is 1; otherwise, this record is not counted.

Based on the given definition, we observe that the patronage data relying on boarding and alighting
focuses on the bus stops where passengers get on and off while ignoring the passed stops along a trip.
However, when it comes to trips passing through an area affected by an incident with persons already
boarded at other stations, this counting method fails to account for the actual number of passengers
impacted. Therefore, to accurately determine the number of disrupted passengers specifically caused
by the incident, an in-vehicle passenger count is also necessary. This method allows us to count the
number of passengers affected within the impacted area and provides a more precise measure of the
disruption’s impact.

Number of in-vehicle passengers

Since we hold the information around the time and location when passengers got on/off the bus, we
can define the number of in-vehicle passengers for each time interval at each PT stop. For each smart-
card data record 𝑟, we are able to calculate the number of time intervals (𝜏) through which this trip
passes from the start until the end:

𝐾 =
𝑢𝑗 − 𝑢𝑖

𝜏
, 𝑘 ∈ 0…𝐾, (4.3)

For each 𝜏 passed by a trip, a passenger is counted at each 𝑘𝑡ℎ interval 𝜏𝑘. 𝐾 is estimated by
rounding the number of 𝜏 in order to improve processing accuracy. In our study, we consider 15
minutes as the time interval, so if a record of patronage starts at 8 am and ends at 9 am, instead of
counting this record by boarding time (interval 8:00-8:15) once, we count it four times, for 8 am, 8:15,
8:30 and 8:45 slot to represent that this passenger is inside the vehicle from 8 am to 9 am.

According to the above definition, each record in the smart-card data set has added another element
regards to the in-vehicle time, represented by 𝜐𝑖,𝑘, where 𝑘 denotes the 𝑘𝑡ℎ time interval 𝜏 that this trip
is passing through:

𝜐𝑖,𝑘 = 𝑢𝑖 + 𝑘𝜏. (4.4)
Therefore, each record in the data set is updated by adding an in-vehicle time 𝜐𝑖,𝑘 which equals the

𝑢𝑖, and 𝐾 − 1 new records are filled in the data set which corresponding to their boarding location 𝑖,
boarding time 𝑢𝑖, in-vehicle time 𝜐𝑖,𝑘, PT number 𝑏 and date 𝑑, denoted as:

𝑟(𝑖, 𝑢𝑖, 𝜐𝑖,𝑘, 𝑏, 𝑑). (4.5)

Following the definitions, the number of in-vehicle passengers becomes:
𝑁 𝑖𝑛−𝑣𝑒ℎ

𝑖 (𝜏𝑎) =
𝑁
∑

𝑛=1
[𝜐𝑖,𝑘(𝑛) ∈ 𝜏𝑎]. (4.6)
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4.2.2 Modelling PT patronage via the Fourier Transform

By taking into account the total number of passengers onboard, it now becomes possible to identify
the number of affected passengers by comparing the change between a travel pattern on the day of the
incident and on a typical day. To estimate the travel pattern, we require to use the incident log data,
including information regarding incident time, duration, and location. In order to obtain the travel
pattern for a typical day, one can apply either the traditional approach of averaging the patronage counts
during non-incident days, or the Fourier transform and filter out noises from daily travel patterns.

In this work, we propose to use the Fourier Transform to analyse time-dependent signals in the
frequency domain; it is a tool for decomposing a complex and repetitive behaviour pattern by summing
up the sines and cosines functions. This concept can be adapted for the PT patronage estimation
because such a patronage pattern is time-varying and repetitive over a certain time, exhibited by distinct
peaks during the morning and afternoon periods. The seasonality enables the patronage patterns to be
predictable by using the discrete Fourier transform function. According to Brunton and Kutz, 2021,
the frequency-domain function following the discrete Fourier transform can be expressed as:

𝑓 (𝜏) =
𝛼0
2

+
𝐻
∑

ℎ=1
(𝐴ℎ sin(ℎ𝜔𝜏 +𝜑ℎ) +𝐵ℎ cos(ℎ𝜔𝜏 +𝜑ℎ)). (4.7)

where 𝐴ℎ is given to describe the amplitude of the 𝑠𝑖𝑛𝑒 function while 𝐵ℎ is the amplitude of the
𝑐𝑜𝑠𝑖𝑛𝑒 function. These two parameters indicate how much sine and cosine functions should be in-
cluded to estimate the function of the travel pattern. 𝜔𝜏 indicates the frequency component of the
trigonometrical function and 𝜑ℎ is the phase of the trigonometrical function.

By decomposing the patronage pattern function into multiple sine and cosine waves, it becomes
possible to convert the data from the time domain to the frequency domain and following this, capture
the regularity exhibited on the frequency scale. In the frequency domain, we have the magnitude
spectrum by frequency (or the power spectrum in signal analysis). Those frequencies with significant
magnitudes are considered major frequencies, which indicate the dominant power contained within
the signal, while frequencies with low magnitudes are treated as noise. Utilizing this information, we
can filter the useful data from noise data based on magnitude. This is how we de-noise or approximate
any arbitrary function by summing up a determined set of trigonometric functions.

4.2.3 Measurements of impact

There are several methods for measuring the impact of the incident according to the change of patron-
age with and without the incident. The options for measurement include correlation measuring, such
as Pearson’s correlation coefficient; the metrics related to distance, such as the Chebyshev distance,
the Wasserstein metric, the Minkowski difference and Cosine similarity, as well as the statistical tests,
such as the change, the Percentage change and the Symmetric percentage change.

1) Change:
𝐼𝑐ℎ𝑎𝑛𝑔𝑒(𝑁,𝑁 ′) = 𝑁 −𝑁 ′, (4.8)

where 𝑁 represents a set of patronage counts (number of in-vehicle passengers, as described in Equa-
tion 4.6) for a typical day and 𝑁 ′ for the incident day.
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2) Percentage change and symmetric percentage change: To avoid the problems triggered by
the value for the disrupted situation being zero, we adopt the symmetric percentage change, as well,
which is given as Equation 4.10.

𝐼𝑃𝑐ℎ𝑎𝑛𝑔𝑒(𝑁,𝑁 ′) = 𝑁 −𝑁 ′

𝑁 + 𝜆
× 100%, (4.9)

where 𝜆 is a smoothing factor used to avoid computing problems when dividing by zero.
𝐼𝑃𝑐ℎ𝑎𝑛𝑔𝑒(𝑁,𝑁 ′) = 𝑁 −𝑁 ′

𝑁+𝑁 ′

2

× 100%, (4.10)

By using the symmetric percentage change, the result that approaches either 2 or -2 means that
there is no similarity between the two data sets, while if the result ranges to zero, it indicates that these
two data sets have high similarity.

3) Cosine similarity: which is the dot product of the number of in-vehicle passengers affected
by an incident 𝑁 ′ and the number of counts for a typical day, as:

𝐼Cosine(𝑁,𝑁 ′) = 𝑁 ⋅𝑁 ′

‖𝑁‖‖𝑁 ′
‖

=
∑𝑚

𝑚=1𝑁𝑚𝑁 ′
𝑀

√

∑𝑀
𝑚=1𝑁𝑚

2
√

∑𝑀
𝑚=1𝑁 ′

𝑚
2
, (4.11)

4) Chebyshev distance: This is defined as the maximum distance along any coordinate dimen-
sion which measures the greatest discrepancy in values between the corresponding coordinates of the
vectors being compared:

𝐼Chebyshev(𝑁,𝑁 ′) = max
𝑚

(|𝑁𝑚 −𝑁
′

𝑚|), (4.12)

5) Wasserstein distance: The metric serves as a distance function defined between probability
distributions on a given metric space. 𝑁 and 𝑁 ′ are two measures on a metric space R × R; the
Wasserstein distance between these two measures is defined as the integration of the distance between
any two matched points times the amount of the mass of moving from one point to another. Thus
Wasserstein distance is given by:

𝐼Wasserstein(𝑁,𝑁 ′) = 𝑖𝑛𝑓𝜋∈Γ(𝑁,𝑁 ′) ∫R×R

|𝑁 −𝑁 ′
|d𝜋(𝑁,𝑁 ′), (4.13)

where 𝜋 is the joint probability measure on R × R with marginals 𝑁 and 𝑁 ′.
6) Minkowski difference:

𝐼Minkowski(𝑁,𝑁 ′) = ‖𝑁 −𝑁 ′
‖𝑝 == (

∑

|𝑁 −𝑁 ′
|

𝑝)1∕𝑝, (4.14)

where 𝑝 is the order of the norm of the difference between 𝑁 and 𝑁 ′. When 𝑝 = 1, the Minkowski
distance is the same as the Manhattan distance, while 𝑝 = 2, such distance is the same as the Euclidean
distance. The value of 𝑝 is 3 in this chapter based on the experiment’s comparison result.

