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Chapter 1

Introduction

Today, Intelligent Transportation Systems (ITS) are an essential component of transport networks
in modern cities. These systems monitor and control transport systems, ensuring safety, increasing
efficiency, reducing travel time, and lowering air emissions, which significantly impact the economy
and health of city populations.

Traffic congestion is a significant concern for many cities globally. Various factors, such as in-
creased population, workforce concentration in central areas, and lack of efficient public transport
modes, contribute to congestion. Two primary forms of congestion occur: a) recurrent traffic con-
gestion during peak hours when traffic demand exceeds road capacity, and b) non-recurrent traffic
congestion caused by unplanned events like car accidents, breakdowns, weather, or public demonstra-
tions. Previous studies have shown that nearly 60% of traffic congestion results from non-recurrent
incidents with stochastic behavior in space and time Schrank and Lomax, 2002. In Australia, the
number of road deaths per year has decreased by 70

Despite ITS systems’ efforts to optimize congestion and ease traffic, accidents can occur anywhere
and anytime. Transport agencies optimize traffic movements, but accidents can still affect traffic flow
and cause congestion, sometimes across multiple adjacent roads. Traffic disruption is an unwanted
effect of severe congestion, which can be recurrent (repetitive characteristic of transport networks) or
non-recurrent (rarely observed disruptiopns, traffic incidents).

In Australia, there is currently a lack of advanced incident management and response plan solu-
tions, and most transport management centers rely on staff members’ operational experience rather
than data-driven approaches. There is a potential to utilize more advanced solutions that utilize ex-
tensive information sources published worldwide and modern data-driven techniques like machine
learning and deep learning. Additionally, the literature lacks exploration of various modeling capa-
bilities that combine transport modeling and data-driven solutions.

Traffic Incident Management Systems (TIMS) collect data on traffic incidents, including informa-
tion on different incident duration factors. Accurately predicting the total incident duration shortly
after an incident occured could save operational costs (by providing advice on neccessary amounts of
equipment and response team size, strategy of incident evaluation depending on its predicted duration)
and end-user time (through affecting individual user route planning). Moreover, the clearance time
of accidents is highly dependent on the ongoing traffic congestion and several external factors with
different degree of importance. Therefore, it is essential to estimate the incident factor importance to
improve the accuracy of predictions. Most prior studies related to this topic concentrated on testing
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different machine learning models on specific road types like freeways or highways and focuses pri-
marily on different phases of the incident duration such as clearance time, recovery time, and total
incident duration Li, Pereira, and Ben-Akiva, 2018a. There is currently a lack of an unified approach
that can be applied on all road types, for all accident types, and across various countries with different
driving behavior utilizing large amounts of openly available data.

Advances that have the highest impact and which can improve our ability to analyze traffic inci-
dents include:

1. Popularisation of Machine Learning and Deep Learning techniques.
2. Availability of high-performance computing devices.
3. Availability of multiple traffic simulation approaches (meso, macro, hybrid, etc) both for the

traffic incident spatial-temporal impact analysis and response strategy evaluation.
Important topics in traffic incident research areas include:
• Traffic incident duration prediction, application of Machine Learning methods and different

approaches to data processing.
• The detection of traffic incidents, based on traffic flow data, estimation of traffic incident severity.
• The spatial-temporal incident impact analysis (including impact mapping and estimation of the

life-cycle of the traffic incident).
• The response plan modelling and evaluation using different simulation approaches (at micro-

scopic, meso-scopic and hybrid levels.
Today, we are open to new approaches and methodologies, which we can use for the incident

duration prediction, spatial-temporal incident impact analysis and traffic simulation.

1.1 Research Project Summary

Motivation: with recent advances in the fields of Machine Learning and Deep Learning we can de-
velop a methodology for traffic incident analysis, which will improve the prediction accuracy of traffic
incident duration and spatial-temporal impact estimation.

The primary objective of this research is to construct a comprehensive modeling framework for
incident modelling by utilizing advanced machine learning and deep learning methodologies. The
goal is to enable accurate prediction of the time duration of reported accidents. The key goals and
objectives of the study are outlined below and embody the research blueprint. This research also
encapsulates the exploration of data fusion techniques and the development of automated algorithms
for accident timeline segmentation. These combined techniques will be instrumental in creating a
more precise and detailed understanding of incident duration, leading to more effective and timely
incident response strategies.

Aim 1: to explore Machine Learning and Deep Learning capabilities for the task of traffic incident
duration prediction. In detail, to evaluate the best and state-of-the-art methods of Deep Learning and
Machine Learning, different data analysis approaches on the task of traffic incident analysis with the
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goal to improve traffic incident duration prediction accuracy. Successful delivery of this aim consists
in the development of the methodology for the traffic incident modelling, which allows acceptable
accuracy of predicted incident durations.

Aim 2: to deliver a modelling framework for the incident impact analysis of the incident impact. In
detail, to build a system, which incorporates multiple tasks from the theory of traffic incident analysis:
traffic incident detection, incident duration prediction and incident impact analysis (using modelling
and simulation). Successful delivery of this aim consists of the development of a system, which allows
to detect traffic incident from traffic flow/speed data, estimate and predict their duration and develop
a measure to represent their impact.

1.2 Stages of the Research

This PhD project will focus on the complex problem of predicting the impact of traffic disruptions in
large cities using advanced artificial intelligence algorithms and evaluating the best response plan that
traffic authorities can make by synergising traffic simulation modelling of various response scenarios.
Important tasks to bring this project to fruition include:

1. The prediction of traffic incident duration employing contemporary Machine Learning tech-
niques and data processing methodologies. This involves utilizing the Machine Learning mod-
els to analyze incident data and predict the duration of future incidents accurately.

2. Estimating the impact of an incident, including the evaluation of the temporal lifecycle of the
disruption. This phase includes the identification of traffic incidents through the analysis of
traffic flow data, which is characterized as time series data obtained from vehicle detection
systems.

The solution would improve traffic centres decision making by automatic response plan recom-
mendations. The following sections will detail each stage of the PhD project.

1.2.1 Stage 1. Incident Detection, Incident Duration Modeling, Incident Severity Pre-
diction

Most current studies rely on methods for classification and clustering of traffic conditions for doing
the incident detection. However, there are very few studies on traffic incidents involving methods for
detecting anomalies (such as one-class SVM, isolation forests, etc). Non-recurring traffic incidents are
rare and unusual in nature and therefore the detection of a traffic incident can be assessed as the task of
detecting anomalies in traffic. By relying on anomaly detection methods, the incident detection system
can be adapted to previously unseen situations. Thus, classification and evaluation of the applicable
anomaly detection methods in comparison to well-established classification and regression methods
will be carried out. Also, road situations detected as anomalous can be extremely valuable for further
investigations in the duration of a freshly reported accident.