7) Pearsons correlation coefficient (PCC): PCC is a way of quantitatively measuring the linear
correlation; it assesses the extent to which changes in one variable are associated with corresponding
changes in another variable, both in terms of direction and magnitude.

𝐼PCC(𝑁,𝑁 ′) =
∑

(𝑛𝑚 − 𝑛)((𝑛′𝑚 − 𝑛′)
√

∑

((𝑛𝑚 − 𝑛)2
∑

(𝑛′𝑚 − 𝑛′)2
. (4.15)
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4.3 Case study

4.3.1 Network characteristics

FIGURE 4.1: Map of the Sydney M2 area showing road and PT networks.

The study focuses on the zones in the North-West region of Sydney, encompassing the M2 motor-
way and comprising significant residential and commercial sectors. The geographical extent of this
area, depicted in Figure 4.1, aligns with the boundaries defined by the Statistical Area Level 2 (SA2)
Australian Bureau of Statistics, 2021 in digital mapping, where there are 79 bus lines consisting of
3,799 bus stops.

4.3.2 Sample of a hypothesised incident

To evaluate the feasibility of metrics on identifying the impact of patronage patterns due to the traffic
disruption, we consider comparing the modelled typical profile with a hypothesised incident one and
reflecting the impact by metrics as mentioned in Section 4.2.3.

The hypothesised incident scenario is created following the details of a real incident (as introduced
in Section 4.3.3 below). However, rather than directly comparing the day of the incident with a mod-
elled typical day, we measured the difference in passenger count during the incident duration. We then
incorporated this change into the patronage of the modelled typical day, effectively creating a hypoth-
esis day of the incident. The details of the disruption are designed to mirror the scenario presented in
Section 4.3.3, with a start time of 2017-04-05 at 10:03:59 and a duration of 50 minutes. To simplify
the modelling process, we approximate the time unit to 15 minutes. This makes the hypothesised in-
cident start from 10:00:00 (time interval 40) until 10:45 (time interval 43). During the disruption, the
impact manifests as an increase in patronage, with 2,397 additional passengers distributed across three
15-minute intervals (927, 790 and 680 passengers, respectively). To assess the impact, we manually
adjust the count within the modelled typical day scenario for each time index interval. This allows us
to observe the resulting changes reflected in the impact measuring metrics.
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4.3.3 Sample of a real incident

In order to measure the impact of an incident, the sample incidents selected from the incident log
data set should follow the considerations: such incident duration is long enough (at least 30 minutes)
to be able to display the impacts through the PT patronage; such incident is away from the PT-only
lane; because the impact on patronage for an isolated PT could be minor Zhao, 2019; such incidents
should be located in prominent residential and commercial sectors considering the uneven distribution
of patronage data. A sufficiently large dataset of patronage is necessary to ensure a discernible impact;
such an incident possesses a substantial potential to impact PT patronage significantly.

In this research, we have selected and tested multiple sample incidents to ensure that our findings
are applicable to a wide range of scenarios. However, for the purpose of showcasing the results and
the limited space, we specifically selected this particular incident in this chapter:

• Start time: 2017-04-05 10:03:59
• Duration: 50 min
• Type: Bus Breakdown

More data analysis results can be found in supplementary material Online-supplement, 2022. All
results displayed in the following sections correspond to this sample incident.

4.4 Results and discussion

4.4.1 Profiling a typical day patronage pattern using the real data

To capture the count pattern for a typical day, we explore two methods. The first method involves
calculating the average of multiple non-incident days, where the day of the week matches that of the
incident. This approach takes into account the observation that different days of the week exhibit dis-
tinct patronage patterns, as shown in Figure 4.3. In the case of an incident occurring on Thursday, 5
April 2017, we gather the remaining non-incident Thursdays in April 2017 and compute the average
count for each day. As mentioned in Section 4.2.1, to optimize data input and streamline data process-
ing, we have chosen to calculate the total number of in-vehicle passengers at each PT stop instead of
separately considering boarding and alighting counts.

This approach effectively doubles the data size by incorporating the combined number of tap-
on and tap-off events, as depicted in the three plots in Figure 4.2. This consolidation simplifies the
analysis while maximizing the available data as follows: 𝑎) Figure 4.2 demonstrates the number of
in-vehicle passengers with and without an incident, where the red dash line in the figure highlights the
duration of the sample incident. Comparing this figure with 𝑏) and 𝑐) in Figure 4.2, which is generated
by using the number of boarding and alighting, we observe that the total number of in-vehicle count
on a typical day is 17,779 and that on the incident day is 18,014, whereas the sum of count for tap-on
on a typical day is 9,310, and on the incident day is 9,565; additionally, the tap-off on a typical day
is 11,224, and the number of tap-off on the incident day is 11,342. This comparison highlights that if
we would utilize only the original tap-on data then we would have approximately 47% of trips being
ignored when compared to using the in-vehicle passenger count. Similarly, when using the original
tap-off data, approximately 37% of trips are overlooked.
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FIGURE 4.2: Patronage on a typical (non-incident) versus incident day by a) in-vehicle
passengers, b) tap-on passengers, c) tap-off passengers.

4.4.2 Modelling a typical day patronage pattern using the Fourier transform

All sub-figures in Figure 4.2 present challenges in distinguishing between a typical profile and an
incident profile. Despite observing numerous fluctuations and variations between the two profiles in
both figures, it remains challenging to discern which changes are specifically attributed to the incident
under investigation. This difficulty comes from the complex nature of the system, making it hard
to ascertain the impact of the incident on the PT patronage pattern. The complexity of the system
necessitates the purification of patterns by removing unnecessary noise. This requirement motivates
the application of the Fourier transform, as it allows for the decomposition of complex patterns into
individual simple and determined components. By examining the performance of each component
separately, we can approximate the incident’s impact as noise within the seasonal travel pattern.

FIGURE 4.3: Weekly time domain depicted using real smart-card data.

For the specific incident under consideration, we collect a week of data encompassing the incident
day and apply the Fourier transform to convert the time domain into the frequency domain. After
removing the noise components in the frequency domain, we reverse the denoised frequency domain
back to the time domain to form the profile for a typical day. From this denoised time domain, we select
the travel pattern for Thursday as our representative pattern. According to the weekly travel pattern
depicted in Figure 4.3, we only select the data for Monday to Friday. These weekdays show a similar
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pattern, which makes them suitable for our analytical purposes. To better visualise the tendency in
the plot, we convert the date and time information into date-time-index (𝛼) by 15 minutes.

Frequency domain: After applying the analytical process outlined in Section 4.2.2, we convert
the seasonal time domain into the frequency domain. The frequency domain representation is depicted
in Figure 4.4, with the left plot showcasing the overall magnitude spectrum and the right plot specif-
ically highlighting the dominant components. In this representation, a frequency of 1/15 minutes is
utilized, implying that each frequency value corresponds to the number of occurrences of a repeating
event within a 15-minute interval. The properties for the top three components (highlighted by the
red dots in the right sub-plot of Figure 4.4) are displayed in Table 4.1 and processed by adding period
information to make the data more understandable.

FIGURE 4.4: Frequency domain representation.

Period and seasonality: To enhance comprehension, we convert the frequencies to periods (see
Table 4.1) by taking the reciprocal of the frequency, represented in hours and days. Each period value
means the duration of time of one cycle in a repeating event. This conversion facilitates a clearer
understanding of the data. The highest magnitude (given as the first row of data shown in Table 4.1

TABLE 4.1: Samples of the Fourier transform outcomes.
Notes: FFT result is the Fourier transform outcome, in complex value; Mag is magnitude; Freq is frequency per 15 minutes; Pd(h) is period by hour; Pd(d) is period by day.

matching the highest bar in the right figure of Figure 4.4), representing the most notable seasonal
patterns, exhibits a period of 8 hours (in Table 4.1), indicating that this event repeats every 8 hours,
aligning with the off-peak hours. The second highest magnitude corresponds to a period of 12 hours,
reflecting the morning and afternoon peaks that repeat every half day. The event with the third highest
magnitude repeats daily (repeated every 24 hours), suggesting it captures the overarching function that
describes the seasonality of the patronage pattern throughout the day.

Decomposition of travel pattern: The Fourier transform, as defined in Section 4.2.2, involves
transforming a function into a series of increasing high-frequency periodic functions. In the context
of PT travel patterns, we can decompose the pattern into repetitive sub-functions. By examining the
periods obtained through the Fourier transform, as shown in Table 4.1, we can match the period in-
formation to the actual seasonality. At this stage, we can effectively filter out the noise and capture
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the dominant characteristics of the travel pattern. In other words, the Fourier transform allows us to
isolate and analyze the significant ingredients of the PT travel pattern while disregarding irrelevant
fluctuations or noise. Figure 4.5 demonstrates the major frequency components in the PT patronage
pattern plotted by sines and cosines. We can observe that the periodic peaks of each sub-function align

FIGURE 4.5: Top three frequency components in weekly PT patronage pattern.

with the count pattern depicted by the actual count data (represented by the blue wave in Figure 4.5).
The orange wave, with a period of 8 hours, corresponds to three off-peak periods in the time domain
representation (blue wave). The green wave, with a period of 12 hours, matches two peak hour pe-
riods. Lastly, the red wave, with a period of 24 hours, captures the day and night periodicity. This
alignment demonstrates how the sub-functions derived from the Fourier transform effectively capture
the characteristic patterns present in the actual count data.

FIGURE 4.6: Time domain by reverse Fourier transform considers top three compo-
nents.

FIGURE 4.7: Mean absolute error (MAE) of various extent of filtered time domain by
reverse Fourier transform and real data.

Given that the components derived from the Fourier expansion exhibit harmonic frequencies,
phases, and amplitudes, we can cumulatively combine them to construct the desired approximate func-
tion, as shown in Figure 4.6. In the time-domain representation, the yellow line represents the pattern
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considering only the top component (No.1 in Table 4.1); incorporating the top two components re-
sults in the result plotted in green, while considering all three top components yields the red line in
the time-domain representation.

As we incorporate additional components and transform the frequency domain back to the time
domain using the inverse Fourier transform, the modelled pattern increasingly aligns with the original
pattern. This is proved by results in Figure 4.7.

Filtered time domain representations: Upon transforming the time-domain representation into
a frequency-domain one, we have broken down the travel pattern into several periodical functions.
Our next step is to determine which periodic functions should be incorporated to construct a modelled
travel pattern that is not only clean in structure but also accurately reflects the tendency of patronage
pattern. Therefore, we conduct a sensitivity test to evaluate the impact of different periodic functions
on the model performance. The outcome of the sensitivity test is presented in Figure 4.7, which extends
the findings presented in Figure 4.6. This figure illustrates the modelling performance ranging from
incorporating the top component to including all 70 components.

In Figure 4.7, we can observe that adding more component functions during the modelling process
leads to a reduction in mean absolute error (MAE), which indicates an improved model performance.
Notably, the curve shows a deeper slope within the range of 0 to 10 compared to that between 20 and
30 and further. This implies that the advantages gained by including less than 10 components are
insufficient while including more than 30 components appears to be unnecessary. So the ideal range
should be between 10 to 20.

FIGURE 4.8: Time domain by reverse Fourier transform considers top 15 components.

Consequently, at this stage, we consider the repetitive components and their meaning in the real
world to determine whether the frequency/period should be included, as the explanation for Table 4.1.
And we decided to model the PT patronage pattern by using the top 15 components while excluding the
remaining components. To showcase the efficacy of our modelling approach, we employ the inverse
Fourier transform to generate a time-domain representation of the model, as depicted in Figure 4.8.

Nevertheless, given that the primary objective of this chapter is to assess the impacts of disruptions
on the PT patronage pattern, we must consider if the modelled typical profile can reflect the impacts
effectively. To this end, we enhance the sensitivity test by including a similarity test between the
modelled typical and incident profiles; the detailed explanation can be found in Section 4.4.3.
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FIGURE 4.9: Performance of metrics considers a hypothesised incident profile.

4.4.3 Incident impact measurement

Measure the impact of the hypothesised incident

Through the application of a hypothesized incident, we are able to control the level of noise (variables),
enabling us to assess the performance of the metric directly.

The presented Figure 4.9 illustrates the outcomes of all metrics (as shown in subsection 4.2.3)
employed to evaluate the resemblance between the profile of the modelled typical day (using 15𝑡ℎ

significant periodic components) and the incident day. In this figure, we can observe that all metrics
perform well when identifying the change in patronage.

Measure impact using real incidents

However, when measuring the change using data with noises (measuring the impact using real inci-
dent and modelled typical profile), the count change Figure 4.10-a) and symmetric percentage change
Figure 4.10-b) follow the flow of the peak and off-peak hours; the percentage change, Cosine similar-
ity Figure 4.10-c) and Pearson’s correlation Figure 4.10-b) prove to be less effective as they closely
align with the large percentage change. In contrast, distance measurements in Figure 4.10-d) exhibit
better performance. Out of the Chebyshev distance, Wasserstein distance, and Minkowski difference
metrics, the Chebyshev distance yields a more straightforward shape that effectively illustrates the
observed trend. Consequently, we solely present the results utilizing the Chebyshev distance in the
subsequent visual representations.

As mentioned in the last paragraph of Section 4.4.2, it is crucial to assess the ability of the modelled
profile to capture the impact accurately. This approach enables us to determine the optimal combina-
tion of components that can effectively represent the PT patronage pattern for a typical day so that we
are able to encapsulate the influence of a real-life incident effectively.

The result is displayed in Figure 4.11 following metrics of Chebyshev distance. It is apparent that
incorporating the top three components yields the most satisfactory outcome. However, upon visualis-
ing the measurement results over time, as depicted in Figure 4.12-a), we notice substantial disparities
during peak hours in the morning and afternoon. Thus, solely accounting for the similarity between
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FIGURE 4.10: Performance of metrics considers the real incident profile.

FIGURE 4.11: Modelling sensitivity test

an ordinary day and an incident day might not be adequate to best encapsulate the disruption’s effect
on the PT patronage pattern; this implies that the model generated using the top three components
may not necessarily be the most optimal choice for impact identification purposes.

Figure 4.12 displays a series of snapshots that show the performance of identifying the disruption
impacts. Each snapshot indicates the performance of adding a different number of frequency domain
components when modelling; the model performance is reflected by the Chebyshev distance (green
line). For example, Figure 4.12-a) shows the result when adding the top three components, where the
similarity of a typical (blue line) and incident (orange line) day is evaluated by the Chebyshev distance.
The red dash lines highlighted the incident duration. However, it is difficult to discern any noticeable

FIGURE 4.12: Performance of real incident impact detection by including the 𝑛𝑡ℎ
frequency domain components: a) 3𝑡ℎ, b) 6𝑡ℎ, c) 11𝑡ℎ, d) 15𝑡ℎ, e) 18𝑡ℎ, f) 30𝑡ℎ.
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differences during the incident in this sub-figure. Instead, the peak measurements are predominantly
evident during the morning and afternoon peak hours.

When we include a greater number of components in the modelling of the typical day, for instance,
as shown in Figure 4.12-c), where the top 11 components are considered, we can observe a distinct sub-
peak during the incident duration (as indicated by the two red dashed lines). However, it’s important
to note that the peak measurements persist during the morning and afternoon peak hours, which can
be attributed to the significant flow and substantial fluctuations that typically occur during these times.

The observed performance trend in Figure 4.12 aligns with the findings presented in Figure 4.11.
When incorporating the top three components, the model primarily captures the characteristics of
the morning and afternoon peaks. However, by including the top 11 components, the model is able to
capture not only the impact during peak hours but also the concurrent noise resulting from the incident.
Furthermore, as more components are added, the model’s performance remains relatively stable.

4.5 Conclusion

The proposed method in this chapter aims to dynamically model the PT patronage patterns and iden-
tify the impacts of road incidents on PT users. The proposed method applies the Fourier transform to
decompose complex patterns into distinct waves; this allows the dominant components of the patron-
age pattern to be capturable and used as the reference (typical) profile for traffic analysis. One specific
application showcased in this chapter is impact identification. The presence of peak hours makes it
challenging to capture the current incident impacts accurately. However, through an enhanced sen-
sitivity test that considers the performance of impact identification, we can improve the modelling
ability of the typical day. This improvement enables us to capture the current impact effectively. Mul-
tiple sample incidents are tested using this method, and the results obtained are robust. However, due
to word limitations, only the results of one sample incident are presented in this chapter. More data
analysis results can be found in supplementary material Online-supplement, 2022.