Incident duration distribution has been modelled as log-normal Sullivan, 1997 and more recently
as log-logistics distribution Chung, Walubita, and Choi, 2010, Smith and Smith, 2002. Log-logistic
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model has been used more extensively and found to have better goodness-of-fit than log-normal distri-
bution. Also, there are various hazard-based models of traffic incident duration Nam and Mannering,
2000a, Hojati et al., 2013 which employ a hazard function to describe the conditional probability that
an incident will end during any particular time interval given that it already lasted until the beginning
of the interval. Recent studies also involve multi-component log-logistic models. In Zou et al., 2016a
authors describe a g-component log-logistic model and in Li, Pereira, and Ben-Akiva, 2015b describes
competing risks mixture model which incorporates multinomial log-logistic model.

An actual distribution estimation can give only approximate information on traffic incident dura-
tion. More than that, incident duration distribution is found significantly dependent on incident case
parameters (e.g. day/night) Yang et al., n.d. Also, the duration of the incident may be affected by
chosen method of incident clearance Li, Pereira, and Ben-Akiva, 2015b. Mao et al., 2019 found that
some incident parameters found to be important factors with different contribution to different types
of accidents, including weather condition, traffic density, time period, incident location. Also, road
factors found to be affecting each one of 4 incident types (rear-end, side wipe, collision with fixtures
and rollover) in a different way. These findings draw incident duration distribution estimation as a
complex problem dependent on many traffic flow and incident parameters.

Incident duration can be modelled in terms of spatial relations (geometric placement of adjacent
lanes, angle of adjacency, different parameters of lanes, including speed limits). Recent studies rely on
reported incident parameters Mihaita et al., 2019a, Hamad, Khalil, and Alozi, 2019, but road topology
can also play significant role in estimation of the incident probability (e.g. poorly designed junction,
wrongly imposed speed limits). According to Curiel, Ramirez, and Bishop, 2018, about 5% of the
road junctions are the site of 50% of the accidents in the city of London. Thus, it seems reasonable
to analyse incident duration and probability with consideration of the road topology. The task of
predicting the duration of an incident usually solved by using Machine Learning methods. Among
these methods – tree based methods Ozbay and Kachroo, 1999, fuzzy logic Wang, Chen, and Bell,
2002, Bayesian networks Ozbay and Noyan, 2006a, artificial neural networks Barcellos et al., 2015,
Alkheder, Taamneh, and Taamneh, 2017. And recently Ma et al., 2017 studied GBDT as a better
performing method for incident duration prediction. Gaussian process regression and artificial neural
networks were found to outperform tree methods and SVM in incident duration prediction Hamad,
Khalil, and Alozi, 2019.

Also, estimation of incident duration can be reduced to the classification method Mihaita et al.,
2019a. To do this, a specific threshold for the duration is set and a prediction is made whether the
incident will last longer than a specified time. Artificial neural networks show high average accuracy
for prediction of 4 types of incident severity relying on data on the state of the road (lane, condition
of the roadway, weather, light, etc.), time and date. Overall accuracy between death, severe, moderate
and minor severity accidents was found to be 69-72% Alkheder, Taamneh, and Taamneh, 2017.

Recent studies in machine learning involve interpret-able models. Bayesian networks can produce
interpret-able models for incident injury severity prediction O
textasciitilde na, Mujalli, and Calvo, 2011. Bayesian networks also outperform regression models
in incident severity prediction (involving three severity indicators: number of fatalities, number of
injuries and property damage) Zong, Xu, and Zhang, 2013. Interpret-ability is not specific property
of the tree models only and by using knowledge distillation one can extract tree rules from different
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prediction models (e.g. Bayesian network Park, Haghani, and Zhang, 2016a). It allows to represent
the model as an interpret-able decision tree and estimate feature importance. Methodology: Stage 1
involves the use of anomaly detection, regression and classification methods with the use of reported
incident parameters and map data.

RESEARCH QUESTION 1: Can we build an universal framework to work with different traffic
incident data sets? Traffic incident reports for different countries vary a lot due to the methodology of
data collection. How much is the incident duration affected by each of the incident report variables?
By using well-established classification and regression methods (GBDT, ANN, etc) and feature im-
portance estimation methods we can select incident report variables that have the highest contribution
to the incident duration prediction accuracy. Are these variables common among different data sets?

RESEARCH QUESTION 2: How can we utilise anomaly detection methods to improve the
traffic incident duration prediction? We will use different anomaly detection methods, including those
which can produce “measures of anomaly” for each data point (One-Class SVM, Isolation Forest). It
will be used to compare the anomaly detection with regression methods (GBDT, ANN) for the task of
incident probability estimation. Similarly, anomaly detection can be used in comparison with recently
used classification (GBDT, ANN) and regression (e.g. Random Forest regression) methods, for the
task of incident duration estimation. Anomaly detection methods will be used to model different kinds
of anomalies in incident reports.

RESEARCH QUESTION 3: What are the abilities of different modern Machine Learning meth-
ods for the task of incident duration prediction? And how can we model short-term and long-term
incidents: what duration split threshold to use and how can we approach a regression task?

1.2.2 Stage 2. Incident Impact modelling

By using the spatial-temporal forecast, it is possible to produce an estimation of the road situation
development, which can be used in planning of a strategy to eliminate the incident. Also, this kind
of forecasting allows to produce incident affect-ability map (which will show how much each road
element can be affected and for how long) for every component of the city road network. This kind of
data can be used in road planning decisions to reduce incident impacts on road network in long-term
and to reveal road elements which are the most sensitive to traffic incidents (e.g. produce wide-spread
or long-term congestion). Spatial-temporal incident modelling (e.g. impact forecasting) is prior for
the next stage – incident response modelling.

Spatial-temporal impact can be estimated using different approaches to traffic simulation. There
are 3 groups of traffic simulation models:

a) Microscopic – traffic network is simulated on the level of individual agents (car, pedestrian),
relying on rules of movement and interaction (including lane change, acceleration). These models
include Car-following models (which relies on real driving behaviour such as keeping a “safe distance”
from the leading vehicle Treiber and Kesting, 2013a), such as Gibbs model, Intelligent driver model,
etc. All of these methods require a lot of computational resources. Microscopic models are preferable
for the Stage 3 of the research since it will include traffic control actions which will affect traffic on
micro level (changing of traffic lights, using Visual Message System).

b) Mesoscopic - traffic is represented by interactive groups of traffic entities.
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FIGURE 1.1: Figure 1. Visualisation of spatial-temporal incident impact Liu et al.,
2017

c) Macroscopic – traffic is simulated on the level of traffic flow on road segments. This level of
detail considers traffic speed, flow and density) and their relationships. Cases of macro simulation
include:

• Binary integer programming(BIP) Chung and Recker, 2012 applied in estimating the temporal
and spatial extent of delay caused by freeway accidents.

• Kinematic Shockwave propagation model Liu et al., 2017 - the model leverages a physical traffic
shockwave model, analysing different superposition situations of shockwaves. Also, this method
has been compared to car-following model and found to be superior in performance (by almost
20 times).

• Temporal Graph-Convolution Network Zhao et al., 2018 (a combination of gated recurrent units
and graph-convolution network) applied for real-time traffic forecasting.

Macroscopic modelling of traffic disruptions is preferable for the Stage 2 of the research, since data
availability both on traffic flow (on road sections in a close proximity to the source of the disruption)
and incident reports. Using macroscopic modelling first will help to research theoretical basis of traffic
congestion.

The differential effects of determinants (traffic diversion requirement, crash injury type, number
and type of vehicles involved in a crash, day of week and time of day, towing support requirement and
damage to the infrastructure) on crash survival probabilities are found to vary considerably across the
motorways Tajtehranifard et al., 2016.

Both spatial and temporal aspects of traffic incidents were analysed using real-world spatial-
temporal traffic sensor data on road networks Pan et al., 2013. Authors analysed abrupt and long-
lasting propagation of the speed changes.
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As indicated by many researchers, calculating the consequences of an incident using micro-simulation
models is extremely resource-intensive Azevedo et al., 2016-Huang and Pan, 2007-Ozbay and Noyan,
2006a, which made a number of experiments impossible. As known, many transport simulation pack-
ages rely solely on the CPU usage (VISSIM, AIMSUN, SUMO, etc).

However, recent advances in the development of parallel computing have made it possible to use
GPUs in agent modelling and especially in traffic simulation. Studies of agent models Xiao et al., 2019,
and in particular transport micro-agents using GPUs, are already available Heywood, Richmond, and
Maddock, 2015, Heywood et al., 2018. New opportunities which transport modelling on the GPUs
opens up are significant and fundamental for further research in the area of traffic analysis. The use
of GPUs opens a road for a field of incident response experiments involving optimisation based on
micro-simulation.

Widely used traffic simulation software AIMSUN has been compared with FLAME GPU Xiao
et al., 2019. FLAME GPU shows significant speedup by orders of magnitude (10-100x). The largest
simulation executed using both simulators, a one hour simulation containing up to 512,000 vehicles
and 1,575,936 detectors, showed a speed-up of 43.8x for the GPU accelerated simulation. While
one simulation is being performed on the CPU, up to 50 simulations on the GPU can be done, so
finding a solution strategy (by performing multiple simulations) for the incident becomes possible
in an acceptable real time. Also, a simulation for the large-scale incident impact becomes possible.
Thus, incident impact can be modelled both for small and large-scale environments. This approach
has a potential to produce applicable incident response solutions in real-time within meaningful time
constraints (during incident response planning). Use of the different tools for the task of traffic control
(and not only traffic lights control) draws a complex optimisation task, which in combination with
micro-simulation can produce more effective solutions than using only macro-models and simplistic
control.

Methodology: The research on the current stage will be devoted to the use of micro-simulation
modelling of transport network for the task of analysis of spatial-temporal impact during the incident.
The main research questions to be solved in this stage are:

RESEARCH QUESTION 1: By how much some traffic network nodes are affected more in
comparison with others? What are the conclusions from their difference?

RESEARCH QUESTION 2: Can we get an incident duration/severity heat-map for the road
planning agency (using large-scale micro-simulation of traffic incident impacts)?

OUTCOMES: As a result, a map with rated transport nodes for selected traffic network will be
produced. Practically it can allow to find areas of interest for transport planning agency. The use
of this kind of map can allow to use incident-repelling and incident-attractive route planning, which
also will be assessed. A large-scale simulation will be used to evaluate the global impact of incidents
on transport nodes on the system as a whole. Incident affect-ability map (which can be defined as a
measure of effect on average traffic speed in comparison to a normal traffic condition) can be calculated
also for different kinds of incidents. Road elements with highest/lowest produced duration and spatial
impact will be studied.

After analysis of duration and severity of impacts using micro-simulation, results on incident du-
ration can be compared to predictions produced by ML methods on stage 1 to assess effectiveness
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of micro-simulation for the task of incident duration modelling. The feasible way for this stage of
research is to use macro/meso-models or micro-models based on GPU utilisation.

As an additional research, temporal graph-convolution network (which is a macro-model) can
be approached to approximate simulation results of micro-model in order to reduce computational
resources consumption in further task of incident response modelling.
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Chapter 2

Literature review
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2.1 Introduction to Traffic accident analysis

Today, Artificial Intelligence (AI) is being used to enhance the performance of different industries
and businesses, especially the transport industry. AI technologies such as Machine Learning (ML)
and Deep Learning (DL) models can be used to address transportation problems such as traffic man-
agement, urban mobility and traffic safety. AI models are used to solve traffic prediction, traffic control,
road safety planning and traffic flow optimisation problems Abduljabbar et al., 2019; Machin et al.,
2018.

Traffic congestion, which in 60% of cases occurs due to unplanned events Schrank and Lomax,
2002, is a significant concern for many cities around the world. Congestion arises due to various
factors, including increased population, workforce concentration in central areas, or the lack of effi-
cient public transport modes. Two forms of congestion are typically predominant: a) recurrent traffic
congestion during peak hours when traffic demand exceeds the road capacity, and b) non-recurrent
traffic congestion caused by stochastic events such as car accidents, breakdowns, weather effects, etc.
In Australia, the number of road deaths per year was reduced by 70% since the 1970s. However, the
annual economic cost of road crashes was estimated at $27 billion per annum in 2017 Government,
2017. In Melbourne, Australia more than 640 km of arterial roads are congested during peak hours
with 2.9 tons of CO2 emissions during the years 2014-2015 Linking Melbourne Authority, n.d.

Intelligent Transportation Systems (ITS) are an integral element of transport networks in modern
cities. These systems provide monitoring and control of the transport system, ensuring safety, in-
creasing efficiency, reducing travel time, reducing air emissions and thus having a significant impact
on the economy and health of the city population. The incorporation of AI techniques into the ITS
system has the potential to greatly reduce traffic congestion and its effects on the environment. The
main data sources used by Intelligent transportation systems (ITS) are: vehicle detectors (magnetic,
infrared, ultrasonic, and microwave), traffic cameras, Global Positioning Systems and Automatic Ve-
hicle Identifiers (e.g. electronic toll collection, access control and speed control) Al-Bordiny, 2014.
AI techniques were applied to these kinds of data previously Ma et al., 2020; Benterki et al., 2020.
Multiple various measures can be taken by ITS to reduce the impact of incidents (e.g. variable mes-
sage signs, toll roads, adaptive cruise control, adaptive traffic light control, transport group priority
management) Al-Bordiny, 2014.

In Australia, there is currently a lack of incident management and response plans solutions and
the majority of transport management centres make decisions based on the operational experience of
staff members rather than data-driven lessons learned. There is a true lack in adopting more advanced
solutions that can make use of any existing sources of information and modern data-driven techniques
such as machine learning /deep learning. Also in the literature, there is a lack of exploring various all
modelling capabilities combining transport modelling and data-driven solutions.