The proposed modelling method allows us to identify the optimal typical profile. However, the
current model’s effectiveness relies on a substantial amount of count data and certain disruptions (such
as prolonged durations and locations far from the PT-only lane) to generate precise results. These lim-
itations present opportunities for enhancement in future research. While zonal data is utilized in the
analytical processes, we believe that focusing solely on nearby stop data, for example, for analysis
could significantly enhance the model’s ability to identify and assess the impact using this particular
modeling approach. As for future directions, further exploration can focus on decomposing the pat-
terns and effectively identifying the noise generated by disruptions, such as recurring congestion or
incidents. This would allow for quantifying the impacts of these disruptions by using wave functions,
for example. Additionally, the model has the potential to be expanded to incorporate spatial analysis.
By introducing an additional spatial dimension, it becomes possible to capture the evolution of im-
pacts based on location. This extension would provide valuable insights into the spatial dynamics of
disruptions and their effects on PT patronage patterns.
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Chapter 5

Traffic disruption modelling with mode
shift in multi-modal networks

A multi-modal transport system is acknowledged to have robust failure tolerance and can effectively
relieve urban congestion issues. However, estimating the impact of disruptions across multi-transport
modes is a challenging problem due to a disaggregated modelling approach applied to only individual
modes at a time. To fill this gap, this chapter proposes a new integrated modelling framework for a
multi-modal traffic state estimation and evaluation of the disruption impact across all modes under
various traffic conditions. First, we propose an iterative trip assignment model to elucidate the as-
sociation between travel demand and travel behaviour, including a multi-modal origin-to-destination
estimation for private and public transport. Secondly, we provide a practical multi-modal travel de-
mand re-adjustment that takes the mode shift of the affected travellers into consideration. The pros
and cons of the mode shift strategy are showcased via several scenario-based transport simulating
experiments. The results show that a well-balanced mode shift with flexible routing and early an-
nouncements of detours so that travellers can plan ahead can significantly benefit all travellers by a
delay time reduction of 46%, while a stable route assignment maintains a higher average traffic flow
and the inactive mode-route choice help relief density under the traffic disruptions.

This chapter is based on an edited edition of the following article: Zhao D, Mihaita AS, Ou Y,
Shafiei S, Grzybowska H, Qin K, Tan G, Li M. Traffic disruption modelling with mode shift in multi-
modal networks. IEEE ITSC 2022, Macao, China.
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5.1 Introduction

5.1.1 Background and motivation

Resilient cities have recently embraced a fully-connected multi-modal transport network that gives
travellers more freedom when choosing when, where and how to travel. However, multi-modal urban
environments are also vulnerable due to the lack of tolerance against an ever-growing population, an
expanding travel demand, a high private car ownership, deficient transport design, inadequate traffic
control and flawed travelling or driving behaviour (see Rahman et al., 2021).

To improve the efficiency of the transport system at a large scale, the encouragement of a travel
behaviour change and active mode shift is an encouraging option studied recently (see Ettema et al.,
2016). Many other research studies reinforce this initiative by providing substantial evidence via data-
driven, or simulation-based approaches (see Wen et al., 2018; Mihăiţă, Dupont, and Camargo, 2018;
Mao et al., 2021). The data-driven approaches capture the real traffic behaviour before and after dis-
ruptions, and some applications are used in programs such as: INPHORMM, TAPESTRY or Travel
Smart (see Ma, Mulley, and Liu, 2017). Other early studies revealed the value of public transport
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by investigating the change of traffic states (e.g. section flows, traffic volumes or travel times) and
proposed an entire public transport service removal when massive public transport disruptions occur
or when service is suspended (see Moylan, Foti, and Skabardonis, 2016; Adler and Ommeren, 2016).
Few studies that consider a simulation approach mention that the change in the level of congestion be-
fore and after the removal of public transport services would clarify the significance of public transport
(see Nguyen-Phuoc et al., 2018). More recently, the unprecedented COVID-19 pandemic has heavily
modified the travel demand and provided evidence with regards to the impact of traffic demand across
all mode shifts in a city (see Das et al., 2021).

Challenges: All previous studies solve the mode choice problem before departing, and most pub-
lications provide modelling methods from a macroscopic or a mesoscopic level based on a statistical
analysis. There is little research into investigating the benefits of an active mode shift from a dynamic
microscopic perspective and its impact when traffic disruptions occur. A significant gap is present
due to the lack of data regarding the impacted demand under incidents and active mode shifts. Some
studies rely on surveys or a stated preference obtained ahead of trips to obtain the number of impacted
travellers or the number of mode and route shifts (see Auld et al., 2020; Guzman et al., 2021). How-
ever, we emphasise identifying the impacted origin-to-destination (OD) trips affected by disruptions
in a simulating model, and the change of mode and route choice that leads to a demand change is
employed for evaluating the impact on network performance in our work.

Apart from the lack of data, quantifying the impact of disruptions is also a major challenge; some
research studies have analysed the change of trip-based mean delay, mean speed (see Aftabuzzaman,
Currie, and Sarvi, 2010) or travel time (see Nguyen-Phuoc et al., 2018). However, such indicators
can hardly differentiate the impact from the general traffic (e.g. recurrent congestion) or from traffic
control strategies. To address this issue, we work across several indicators versus baseline conditions
in order to evaluate the efficiency of the proposed ones.

FIGURE 5.1: Framework of our proposed multi-modal transport network modelling under
disruptions.

Another major challenge of dynamically simulating the mode shift is the lack of dynamic demand
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data and the method of integrating the OD estimation across different transport modes in order to iden-
tify the impacted trips. Most previous research studies only consider a single-mode (see Thompson
et al., 2019), while some research studies model car-based transportation versus public transportation
differently (see Hussain, Bhaskar, and Chung, 2021). Extensive evidence considers the OD estimation
from total generation and attraction data based on the gravity model. This method has been largely
developed with the improvement of mathematical, analytical and computational skills. However, the
large potential of the gravity model approach in the transport field has not yet been fully explored,
as most research studies attempted to investigate the OD matrix for a single transport mode, mostly
cars. There is still a need to consider the influence of other transport modes when mode splitting and
trip assigning under a multi-modal public transport environment. The challenge of integrating the OD
matrices of various public transport modes with that of private vehicles is still unsolved.

5.1.2 Chapter Contributions

In this chapter, we propose an integrated modelling approach comprised of multiple stages, from the
data selection and filtering to the origin-to-destination estimation modelling across multiple modes,
down to a dynamic assignment and microscopic simulation modelling aimed at evaluating the impact
of disruptions across multiple modes. Finally, we propose a mode shift impact modelling to evaluate
the best mitigation strategies and employ different disruption impact indicators such as delay time,
flow, density and travel time for identifying the impacts.

Another important contribution represents the investigation of the mode shift behaviour according
to dynamic traffic states; more specifically, we provide a method to examine the change in traffic states
and the travel costs due to mode and route shifts under traffic disruptions. We model the decision-
making en-route and the mode choice relies on an iterative traffic assignment; this means that, for
those flexible travellers, the route choice is modifiable during their travelling, and the decision-making
is more appealing than those travellers who are loyal to the initial routing plan. To summarise, the
main theoretical and methodological contributions of this chapter are:

• an integrated OD estimation modelling framework for multi-modal transport networks,
• a suitable spatial-temporal disruption impact modelling via a multi-modal transport simulation

approach,
• a dynamic traffic assignment model that simulates the mode shift behaviour via a dynamic de-

mand adjustment,
• an analytic method regarding the mechanism of mode shift as well as its impact under traffic

disruptions.
This chapter is organised as follows. In Section 5.2, the dynamic trip assignment model is dis-

cussed, and the details of the integrated OD estimation is highlighted in Section 5.2.2, followed by the
methodology of traffic disruption modelling and the procedures for determining the spatial-temporal
impact of traffic disruptions in Section 5.2.3. The model for mode shift and impacted trips identifi-
cation are included in Section 5.2.4. The application of the proposed methods to a real network is
presented in Section 5.3 and the results of the case study are demonstrated in Section 5.4. Finally, the
research conclusion and the future directions are provided in Section 5.5.
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5.2 Methodology

5.2.1 Modelling framework

Figure 5.1 showcases our proposed modelling framework for evaluating the impact of disruptions
across multi-mode transport networks. The framework consists of three stages: at Stage 0 we collect,
filter and aggregate all the input data-sets (such as traffic flow counts, traffic control plans, incident
logs, etc.); at Stage 1 we propose a multi-modal demand estimation modelling with the purpose of
obtaining an integrated multi-modal OD demand matrix (see details in Section 5.2.2); at Stage 2 we
further propose a dynamic trip assignment and demand refinement based on the impact of transport
disruptions (as explained in Section 5.2.3), and finally, at Stage 3 we construct various mode and route
shift strategies and their impact on the traffic congestion, as further described in Section 5.2.4.