Traffic Incident Management Systems (TIMS) collect data on traffic incidents, including infor-
mation on different incident duration factors. Accurately predicting the total duration shortly after
an incident could save operational costs and end-user time (by affecting route planning). Moreover,
the clearance time of accidents is highly related to the ongoing traffic congestion and several external
factors with different weights of importance. Therefore, it is essential to estimate the incident factor
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importance to improve the accuracy of predictions. Most prior studies related to this topic concen-
trated on testing different machine learning models on specific road types like freeways or highways
and focused primarily on different phases of the incident duration such as clearance time, recovery
time, and total incident duration Li, Pereira, and Ben-Akiva, 2018b. There is currently a lack of an
advanced approach that can be applied on all road types, for all accident types and across various
countries with different driving behaviour.

Deep Learning and Machine Learning have become increasingly important tools to improve traffic
incident management systems (TIMS). Accurately predicting the total duration of a traffic incident
shortly after it occurs is essential to saving operational costs and end-user time, as well as reducing
traffic congestion. Understanding the importance of incident factor importance is key to improving
the accuracy of predictions. In this paper, we review the literature related to traffic incident duration
prediction and spatial-temporal accident modelling. Specifically, we discuss the challenges associated
with each modelling step, the complexity of the task, and the most recent advances in this field, with a
focus on the potential of deep learning and machine learning for incident duration prediction. Our goal
is to provide a comprehensive overview of the most recent advances in this field, and demonstrate the
potential of deep learning and machine learning for incident duration prediction and traffic simulation.

2.1.1 Paper structure

The paper organisation is detailed as follows:
Section 2.1.2 presents the PRISMA methodology that we have followed for our study, which has

revised overall a total of almost 1200 papers on the topic of incident modelling, which have been
further filtered and selected down to 75 final papers to provide a comprehensive structured analysis
into current gaps and future research directions.

Section 2.2 gives an overview of all the required data sets that one needs to conduct a thorough
incident modelling which ranges from accident logs, but also to traffic states such as flow, speed,
occupancy, and external related information (weather, events, etc.). We also provide insights into
public data sets that have been used for modelling, as many countries restrict access to such data sets
due to privacy concerns.

Section 2.3 describes methods of statistical analysis for traffic accident modelling. Section 4 is de-
voted to the use of Machine Learning in traffic accident analysis including classification and regression
tasks, feature selection, imbalanced data set management techniques, anomaly detection, dimension-
ality reduction, novel machine learning methods and frameworks. Section 5 gives insights into the
use of advanced Deep Learning techniques for textual accident report description analysis, accident
detection and segmentation from the traffic flow. Finally, in Conlusions we provide a sumamry of the
challenges we have dteected as well as future research gaps to be filled.

2.1.2 Literature review material and the PRISMA method

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) is the review
method that has been applied when organising and analysing literature for this paper. The process of
reviewing the literature is shown in Figure 2.1. In the first stage, relevant literature has been identified
by using publication databases based on keyword search. The list of used keywords:
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FIGURE 2.1: Flow diagram for systematic review based on the PRISMA approach

• Traffic Incident
• Traffic Incident duration prediction
• Traffic Incident clearance time
• Traffic Incident machine learning
• Traffic Incident Random Forest

Since incidents can be related to different research areas, it is necessary to always specify the ’traffic’ as
an area. Keywords can include ’clearance time’ since this term is very specific to the task of incident
duration modelling. Keywords ’machine learning’ are the main methods used in incident duration
prediction. The use of ’traffic incident random forest’ clearly related to the tasks of classification
and regression related to the traffic incident duration modelling. By using very specific terms and
specifying areas it is possible to locate relevant literature quickly.

The following databases were used for the stage of literature identification:
• ScienceDirect
• Google Scholar
• Research Gate
The alternative source of information on the relevant literature is Connected Papers, which builds

a graph of studies based on their semantic similarity. This requires a sample paper to search for similar
ones. The search using this approach was performed after the identification of relevant literature using
common databases.

The databases were accessed through the University of Technology Sydney, and the publications
were limited between 1980 to 2022. In total, 1346 sources were collected, 1265 were found using
conventional databases and 81 using Connected Papers.
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FIGURE 2.2: Connected papers graph example

The PRISMA process for this literature review is detailed in the following:
1. A database of records has been collected using previously described databases and keywords

which resulted in 1,265 resources.
2. Resources were screened for duplicates which resulted in 18 resources being removed. Then,

records were filtered by paper title, which resulted in the removal of 948 entries mainly due to
interference with topics of “internet traffic” (which also relies on the use of machine learning
methods and network incident analysis) and “molecular traffic”, presence of many studies related
to injury statistics and safety analysis related to traffic accidents.

3. Filtered resources (299 in total) were screened by abstract, which resulted in the removal of 83
records due to the mention of unrelated methodologies and findings.

4. Eligible records (216 in total) were then screened by content (reading of methodology and con-
clusion sections), which resulted in the removal of 54 records.

5. In total, we obtained 162 records from the database search.
6. The most relevant review (Ruimin Li, F. Pereira, M. Ben-Akiva, Overview of traffic incident

duration analysis and prediction) from the previous search have been selected and graph of
related papers has been built (see Figure 2.2) and a similar process has been performed for
semantic similarity search using the Connected Papers service, which resulted in 26 additional
papers selected.
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7. In total, we obtain 188 relevant resources for the literature review. The highest amount of papers
is dated between 2010 and 2022 with peaks in 2002, 2013, 2016, 2018-2021 (see Figure 2.3).
Peaks during this years can be attributed to the introduction of novel Machine Learning methods
(e.g. RandomForest in 2002 Liaw, Wiener, et al., 2002, XGBoost in 2016 Chen and Guestrin,
2016)
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FIGURE 2.3: Reviewed publications grouped by year.

2.1.3 Incident duration definitions

Traffic congestion can be recurrent and non-recurrent Adler, Ommeren, and Rietveld, 2013. Non-
recurrent traffic congestion is unexpected congestion, caused by random events affecting traffic flow
such as traffic incidents, weather phenomena, vehicle breakdowns, hazards, etc. Recurrent traffic
congestion is a predictable regularly occurring congestion, which observed in places where traffic
flow regularly exceeds road capacity.KIM and CHOI, 2001

The definition of traffic incident duration phases can be found in The Highway Capacity Man-
ualAlkaabi, Dissanayake, and Bird, 2011 and it consists of four phases:

• Incident Detection: the time interval between the incident occurrence and its reporting,
• Incident Response: the time interval between incident reporting and arrival of the first inves-

tigator at the location of the accident,
• incident Clearance: the time interval between the arrival of the first investigator and the clear-

ance of the incident,
• Incident Recovery: time interval between the clearance of the incident and the return of traffic

flow to normal conditions.
Different phases of traffic incident duration (e.g. clearance, recovery time) can be modelled in-

dividually, but this type of research is rare because of the complexity of data collection for traffic in-
cidents and the small amount of recorded traffic incidents in real-life data sets Alkaabi, Dissanayake,
and Bird, 2011.