5.2.2 Integrated multi-modal OD estimation (Stage 1)

The multi-modal transport system is firstly modelled by implementing a four-step demand estimation
model but adapted to multiple public transport modes, as shown in Stage 1- Figure 5.1, including
trip generation and attraction (Step 1), trip distribution (Step 2), modal split (Step 3) and static trip
assignment at the macroscopic level (Step 4), followed by a calibrated travel demand path assignment
plan (Step 5). The study area consists of 𝑍𝑗 , 𝑗 = {1… 𝐽} zones, and for each time period 𝑡, the travel
demand matrix, which is the main output of this stage (Output 5), is denoted as:

𝑂𝐷𝑘(𝑡) =
[

𝑇 𝑘
𝑖,𝑗(𝑡)

]

𝑍×𝑍
, 𝑖, 𝑗 = {1… 𝐽}, (5.1)

where 𝑇 𝑘
𝑖,𝑗 stands for the number of trips originating from zone 𝑖 and arriving at zone 𝑗 at time interval 𝑡

by transport mode 𝑘. Due to space constraints, we provide the mathematical modelling of the Gravity-
Model for multi-mode public transport in the supplementary material (see Online-supplement, 2022),
while focusing in the following on the incident impact modelling.

5.2.3 Disruption modelling without mode shift (Stage 2)

By using the calibrated OD demand from Stage 1 and the reported incident logs, we further apply
a dynamic trip assignment which re-adjusts and generates a dynamic and time-dependent OD matrix
that is used for: a) evaluating a baseline scenario where people travel as usual, without any disruptions
(see Output 6), and b) evaluating the impact of reported accident logs but assuming that people do not
make any changes to their trips, and instead wait for the incident to be cleared off (see Output 7).

Indicators for impact identification

The indicator we use when determining the impact of a traffic disruption𝐷 on link 𝑙 during time period
𝑡 is the ratio of the traffic state parameter 𝑣, which is illustrated by the following formulas:

𝑅𝐷
𝑙 (𝑡) =

(

𝑣𝛼𝑙 − 𝑣𝐷,𝛽
𝑙

)

(𝑡)

𝑣𝛼𝑙 (𝑡)
(5.2)
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Δ𝑣𝐷𝑙 (𝑡) =
(

𝑣𝛼𝑙 − 𝑣𝐷,𝛽
𝑙

)

(𝑡) (5.3)
where 𝑣𝛼 is the traffic state not affected by disruptions, 𝑣𝐷,𝛽

𝑙 is the traffic state affected by the
disruption and Δ𝑣𝐷𝑙 (𝑡) represents the scale of the impact; finally 𝑅𝐷

𝑙 (𝑡) stands for the ratio of a baseline
versus a disrupted network. The total number of links in the study area is 𝑙, 𝑙 = {1…𝐿}; 𝛼 represents
the baseline traffic situation; 𝛽 represents the situation when the traffic disruption 𝐷 is impacting the
network at time period 𝑡.

To understand the change of traffic states, various indicators such as mean link delay time 𝑡𝑑𝑒𝑙𝑎𝑦𝑙 (𝑡),
mean travel time 𝑡𝑡𝑟𝑎𝑣𝑒𝑙𝑙 (𝑡), flow 𝑓𝑓𝑙𝑜𝑤

𝑙 (𝑡) or density 𝑓 𝑑𝑒𝑛𝑠𝑖𝑡𝑦
𝑙 (𝑡) during time period 𝑡 are used for ratio

impact analysis provided later in the Results section.
The overall traffic disruption in the network that impacts the traffic states is represented by:

𝐷(𝑡) = 𝑔

( 𝐿
∑

𝑟=1
𝑑𝛾
𝑟 (𝑡)

)

(5.4)

where the impact of the disruption is the function of the sum of all appeared disruptions in the network
during a time period 𝑡; 𝑑 is the individual disruption event; 𝑟 indicates the location of the disruption,
𝑟 = {1…𝐿}; 𝛾 is the binary parameter that indicates whether the disruption is impacting or not the
link 𝑙 during 𝑡.

Temporal impact identification: The total impact duration (Δ𝑡𝑖𝑚𝑝𝑎𝑐𝑡𝐷 ) of the network is the ac-
cumulation of the time period from the time when the travelling of a vehicle is first impacted by the
disruption 𝐷 (𝑡𝑖𝑚𝑝𝑎𝑐𝑡−𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝐷 ) until the time when the first vehicle can travel as usual, without being
impact, denoted as 𝑡𝑖𝑚𝑝𝑎𝑐𝑡−𝑒𝑛𝑑𝐷 . Therefore, the total impact duration can be described by:

Δ𝑡𝑖𝑚𝑝𝑎𝑐𝑡𝐷 = 𝑡𝑖𝑚𝑝𝑎𝑐𝑡−𝑒𝑛𝑑𝐷 − 𝑡𝑖𝑚𝑝𝑎𝑐𝑡−𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝐷 (5.5)

with additional constraints with regards to the initial time of the disruption (𝑡𝐷−𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝐷 ), the end of the

disruption (𝑡𝐷−𝑒𝑛𝑑
𝐷 ) and the parameters of traffic states (𝑣𝐷,𝛽

𝑙 and 𝑣𝛼𝑙 ):

𝑡𝑖𝑚𝑝𝑎𝑐𝑡−𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝐷 ≥ 𝑡𝐷−𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝐷 (5.6)

𝜖
𝐿
∑

𝑙=1
𝑣𝐷,𝛽
𝑙

(

𝑡𝑖𝑚𝑝𝑎𝑐𝑡−𝑖𝑛𝑖𝑡𝑖𝑎𝑙
)

≥
𝐿
∑

𝑟=1
𝑣𝐷,𝛼
𝑙

(

𝑡𝑖𝑚𝑝𝑎𝑐𝑡−𝑖𝑛𝑖𝑡𝑖𝑎𝑙
) (5.7)

𝑡𝑖𝑚𝑝𝑎𝑐𝑡−𝑒𝑛𝑑𝐷 ≥ 𝑡𝐷−𝑒𝑛𝑑
𝐷 (5.8)

𝜖
𝐿
∑

𝑟=1
𝑣𝐷,𝛽
𝑙

(

𝑡𝑖𝑚𝑝𝑎𝑐𝑡−𝑒𝑛𝑑
)

≤ 𝜖
𝐿
∑

𝑟=1
𝑣𝐷,𝛼
𝑙

(

𝑡𝑖𝑚𝑝𝑎𝑐𝑡−𝑒𝑛𝑑
) (5.9)

where 𝜖 is the factor of impacted traffic state that indicates the pre-defined level of impact. For instance,
if 𝜖 is 90% and the indicator is delay time, the link is assumed to be impacted by the disruption
when 90% of the link delay time is greater than the delay time for the baseline scenario. As for the
representations of traffic states, such as travel speed, that are reduced by the disruption, the associated
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constraints are switch from Equation 5.7 to:
𝐿
∑

𝑟=1
𝑣𝐷,𝛽
𝑙

(

𝑡𝑖𝑚𝑝𝑎𝑐𝑡−𝑖𝑛𝑖𝑡𝑖𝑎𝑙
)

≤ 𝜖
𝐿
∑

𝑟=1
𝑣𝐷,𝛼
𝑙

(

𝑡𝑖𝑚𝑝𝑎𝑐𝑡−𝑖𝑛𝑖𝑡𝑖𝑎𝑙
) (5.10)

from Equation 5.9 to:

𝜖
𝐿
∑

𝑟=1
𝑣𝐷,𝛽
𝑙

(

𝑡𝑖𝑚𝑝𝑎𝑐𝑡−𝑖𝑛𝑖𝑡𝑖𝑎𝑙
)

≥
𝐿
∑

𝑟=1
𝑣𝐷,𝛼
𝑙

(

𝑡𝑖𝑚𝑝𝑎𝑐𝑡−𝑖𝑛𝑖𝑡𝑖𝑎𝑙
) (5.11)

Spatial impact identification via links: The time impact of the disruption is captured from a network-
wide perspective, but the spatial impact can be analysed via a link-based analysis:

𝑆𝐷(𝑡) = [𝑙𝛾 (𝑡)] (5.12)

where 𝛾 is the binary parameter that indicates whether the disruption is impacting the link 𝑙 during
𝑡; similarly to the time impact, we define the following constraints when the impacted links can be
identified if:

𝜖𝑣𝐷,𝛽
𝑙

(

𝑡𝑖𝑚𝑝𝑎𝑐𝑡−𝑖𝑛𝑖𝑡𝑖𝑎𝑙
)

≥ 𝑣𝐷,𝛼
𝑙

(

𝑡𝑖𝑚𝑝𝑎𝑐𝑡−𝑖𝑛𝑖𝑡𝑖𝑎𝑙
) (5.13)

𝜖𝑣𝐷,𝛽
𝑙

(

𝑡𝑖𝑚𝑝𝑎𝑐𝑡−𝑒𝑛𝑑
)