Duration of detection, response and clearance phases were modelled separately in the literature
so far by using Hazard-based duration modelling Nam and Mannering, 2000b. Researches in Li and
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FIGURE 2.4: Estimation of incident impact duration from speed profiles. Source:
Haule, H. J., T. Sando, R. Lentz, C.-H. Chuan, and P. Alluri, Evaluating the impact

and clearance duration of freeway incidentsHaule et al., 2019a

Shang, 2014a focused on the use of multiple types of distributions (Log-normal, Gamma, etc.) for the
four-time intervals within the incident duration structure corresponding to: response team preparation
time, response team travel time, incident clearance time, total incident duration time. They found the
importance of different distributions to approximate different incident duration stages.

Response time (RT) is defined as a time interval comprised of both response team preparation time
and travel time to the incident site. RT was modelled in Hou et al., 2013. In another study, recovery
time was analysed on freeway segments in the Southeast Queensland (Australia) Hojati] et al., 2014
and was derived using historical loop-detector-data and traffic incident characteristics at the time and
location of the incident. The event of non-recurrent traffic congestion was detected based on the
allowable percentage of speed decrease. The time interval of the incident was determined by forward
and backward search in time for time intervals, when traffic speed was unaffected, which appear to be
bounding for the traffic incident.

Research published in Zeng and Songchitruksa, 2010 includes the calculation of Recovery Time
from the time required for the restoration of travel time during the affected traffic state to travel time
during the normal traffic state. That research points to the possibility to use traffic flow data to uncover
more precise traffic incident duration instead of relying on the definition given by the response team.
As pointed out in Figure 2.4, we can derive the duration of selected phases of traffic incidents from
traffic speed data (or possibly traffic flow data).

In conclusion, traffic incident duration consists of multiple phases. Nevertheless, data availability
for the duration of such phases is rare to find. Duration of phases and total traffic incident duration
(assumable, even more correct than recorded by response teams) can be extracted using traffic flow
data assuming the data streams are reliable and free of anomalies or outliers that might affect precision
and analysis.
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2.2 Data sets and data availability

The availability of data related to traffic accidents in recent years has enabled a deeper understanding
of the factors that lead to these incidents and their outcomes. This data, composed of information such
as the location and time of an accident, the type of vehicle involved, the severity of the crash, casualty
statistics and economic cost can provide valuable insights into the causes and outcomes of traffic
accidents. By employing machine learning techniques, it is possible to make predictions about the risk
of future crashes, classify accidents by severity and predict accident duration to develop strategies for
mitigating the risk and severity of accidents. This kind of data analysis can help to inform policymakers
and road safety management organisations on how to create safer roads and highways, as well as to
make driving safer for everyone.

There are multiple publicly available datasets:
• National Highway Traffic Safety Administration’s (NHTSA) Fatality Analysis Reporting System

(FARS): This dataset contains detailed information on fatal motor vehicle traffic crashes in the
United States occurred since 1975 National Highway Traffic Safety Administration (NHTSA),
2020.

• National Transportation Atlas Database (NTAD) from United States Department of Transporta-
tion’s Bureau of Transportation Statistics (BTS) U.S. Department of Transportation (USDOT)/Bureau
of Transportation Statistics (BTS), 2020: contains detailed information on non-fatal motor ve-
hicle traffic crashes in the United States since 1994.

• European Commission’s Road Safety Atlas European Commission, n.d. provides accident statis-
tics for each European country using interactive maps and satellite images.

• UK Road Safety Statistics UK Government, n.d.: This dataset contains detailed information on
fatal and non-fatal road traffic accidents in the UK since 1979.

• California Highway Patrol (CHP) Statewide Integrated Traffic Records System (SWITRS) Cal-
ifornia Highway Patrol (CHP), n.d.: a California-wide data set containing detailed information
on motor vehicle collisions reported to California Highway Patrol. Accident report details con-
tain data on the location, severity, road condition and victim data including age and degree of
injury. Due to the extensive timeline and precision of reporting, this data set was previously
used to analyse the effect of country-scale events on crash severity Waetjen and Shilling, 2021.

• World Health Organization’s Global Health Estimates World Health Organization, n.d.: This
dataset contains detailed global estimates on road traffic injuries, deaths, and disability-adjusted
life years from 1990 to present.

• Australian Road Deaths Database (ARDD) Department of Infrastructure Regional Development
and Cities, n.d. provides basic details of road traffic crash fatalities in Australia as reported by
the police each month to the State and Territory road safety authorities. The data set includes
information on fatal crashes: year, month, day of the week, time, location, crash type and vehicle
type involved.
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• Countrywide Traffic Accident Dataset (CTADS) - one of the biggest data sets on traffic accidents
is , recently released in 2021 Moosavi et al., 2019a Moosavi et al., 2019b, which contains 1.5
million accident reports collected for almost 4.5 years since March 2016, each report containing
49 features obtained from MapQuest and Bing services. This data set was used previously to
predict the accident duration Zhao and Deng, 2022; Grigorev et al., 2022a.

• Caltrans Traffic Performance Measurement System (PeMS) Choe, Skabardonis, and Varaiya,
2002 data set contains incident reports with a timeline of events and description of the incident
(as a sequence of abbreviations) as it becomes available and status updates from a dispatch unit.
Also, the dataset contains 5-minute aggregated traffic speed, traffic flow and traffic occupancy
records as well as vehicle detector status. The availability of this data allows analyzing traffic
incidents in conjunction to vehicle detector data. A brief description of the incident includes
location, area, start time, duration and freeway ID.

• CompassIoT Compass IoT, n.d. is a data set and API of connected vehicle road trips across
Australia which aggregates data from 64 different manufacturers across a number of global car
brands. It started from 200,000 connected vehicles in 2018 to over 2.2 million trips and billions
of data points in 2023. The data set has low data latency, where real-time API can yield data
every 5 seconds. Data on braking acceleration and steering can allow identification of dangerous
road conditions and risky behaviour characteristic to road accidents.

• TomTom TomTom, n.d. - historical traffic database with information on road speeds, travel
times and traffic density. Allows customised queries for route and area analysis providing statis-
tics on travel time, speed.

2.2.1 Characteristics of traffic incidents

Features used by research studies on traffic incident duration are very diverse. Some researchers didn’t
perform possible feature manipulations despite data availability (e.g. AM/PM peak hour binary fea-
ture or night time). Traffic incident research has the possibility to benefit from comprehensive feature
derivation based on time, weather and road network data. By tracking the use of features and as-
sessment of their significance, we can make decisions on the concentration of future efforts in data
processing. Also, we can develop strategies for feature extraction considering techniques used by other
researchers.