≤ 𝜖𝑣𝐷,𝛼
𝑙

(

𝑡𝑖𝑚𝑝𝑎𝑐𝑡−𝑒𝑛𝑑
) (5.14)

The impact on the incident duration can be defined by using the affected links as follows:

Δ𝑡𝑖𝑚𝑝𝑎𝑐𝑡𝑙,𝐷 = 𝑡𝑖𝑚𝑝𝑎𝑐𝑡−𝑒𝑛𝑑𝑙,𝐷 − 𝑡𝑖𝑚𝑝𝑎𝑐𝑡−𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑙,𝐷 (5.15)

Spatial impact identification via OD matrix: In terms of the zonal impact analysis, the affected
number of trips from an OD pair can be determined by comparing the OD matrix with or without the
disruption in the road network. The level of impact on trips is subjected to the ratio of the disparity of
trips travelled between zones in a baseline versus incident scenario, which is derived from Equation 5.2
as follows:

𝑅𝑇
𝑖,𝑗(𝑡) =

(

𝑇 𝛼
𝑖,𝑗 − 𝑇 𝛽

𝑖,𝑗

)

(𝑡))
(

𝑇 𝛼
𝑖,𝑗 + 𝜖

)

(𝑡)
, 𝑇 𝛼

𝑖,𝑗 , 𝑇
𝛽
𝑖,𝑗𝑎𝑛𝑑𝜖 ≥ (5.16)

where 𝑇 𝛼
𝑖,𝑗 indicates the number of trips between zone 𝑖 and 𝑗 under a baseline scenario, 𝑇𝐷,𝛽

𝑖,𝑗 represents
the disruption-impacted number of trips and 𝜖 is a small constant that is added at the number of trips
without impacting by any disruption in order to enable calculation, as in reality, some of the zone pairs
are inaccessible for a specific transport mode. The different between the baseline and the disruption-
impacted trips is denoted as Δ𝑇𝑖,𝑗(𝑡). Therefore, if the ratio of disparity trip is between 0 and 1,
then the number of trips inside the affected OD is reduced; while if the ratio is negative, the network
experiences an increase in the affected number of trips which can be explained by alternative modes
being deployed in the network by the affected number of people.
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Disruption modelling

The impacted travel cost of every link during time 𝑡 due to the reduction of link capacity should be
described as a function of disruption duration (Equation 5.15) and disruption scale (Equation 5.12):

𝐶𝑙(𝑡) = ℎ (𝑡, 𝑙) , 𝑙(𝑡) ∈ 𝑆𝐷(𝑡), 𝑡 ∈ Δ𝑡𝑖𝑚𝑝𝑎𝑐𝑡𝐷 (5.17)

This means that, for each impacted link during the incident, the properties of the link can be highlighted
by the capacity or by the limited travel speed change by time and location. Therefore, if we assume that
the travel cost is majorly subjected to the travel speed, the link closure can be described as 𝐶𝑙(𝑡) = 0,
where the limited travel speed equals zero during the disruption period; in terms of the simulation of
link capacity reduction, this can be achieved by introducing a weight to the designed limited travel
speed 𝑉 for each lane 𝑤 of the link 𝑙, which is denoted by 𝜂𝑙,𝑤. Therefore, the weighted limited travel
speed can be illustrated by 𝜂𝑙,𝑤𝑉𝑙,𝑤.

5.2.4 Disruption modelling under mode shift (Stage 3)

Mode shift modelling

The commonly used strategies to minimise travel costs are mode and route shifts. By mode shift,
we refer to the shift of the travel demand between different means of transportation. Therefore, the
objective of mode shift modelling is to first find the changeable demand for each transport mode, then
adjust it accordingly in the travel demand matrix in order to evaluate its impact. Such process is what
is illustrated as Step 7 and Step 8 with the highlighted Outcome 8 in Figure 5.1.

Given a scenario of a road network disruption, the perceived travel cost increases, and the decision-
making on mode and route choice is re-decided according to the utility function. The re-calculated
set of the shortest path by a transport mode will update the travel demand. For the updated travel
demand matrix, the number of impacted trips travelled by mode 𝑘1 due to the disruption is transferred
to demand travelled by mode 𝑘2, the number of transferred trips equals 𝛿𝑇 𝑘1,𝑘2

𝑖,𝑗 (𝑡). Hence, the travel
demand by a transport mode 𝑘1 between each pair of zones is calibrated by the impacted demand:

𝑇 𝑘1
𝑖,𝑗 (𝑡) = 𝑇 𝑘1

𝑖,𝑗 (𝑡) − 𝛿𝑇 𝑘1,𝑘2
𝑖,𝑗 (𝑡) (5.18)

With regards to a mode 𝑘2, the number of zonal trips is increased by 𝛿𝑇𝑖,𝑗(𝑡), and is denoted as:

𝑇 𝑘2
𝑖,𝑗 (𝑡) = 𝑇 𝑘2

𝑖,𝑗 (𝑡) + 𝛿𝑇 𝑘1,𝑘2
𝑖,𝑗 (𝑡) (5.19)

The origin travel demand matrices for transport modes 𝑘1 and 𝑘2 are denoted as [𝑇 𝑘1
𝑖,𝑗 (𝑡)] and [𝑇 𝑘2

𝑖,𝑗 (𝑡)],
separately, while the mode-shift adjusted matrices can be illustrated by [𝑇 𝑘1,𝛿

𝑖,𝑗 (𝑡)] and [𝑇 𝑘2,𝛿
𝑖,𝑗 (𝑡)], for

each. We make the observation that a similar approach can be undertaken regardless of the number of
modes in the network.
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Loyal and flexible travelling to route choice modelling

When disruptions occur, the change of travel cost and link properties will influence the shortest path
searching at the process of trip assignment (see Step 6 in Figure 5.1). This logic captures the reality
that travellers value travel costs before or during their travelling, which is reflected by the frequency of
decision-making on mode and route. Therefore, the travellers who have loyal travel behaviour tend to
travel by following their initial shortest path, which is searched before departing; they will not make
changes even if disruptions occur. However, travellers who are more sensitive to travel costs tend to
re-update their shortest path more frequently. The shortest path searching frequency is denoted by 𝜆,
and for those travellers that are loyal to their daily route, 𝜆 equals the simulation period. This is means
that the shortest path is only calculated once during the simulation period. For flexible travellers, the
𝜆 is set as 10 minutes, which means that the shortest path is re-adjusted every 10 minutes according to
the updated traffic states. This concept is applied in Scenario 3 and further detailed in Section 5.4.3.
This decision-making of mode and route can be simulated by a discrete choice model such as the
multinomial logit model (ML) through a function of utilities of all path alternatives. The impact of
a travel cost change on decision-making can also be well illustrated by applying a scale parameter to
the utility in the multinomial logit model; therefore, the ML model is adopted in this research study.

5.3 Case study

5.3.1 Geography information

The case study model is implemented in the Aimsun software and represents the city of Tarragona
in Spain, which contains 15 centroids, 71 nodes and 201 links. The nodes consist of 13 signalled
nodes (signalised intersections) and 58 connection nodes (unsignalised intersections or turns). The
links contain 201 road sections, including primary streets, freeways, ramps, roads, roundabout streets,
secondary streets, urban roads, tertiary streets and toll roads with different link capacities and pre-
defined limited travel speeds. There are 15 bus lines serving this area with 38 public transport stops.
The land use data along with the model is collected from the census in 2012, and the initial travel cost
data is generated from the trip matrices united in the vehicle for car and public transport users.

5.3.2 Hypothesised disruption details

To showcase our approach, we study the impact of the traffic disruption that took place at road section
300, as highlighted by the red shape in Figure 5.2.
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FIGURE 5.2: Map of the Tarragona area showing road networks and the disruption
location.

The definition and characteristics of the modelled disruptions are further categorised and described
by the following scenarios, where Scenario 1 and Scenario 2 intend to explore the consequences of the
disruption in time and space, while Scenario 3 attempts to understand the impact of mode shift on the
network performance as well as the network mobility. The setting details of each scenario and exper-
iment are presented in ?? In Scenario 1, we conduct three experiments categorised by the disruption
duration which can last 10, 30 or 60 minutes, according to the Equation 5.17 and the explanation pro-
vided in Section 5.2.3 regarding the link closure. Any vehicle impacted by the disruption drops the
travel speed to 0 km/h at the section. These experiments are named as whole lane suspended for 10,
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30 and 60 minutes in the next sections.
Scenario 2 contains a further three experiments defined by the disruption scale, when only one

lane is impacted by the incident for 30 minutes while the rest of the lanes on the affected section
remain functional, but the travel speed is reduced by 5, 25 and 30 km/h from 8:00 to 8:30 AM for each
experiment. Such scenarios describe the link capacity reduction as expressed in Section 5.2.3. These
experiments are named as single lane speed drop by 5, 25 and 30 km/h in the next sections.