For example, in Li and Shang, 2014a authors use the feature "season" which is represented as a
set of four discrete values (summer, winter, spring, autumn). The season can highly affect safety on
the road due to weather effects: winter storms, ice on the road, rain showers and other environmental
effects (which affect visibility, control and safety) linked to the time of the year. But in some papers
Mihaita et al., 2019b authors don’t use these features.

Roadway geometry is one of the critical factors which can affect the capability of a road system to
withstand the incident impact Al-Bordiny, 2014. Various features are used to define the road structure
and use machine learning models: road segment length, road segment centroids, gradient, curvature
and general road density surrounding the event area Ziakopoulos, 2021. A comprehensive review of
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spatial network (i.e. road network) theory applications provides an in-depth analysis of graph the-
ory indices including betweenness centrality, ringness, route factor, detour index, and alpha index
Barthélemy, 2011. All of these indices can be calculated for road networks and incorporated into ma-
chine learning pipeline. Accident risk is found to be increasing when traffic speed slows down while
traffic density goes up for Yingtian Expressway Liu et al., 2021 which highlights the importance of
speed-density diagrams for incident-related traffic state visualisation. In that research, no correlation
was observed between traffic flow and crash risk.

Identification of road geometries is important for the analysis of incident occurrence. The impact
of variables associated with crash frequency was found to be varying across parts of Tennessee, USA
Mohammadnazar et al., 2021. The spatial analysis demonstrated that segment length and median seg-
ment width had the highest impact on crash frequency in eastern regions, while commercial land use
had the highest connection to crash frequency in southern regions. Multiple studies have indicated that
patterns and dependencies in the spatial and temporal dimensions are likely to exist, often represented
as clusters or hot spots Al Hamami and Matisziw, 2021.

The following tables 2.1 and 2.2 include incident characteristics used among different research
studies, with citing specific ones, unobserved or rarely observed in papers. For the general set of
characteristics, readers can refer to Mihaita et al., 2019b; Li, Pereira, and Ben-Akiva, 2018b.

Feature Values Reference
Peak hour {0, 1} -
Weekday {0, 1} -
Weekend {0, 1} Javid and Javid, 2018
Season {𝑤𝑖𝑛𝑡𝑒𝑟, 𝑎𝑢𝑡𝑢𝑚𝑛, 𝑠𝑢𝑚𝑚𝑒𝑟, 𝑠𝑝𝑟𝑖𝑛𝑔} Li and Shang, 2014a
Time of day {0..23} Mihaita et al., 2019b
Peak hours {𝑂𝑓𝑓𝑝𝑒𝑎𝑘∕𝐴𝑀𝑝𝑒𝑎𝑘(6 − 9𝐴𝑀)∕𝑃𝑀𝑝𝑒𝑎𝑘(3 − 6𝑃𝑀)} Nam and Mannering, 2000b
Daytime {𝐸𝑣𝑒𝑛𝑖𝑛𝑔, 𝑛𝑖𝑔ℎ𝑡− 𝑡𝑖𝑚𝑒} Nam and Mannering, 2000b

TABLE 2.1: Table of temporal features used to describe traffic incident

2.3 Incident duration modelling

Most current studies rely on methods for the classification and clustering of traffic conditions for
incident detection. However, there are very few studies on traffic incidents involving methods for
detecting anomalies (such as one-class SVM, isolation forests, etc). Non-recurring traffic incidents are
rare and unusual in nature and therefore the detection of a traffic incident can be assessed as the task of
detecting anomalies in traffic. By relying on anomaly detection methods, the incident detection system
can be adapted to previously unseen situations. Thus, classification and evaluation of the applicable
anomaly detection methods in comparison to well-established classification and regression methods
will be carried out. Also, road situations detected as anomalous can be extremely valuable for further
investigations in the duration of a freshly reported accident.

Incident duration can be modelled in terms of spatial relations (geometric placement of adjacent
lanes, angle of adjacency, different parameters of lanes, including speed limits). Recent studies rely on
reported incident parameters Mihaita et al., 2019a, Hamad, Khalil, and Alozi, 2019, but road topology
can also play a significant role in the estimation of the incident probability (e.g. poorly designed
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Feature Values Reference
Incident type {𝑉 𝑒ℎ𝑖𝑐𝑙𝑒𝑓 𝑖𝑟𝑒, 𝑜𝑢𝑡𝑜𝑓𝑔𝑎𝑠, 𝑏𝑟𝑒𝑎𝑘𝑑𝑜𝑤𝑛, 𝑒𝑡𝑐.} KIM and CHOI, 2001
Number of vehicles involved {1..𝑁} -
Multiple vehicles involved {0, 1} Hojati] et al., 2014
Type of vehicle involved #1 {𝑀𝑜𝑡𝑜𝑟𝑐𝑦𝑐𝑙𝑒, 𝑉 𝑎𝑛, 𝑃 𝑖𝑐𝑘𝑢𝑝} KIM and CHOI, 2001
Type of vehicle involved #2 {𝐿𝑎𝑟𝑔𝑒𝑣𝑒ℎ𝑖𝑐𝑙𝑒} Hou et al., 2013
Type of vehicle involved #3 {𝑇 𝑟𝑢𝑐𝑘} Chung, Chiou, and Lin, 2015
Location of incident on the road {𝐹𝑜𝑟𝑓𝑟𝑒𝑒𝑤𝑎𝑦𝑠 ∶ 𝑟𝑎𝑚𝑝, 𝑙𝑒𝑓 𝑡∕𝑟𝑖𝑔ℎ𝑡𝑠ℎ𝑜𝑢𝑙𝑑𝑒𝑟} KIM and CHOI, 2001
Number of lanes {1..𝑁} Hojati] et al., 2014
Link capacity {𝑁} Hojati] et al., 2014
Average speed at the time of incident {} Hojati] et al., 2014
Number of affected Lanes {1..𝑁} Mihaita et al., 2019b
All lines affected {0, 1} Javid and Javid, 2018; Hou et al., 2013
Incident Severity {1..𝑁} Mihaita et al., 2019b; Haule et al., 2019a
Lighting condition {𝑑𝑎𝑦, 𝑛𝑖𝑔ℎ𝑡} Haule et al., 2019a
Secondary crash {0, 1} Haule et al., 2019a
Fire, Injury {0, 1} Hou et al., 2013
Fatality {0, 1} Hojati] et al., 2014
Traffic disrupted {0, 1} Hojati] et al., 2014
Traffic flow on ajacent lanes {𝑁} Mihaita et al., 2019b
Medical required {0, 1} Hojati] et al., 2014
Rollover {0, 1} Chung, Chiou, and Lin, 2015
Weather #1 {𝑊 𝑖𝑛𝑑𝑦, 𝐶𝑙𝑒𝑎𝑟, 𝑅𝑎𝑖𝑛} Alkaabi, Dissanayake, and Bird, 2011
Weather #2 {𝑆𝑢𝑛𝑛𝑦, 𝐶𝑙𝑜𝑢𝑑𝑦, 𝑆𝑡𝑜𝑟𝑚} Chung, Chiou, and Lin, 2015
Weather #3 {𝑅𝑎𝑖𝑛, 𝑆𝑛𝑜𝑤,𝑊 𝑖𝑛𝑑, 𝐹 𝑜𝑔} Nam and Mannering, 2000b
Position within road {𝐼𝑛𝑛𝑒𝑟, 𝑂𝑢𝑡𝑒𝑟,𝑀𝑖𝑑𝑑𝑙𝑒𝑙𝑎𝑛𝑒} Chung, Chiou, and Lin, 2015
Lane number {1..𝑁} Mihaita et al., 2019b
Other Features Values Reference
Distance from the city center {𝑅𝑘𝑚} Mihaita et al., 2019b; Hojati] et al., 2014
Traffic condition {𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑, 𝑢𝑛𝑐𝑜𝑛𝑔𝑒𝑠𝑡𝑒𝑑} -