In Scenario 3, we block the entire section from 8:00 to 8:30, and the travel speed drops to zero km/h
during the disruption, where the mode choice ahead or after represents the situation when travellers are
notified of the disruption before departing or after being blocked by a disruption; the loyal or flexible
route choice is represented by the frequency of the shortest path searching during the simulating period.
There are four experiments included in this scenario:

• Experiment 1 (S3E1): considers the situation when travellers are notified of the disruption be-
fore departing and make the decision of their mode choice ahead of the travelling, then choose
their regular transport mode for the entire simulation. The new mode choice influenced by the
disruption is identified by using the “shifted ahead” travel demand at the beginning of the simu-
lation (this means that the travel utility calculation for the shortest path searching only happens
once at the beginning of the simulation). These experiments are named as mode shift ahead,
loyal to route choice in the following subsections;

• Experiment 2 (S3E2): expresses the circumstances that, before the disruption, travellers follow
the baseline demand and travel loyally according to their normal route choice; however, after
the disruption occurs, they choose a new mode choice for finishing their trips. The travel utility
for the shortest path searching is calculated twice: at the beginning of the simulation and after
the shifted demand is applied at 8:30 AM (after the disruption occurrence) in order to simulate
the updated route choice for passengers. These experiments are further referred to as mode shift
after, loyal to route choice;

• Experiment 3 (S3E3): illustrates the same setups as for Experiment 1 but instead, we are search-
ing for the best path every 10 minutes to simulate a flexible travel behaviour for travellers. This
experiment is referred to asmode shift ahead, flexible to route choice in the following subsec-
tions;

• Experiment 4 (S3E4): demonstrates the setups that include both a mode and a flexible route
choice (meaning all travellers can switch between any type of mode and also between their
routing to finish their destination). This experiment closely follows real-life behaviour and is
referred to as mode shift after, flexible to route choice in the following sections.

For all modelled experiments in all three scenarios, the blockage clear time is estimated based on
each vehicle following the rule that the vehicle departs immediately at the end of the blockage, which
is the end time of disruption (𝑡𝑖𝑚𝑝𝑎𝑐𝑡−𝑒𝑛𝑑). The earlier-arrived vehicles depart ahead of the later-blocked
vehicles.
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5.4 Results

5.4.1 Scenario 1 results: impact of various disruption duration

The results of modelling the impact of various disruptions according to Scenario 1 are shown in Fig-
ure 5.4 and Figure 5.5. These two figures demonstrate the time-dependent change of traffic states,
namely delay time, flow and density, using a link closure as the disruption modelling method (defined
in Section 5.2.3). The traffic state ratios shown in Figure 5.5 are calculated by using Equation 5.2.
The results are compared to the Baseline states, which allows us to investigate the impacts of various
disruptions from the baseline.

FIGURE 5.4: Impact of various disruption duration on a) delay time, b) flow and c)
density

Figure 5.4 and Figure 5.5 combines the outputs for the morning peak hours, where the disruptions
occur at 8:00 AM and last for 10, 30 or 60 mins. The mean delay time shown in Figure 5.4a) shows
a significant impact post-accident, especially after 08:30-9 AM. When comparing the delay time of
the baseline and their impact ratios (Figure 5.4a and Figure 5.5a) we observe that: a) for a 10-min
disruption ending at 08:20 AM, there is a delay time ratio of -63%, b) for a 30-min disruption occurring
at 08:40, the delay ration quickly reaches -312% (4.59 times higher than that of a small incident); and
this is more severe c) for a 60-min disruption reaching its delay peak at 09:10 AM, when the delay
ration is -1128 (more than ten times from the baseline).
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FIGURE 5.5: Impact of various disruption duration on a) delay time ratio, b) flow ratio
and c) density ratio

5.4.2 Scenario 2 results: impact of various disruption scales

The temporal impact of a disruption is also highly related to the disruption speed scale, as shown in
Figure 5.6, where the curves of the delay time, flow and density ratios are presented. Following the
Scenario 2 details from Section 5.3.2 and the disruption modelling method externalised by a capacity
reduction in Section 5.2.3, the result indicates that the severity of the disruption against delay time
increases with the single lane speed drop. From Figure 5.6a), we can see that the delay time does not
change much in the three experiments, though there is still a peak in delay time ratio which appears
at the same time (around 8:10 AM). This means that the scales of disruption could hard influence the
occurrence of the peak delay. Figure 5.6b) and Figure 5.6c) show that the hypothesised single-lane
speed drop also has a slight negative impact on the traffic flow and density. As shown by curves, a
speed drop by 30 km/h (orange curve) results in more change in flow but it rarely impacts the change
in density.

5.4.3 Scenario 3 results: impact of mode and route shift

The impact of mode shift is analysed according to the Scenario 3 defined in Section 5.3.2, where the
main strategy is a travel demand adjustment: affected passengers switch from the impacted public
transport to cars following either a loyal and/or flexible route choice behaviour. At this stage, for
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FIGURE 5.6: Impact of various disruption scales on a) delay time ratio, b) flow ratio
and c) density ratio

those experiments applying mode shift ahead of departing (S3E1, S3E3), the adjusted public transport
demand is increased while the car demand is decreased from the beginning of the simulation. While
for the experiments that apply the mode shift after disruption (S3E2, S3E4), the demand adjustments
are conducted after the disruption ends. The loyal and flexible route choice behaviours have been
depicted in Section 5.2.4.

The shifting on travel demand (Step 7) is illustrated in Figure 5.1 and after another round of dy-
namic trip assignments based on the shifted dynamic travel demands via the four scenarios (Step 8-11),
we analyse the Outputs 8-11 which reflect the impact of mode shift and route shift on the road network
performances, as shown in Figure 5.7 and Figure 5.8.

Figure 5.7 provides a comparison of the estimated travel demand across morning peak hours (7:00-
10:00 AM), for the following experiments: Scenario 1 Experiment 2 (S1E2: whole lane suspended
for 30 minutes), Scenario 3 Experiment 1 (S3E1: mode shift ahead, loyal to route choice), Scenario 3
Experiment 2 (S3E2: mode shift after, loyal to route choice), Scenario 3 Experiment 3 (S3E3: mode
shift ahead, flexible to route choice) and Scenario 3 Experiment 4 (S3E4: mode shift after, flexible to
route choice).

As shown in Figure 5.7, the mode share maintains the same for experiments Baseline and S1E2,
while after the demand adjustment ahead of travelling (see results of S3E1 and S3E3), the shares of
car increase more dramatically than the demand adjustment after disruption (see results of S3E2 and
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S3E4) when the demands for public transport decrease contrarily. The impacts of mode and route shift
on traffic states are further discussed in following Section 5.4.3 and Section 5.4.3.

FIGURE 5.7: Comparison of travel distribution by transport modes

Impact of mode shift

The impact of mode shift is compared by analysing the delay time ratio 𝑅((𝑡𝑑𝑒𝑙𝑎𝑦𝑙 (𝑡)), the flow ratio
𝑅(𝑓𝑓𝑙𝑜𝑤

𝑙 (𝑡)) and the density ratio 𝑅(𝑓 𝑑𝑒𝑛𝑠𝑖𝑡𝑦
𝑙 (𝑡)), based on experiments S3E1 and S3E2. As shown

in Figure 5.8 a), both modes shift ahead and after the disruption benefit the travellers by reducing
delay time, and the mode shift ahead (S3E4) is slightly superior to mode shift after (S3E2) as can be
observed by analysing the timing around 8:50 to 9:30 in this case. By looking at the curves of flow
ratio (Figure 5.8 b)) and density ratio (Figure 5.8 c)), both mode shift strategies increase travel flow
after disruption and ease the traffic congestion. The curves of flow ratio indicate that before and during
the disruption, the mode shift ahead increases the flow, but due to the extra demand, the performance
of the post-disruption congestion relief is limited. An interesting phenomenon is that, right after the
disruption, the road section is free of the vehicle; this enables the initially released vehicles to run in
a free-flow situation, which results in a peak of flow that is even higher than the Baseline situation.
The density curves in Figure 5.8c) indicate that shifting modes after the disruptions is more efficient
on easing the congestion because the bottom density ratio is reduced only to −24% for S3E2 (see grey
curve) while for S3E1 it can only touch down to −33%, and the bottom density ratio is −34% for S3E3
(yellow curve) while for S3E4 it is −39%, comparing with the ratio of Incident 30 (dark blue curve)
is −56%.
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FIGURE 5.8: Comparison of the impact of mode and route choice on a) delay time
ratio, b) flow ratio and c) density ratio