TABLE 2.2: Table of features used to describe traffic incident across different studies

junction, wrongly imposed speed limits). According to Curiel, Ramirez, and Bishop, 2018, about
5% of the road junctions are the site of 50% of the accidents in the city of London. Thus, it seems
reasonable to analyse incident duration and probability with consideration of the road topology. The
task of predicting the duration of an incident is usually solved by using Machine Learning methods.
Among these methods – tree based methods Ozbay and Kachroo, 1999, fuzzy logic Wang, Chen, and
Bell, 2002, Bayesian networks Ozbay and Noyan, 2006a, artificial neural networks Barcellos et al.,
2015, Alkheder, Taamneh, and Taamneh, 2017. And recently Ma et al., 2017 studied GBDT as a better
performing method for incident duration prediction. Gaussian process regression and artificial neural
networks were found to outperform tree methods and SVM in incident duration prediction Hamad,
Khalil, and Alozi, 2019.

The majority of prior works has studied the prediction of incident duration on specific types of
roads (freeways or motorways), where the data accuracy is higher than on arterial roads; as of 2018,
very few applied the prediction strategies on normal arterial roads due to the high modelling com-
plexity and a location mismatching; the majority of traffic incident duration analysis researches focus
only on one type of road network (freeways, highways, etc) (Yu and Xia, 2012)-(Chung, Walubita,
and Choi, 2011)-(Hojati et al., 2012)-(Zhan, Gan, and Hadi, 2011); this is revealed by a recent state
of art published in (Li, Pereira, and Ben-Akiva, 2018b) which emphasises on the difficulty of solving
this problem for arterial roads and the lack of studies in this field. Our study proposes a framework
capable of predicting the incident duration regardless of the road network or its complexity.

Also, the estimation of incident duration can be reduced to the classification method Mihaita et
al., 2019a. To do this, a specific threshold for the duration is set and a prediction is made whether the
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incident will last longer than a specified time. Artificial neural networks show high average accuracy
for the prediction of 4 types of incident severity relying on data on the state of the road (lane, condition
of the roadway, weather, light, etc.), time and date. Overall accuracy between death, severe, moderate
and minor severity accidents was found to be 69-72% Alkheder, Taamneh, and Taamneh, 2017.

Bayesian networks can produce interpretable models for incident injury severity prediction O
textasciitilde na, Mujalli, and Calvo, 2011. Bayesian networks also outperform regression models
in incident severity prediction (involving three severity indicators: number of fatalities, number of
injuries and property damage) Zong, Xu, and Zhang, 2013. Interpretability is not a specific property
of the tree models only and by using knowledge distillation one can extract tree rules from different
prediction models (e.g. Bayesian network Park, Haghani, and Zhang, 2016a). It allows to represent
the model as an interpretable decision tree and to estimate the feature importance.

2.3.1 Traditional accident modelling

Incident duration distribution has been modelled as log-normal Sullivan, 1997 and more recently as
log-logistics distribution Chung, Walubita, and Choi, 2010, Smith and Smith, 2001, Smith and Smith,
2002. Log-logistic model has been used more extensively and found to have better goodness-of-fit than
log-normal distribution. Also, there are various hazard-based models of traffic incident duration Nam
and Mannering, 2000b, Hojati et al., 2013 which employ a hazard function to describe the conditional
probability that an incident will end during any particular time interval given that it already lasted
until the beginning of the interval. Recent studies also involve multi-component log-logistic models.
In Zou et al., 2016a authors describe a g-component log-logistic model and in Li, Pereira, and Ben-
Akiva, 2015c describe a competing risks mixture model which incorporates a multinomial log-logistic
model.

An actual distribution estimation can give only approximate information on traffic incident dura-
tion. More than that, incident duration distribution is found significantly dependent on incident case
parameters (e.g. day/night) Yang et al., n.d. Also, the duration of the incident may be affected by the
chosen method of incident clearance Li, Pereira, and Ben-Akiva, 2015c. Mao et al., 2019 found that
some incident parameters found to be important factors with different contributions to different types
of accidents, including weather conditions, traffic density, time periods and incident location. Also,
road factors were found to be affecting each one of the 4 incident types (rear-end, side wipe, colli-
sion with fixtures and rollover) in a different way. These findings draw incident duration distribution
estimation as a complex problem dependent on many traffic flow and incident parameters.

In a recent study, Haule et al., 2019a, incident clearance time and the total impact duration were
modelled using Weibull, log-normal, log-logistic distributions and compared using the Akaike infor-
mation criterion (AIC) criteria; findings have revealed that log-logistic distribution was outperforming
other distributions. As distribution utilisation is highly related to the specificity of each data set, for
this study, in which we use three different data sets, we further apply a comparison among several
distribution modelling choices by using the AIC criteria.

Also, there are various hazard-based models of traffic incident duration Nam and Mannering,
2000b; Hojati] et al., 2014, which employ a hazard function to describe the conditional probability that
an incident will end during any particular time interval given that it already lasted until the beginning
of the interval. Recent studies also involve multi-component log-logistic models. The authors in
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Zou et al., 2016b describe a g-component log-logistic model and Li, Pereira, and Ben-Akiva, 2015c
competing risk mixture model which incorporates a multinomial log-logistic model.

Incident duration can be modelled in terms of spatial relations (geometric placement of adjacent
lanes, angle of adjacency, different parameters of street lanes, including speed limits). Recent studies
rely on reported incident parameters Mihaita et al., 2019b; Hamad, Khalil, and Alozi, 2019, but road
topology can also play a significant role in the estimation of the incident probability (e.g. poorly
designed junction, wrongly imposed speed limits). According to Curiel, Ramirez, and Bishop, 2018,
about 5% of the road junctions represent locations of 50% of the accidents in the city of London.
Thus, it seems reasonable to analyse incident duration and probability with consideration of the road
topology.