Impact of route shift

The route shift is modelled using a stochastic route choice, where trips can be assigned to the network
after the shortest travel path for each trip, as introduced in Section 5.2.4. To understand the impact
of route shift on network performance, results based on S3E1 verses S3E3, and S3E2 verses S3E4 are
selected accordingly. The significant benefit in delay time reduction can be observed when applying
the S3E4 with mode shift applied after disruptions and flexible route choice behaviour, where the
delay time ratio is reduced to −267% and the ratio of flow is reduced to −25% (see Figure 5.8 a)
and b)). According to Figure 5.8 c), the higher density ratio appears on the curve of S3E2(−24%),
which indicates that the strategy with flexible route choice with mode shift ahead performs much
more gratifying.
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5.5 Conclusion

This chapter proposed an integrated multi-modal hybrid modelling framework that embeds the four-
step model estimation with a dynamic demand estimation and mode shift approach. This framework
demonstrates the potential ability to model real-time disruptions, their impact and an evaluation of
mode shift and route shift in a multi-modal environment. We consider the essentials of dynamic
microscopic transport simulation and propose a methodology to identify and quantify the temporal-
spatial impact of transport disruption. For the spatial impact analysis, we proposed a method to detect
the impacted trips between OD pairs. This permits us to simulate the mode choice behaviour without
starting from the static demand estimation, which, therefore, does not require more land-use data.
The results and findings generated from this research study evidence that public transport does make
travel more accessible, especially when disruption is suspending the traffic. The mode and route shift
benefit the transport system by increasing the flow and effectively reducing delay time and density.
Future investigations could cover the topic of examining more types of disruptions by duration or
location by links. The theoretical link-based disruption impact estimation method is proposed in this
chapter, but the chapter falls under statistical analysis following this idea. More investigation towards
impact propagation into the network through links could be a good sub-direction. The impact of dual
or multiple disruptions on network performance is also underestimated in this chapter. We limit the
work only by considering the single disruption, single land closure and single road section closure.
The method to quantify the impact of multiple disruptions in the network is also required. Investigating
data-driven methods for impact measurement and model calibration is another highly recommended
direction.
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6.1 Conclusion of findings and contributions

This research study first introduces a novel framework for dynamic large-scale OD estimation in PT
systems, as detailed in Chapter 3. The framework focuses on a microscopic stop-based OD matrix and
employs a 15-minute time interval to simplify computations while mimicking dynamic conditions. By
calculating trips between OD pairs every 15 minutes, the model assesses the effects of various travel
cost matrices, including single, multiple, and entropy-weighted features, using metrics like MAE,
RMSE and MAPE. The framework is based on the Gravity Model with inputs such as smart card data
for generating attraction vectors and PT GTFS data for cost matrix features.

A novel deterrence function calibration method utilizing Shannon’s entropy is proposed, pre-
weighting cost features before iterative parameter calibration, thus reducing computational load. The
performance of this method is compared with traditional Hyman’s and Traverse Searching methods,
with Traverse Searching showing promise in identifying optimal parameters for bus networks. The
fusion of travel cost features from Hyman’s and Entropy-weighted methods further enhances accu-
racy, particularly with an optimal combination of costs like closeness and straightness. While fusion
decreases accuracy initially, effective combinations of practical cost features lead to notable accuracy
improvements.

Moreover, analysis of mean errors over time reveals fluctuations correlating with network trip
numbers, indicating that network overcrowding influences OD estimation accuracy. This highlights
the model’s ability to capture real-time dynamics and its sensitivity to network congestion levels.

With the accurate estimated OD matrix, we are able to process to the next step, which is incident
impact identification and modelling. In the following Chapter 4, we present a method to dynamically
model PT patronage patterns and analyze the impacts of road incidents on PT users. Our proposed
method utilizes the Fourier transform to decompose intricate patterns into distinct waves, allowing us
to capture dominant components of patronage patterns and use them as reference profiles for traffic
analysis. Specifically, we focus on incident impact identification, a challenging task due to peak hours’
influence on accurately assessing current incident impacts. To address this challenge, we conduct an
enhanced sensitivity test to improve the modelling ability for typical days, thereby effectively capturing
current impacts. Multiple sample incidents are tested using this method, demonstrating robust results.

While our modelling method allows for the identification of optimal typical profiles, its effec-
tiveness relies on substantial count data and specific disruptions, such as prolonged durations and
locations distant from PT-only lanes, to generate precise results. These limitations present opportuni-
ties for future research enhancements. We propose focusing on nearby stop data analysis, which could
significantly enhance the model’s ability to identify and assess impacts. Additionally, future directions
may involve decomposing patterns and effectively identifying noise generated by disruptions, such as
recurring congestion or incidents, to quantify their impacts using wave functions.

Moreover, our model holds the potential for expansion to incorporate spatial analysis, introducing
an additional spatial dimension to capture the evolution of impacts based on location. This extension
would offer valuable insights into the spatial dynamics of disruptions and their effects on PT patron-
age patterns. Overall, our method provides a framework for dynamic PT patronage modelling and
incident impact identification, with the potential for further refinement and expansion to enhance its
effectiveness in real-world applications.
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Chapter 5 introduces an innovative integrated multi-modal hybrid modelling framework, merg-
ing the four-step model estimation with dynamic demand estimation and mode shift strategies. This
framework showcases promising potential in modelling real-time disruptions, and their consequences,
and evaluating mode and route shifts within a multi-modal context. Acknowledging the importance
of dynamic microscopic transport simulation, we propose a methodology to precisely identify and
quantify the temporal-spatial impact of transport disruptions. Our spatial impact analysis introduces
a method to identify affected trips between OD pairs, allowing simulation of mode choice behaviour
without relying on static demand estimation or extensive land-use data. This part of the research pro-
vides compelling evidence that public transport significantly enhances travel accessibility, particularly
during traffic disruptions. Mode and route shifts prove beneficial for the transport system, facilitat-
ing increased flow and effectively reducing delay time and density. By integrating dynamic demand
estimation and mode shift approaches, our framework offers a comprehensive understanding of the
complex dynamics within multi-modal transportation systems.

6.2 Conclusion of future directions

In our research, we first present a framework for dynamic stop-by-stop OD matrix estimation tailored
for large-scale PT networks. However, our model currently overlooks the impact of general traffic fac-
tors, such as delay time, which could be addressed by comparing scheduled travel times with historical
data from smart-card records.

While our proposed PT OD matrix estimation model is initially applied to bus and train networks
due to data availability, it holds potential for integration into other transport modes like cars, light-
rails, or on-demand solutions to create a comprehensive multi-modal OD matrix estimation model.
Future research could explore transfer patterns between bus and train networks, aiming to refine the
modelling process and better capture transfer trips.

Furthermore, there’s scope for further exploration of deterrence function calibration parameters.
Although we have focused on the Hyman and Traverse Searching methods in this chapter, numerous
other estimation models and deterrence function forms warrant investigation. Leveraging smart-card
data opens avenues for testing various methods like regression models, maximum likelihood estima-
tion, Bayesian estimation, and machine learning algorithms to generate OD matrices based on histor-
ical data.

Examining traverse search results reveals a tipping point where MAE stabilizes despite param-
eter variations, suggesting potential avenues for understanding this phenomenon in future research.
Additionally, investigating the tipping point concerning travel cost features not explored in this study
could shed light on the relationship between travel cost and OD matrix estimation accuracy, providing
valuable insights for improving modelling approaches.

The proposed impact modelling method (see Chapter 4) enables the identification of an optimal
typical profile, yet its effectiveness relies on a significant amount of count data and specific disruptions.
These limitations suggest opportunities for future research enhancements. Focusing on nearby stop
data could notably improve the model’s impact assessment capability. Future directions may involve
decomposing patterns to identify disruptive noise, facilitating quantification of disruption impacts
using wave functions. Additionally, expanding the model to include spatial analysis could capture the



130 Chapter 6. Conclusion

evolving impacts based on location, offering valuable insights into spatial dynamics and their effects
on public transport patronage patterns.

In terms of the journey recovery for PT users under disruption, future investigations should explore
various types of disruptions based on duration or location, focusing on link-level impact estimation
within the transportation network. While this chapter introduces a theoretical link-based disruption
impact estimation method, it primarily relies on statistical analysis. Further research could delve
deeper into understanding how disruptions propagate through network links. Additionally, the chapter
primarily addresses single disruptions, such as land closures or road section closures, overlooking the
impact of dual or multiple disruptions on network performance. It is crucial to develop methods to
quantify the cumulative impact of multiple disruptions within the network. Moreover, exploring data-
driven approaches for impact measurement and model calibration is highly recommended for future
research endeavours in this field.
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