In papers attributed the to early 2000s, authors primarily used one or two distributions to fit traffic
incident duration data. But starting from the 2010s, we can observe the use of different distributions
within one research for the approximation of different phases of incident duration with comparing
them according to the BIC score Li and Shang, 2014a; Alkaabi, Dissanayake, and Bird, 2011 - the
Bayesian information criterion (BIC).

In the recent study, clearance duration and impact duration were modelled using Weibul, Log-
normal, Log-logistic distribution Haule et al., 2019a:

• Log-logistic model outperformed Weibul and Log-normal models based on the comparison by
AIC criteria.

• Incident impact duration was based not on incident durations reported by response teams, but
estimated from historical speed data from BlueTOAD device pairs located on road segments.

• Hazard-based modelling approach allowed to estimate the impact of incident parameters on
impact and clearance durations. Most of the parameters (night time, severity, EMS involvement,
etc) were found to be affecting both durations in the same way but with a different degree of
impact. But some characteristics demonstrated the opposite effect on duration (percentage of
the lane closure, peak hour, summer/fall season, involvement of towing vehicles).

Incident impact modelled based on traffic flow data has the potential to be more accurate than
reported by incident response teams. But it was not compared within this research.

The research underlines diversity in modelling accuracy for different stages of traffic incidents.
Because of the significant observed difference in modelling accuracy for impact and clearance dura-
tion, authors also proposed to model each incident type (crashes, hazard, etc) separately to see how
one model can perform better than another in each case.

The fact that different distributions can be used to approximate different phases of traffic incident
Li and Shang, 2014a, implies that we can fit different distributions not only to phases but also split
the dataset by specific variables (e.g. peak hour), which can also lead to different estimation in feature
importance among resulting datasets (e.g. what is important for peak hour incidents, can be less
important than for non-peak hour incidents).
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2.3.2 Detection and estimation of traffic accident duration from traffic flow data

Main factors contributing to traffic jams are high traffic load (e.g. during peak hours), a bottleneck (a
spatial aspect of road geometry) and local disturbances in the flow (e.g. actual traffic incidents which
act as a trigger of traffic jam) Treiber and Kesting, 2013b. Incident detection systems can rely on
offline or real-time data. The emerging approach is to use computer vision methods to detect traffic
incidents using CCTV cameras. The spatial-temporal near-accident condition detection system has
been recently proposed leveraging object detection, segmentation and tracking Huang et al., 2020.
Advanced Driver Assistance Systems are intended to mitigate or prevent crashes by providing vehicle
drivers with the necessary information to avoid collisions. To accomplish this task the truck driver be-
haviour (speed reduction) encountering vulnerable road users (e.g. cyclists at intersections) have been
studied Schindler and Piccinini, 2021. The study of vehicle behaviour using GPS data can provide
valuable insight into driver behaviour to further assist general drivers to avoid incidents. Geographi-
cally Weighted Poisson Regression (GWPR) models were used to model frequencies of harsh driving
behaviour events, which were found to be positively correlated with segment length and presence of
traffic lights and negatively with neighbourhood complexity (which is a density area in proximity of
the event) Ziakopoulos, 2021. Road features can be used to predict the traffic accident risk since they
affect the driver’s behaviour. Traffic state identification systems related to traffic jams can rely on
traffic speed and density data. The previously used algorithmic approach can allow to identification
of interruptions and moving jams Liu et al., 2021.

2.4 Machine Learning in traffic accident analysis

The figure 2.5 illustrates the machine learning pipeline used for predicting the duration of traffic acci-
dents. The pipeline consists of 1) data preprocessing (cleaning, data imputation, label encoding, and
outlier detection), 2) feature transformation (Principal Component Analysis and Latent Dirichlet Allo-
cation, Log-transformation of target variable), 3) feature selection (e.g. using correlation-based feature
selection, univariate feature selection, recursive feature elimination), model training (e.g. using linear
regression, support vector machines, k-nearest neighbors, decision trees, random forests, and neural
networks), feature importance estimation (using Gini importance, permutation importance, or SHAP),
model testing (including cross-validation, confusion matrix, and ROC curve), and results estimation
(accuracy, precision, recall, F1-score, RMSE and MAPE). The model is then validated to ensure its
accuracy and reliability. The pipeline shows a general way of predicting the duration of stochastic
events using machine learning methods and and can be used for other similar tasks.

The task of predicting the duration of an incident can be solved by using Machine Learning meth-
ods. Among these methods are: tree-based classification methods Smith and Smith, 2001; Ozbay
and Kachroo, 1999, fuzzy logic Wang, Chen, and Bell, 2002, Bayesian networks Ozbay and Noyan,
2006a, linear regression analysis (LR) Khattak, Schofer, and Wang, 1995, artificial neural networks
(ANN) Wang, Chen, and Bell, 2005; Alkheder, Taamneh, and Taamneh, 2017; Barcellos et al., 2015,
support-vector regression (SVR)Wang, Ngan, and Yung, 2018a. Recently GBDT(gradient-boosted
decision trees) have been revealed to be a better performing method for incident duration prediction
Ma et al., 2017. Gaussian process regression and artificial neural networks were found to outperform
tree methods and SVRs in incident duration prediction Hamad, Khalil, and Alozi, 2019.
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Extreme Learning Machines (ELM) Huang, Wang, and Lan, 2011 - is a machine learning method,
which incorporates a feed-forward neural network initialised with random weights and consequent
training step based on produced random feature mapping, designed to avoid overfitting of neural net-
work.

The following methods are commonly used for traffic incident duration modelling: a) gradient
boosting decision trees - GBDT (Friedman, 2000) which rely on training a sequence of models, where
each model is added consequently to reduce the residuals of prior models; b) extreme gradient decision
trees - XGBoost (Chen et al., 2015) which finds the split values by enumerating all the possible splits on
all the features (exhaustive search) and contains a regularisation parameter in the objective function; c)
random forests - RF (Breiman, 2001) which applies a bootstrap aggregation (bagging, which consists
of training models on randomly selected subsets of data) and uses the average (or majority of votes) of
multiple decision trees in order to reduce the sensitivity of a single tree model to noise in the data; d)
k-nearest neighbours - kNN (Fix and Hodges, 1951) which uses for the prediction on data points the
majority of votes or the average from k closest neighbouring data points from the training set (based
on a distance metric); e) linear Regressions - LR - a standard predictor using linear equations to model
the relation between the features and the regression variable; f) light gradient boosted machines -
LightGBM (Ke et al., 2017) which applies gradient boosting to tree-based models; it also uses a
Gradient-based One-Side Sampling (GOSS) and excludes data points with small residuals for finding
split value. These models can be used for both classification and regression problems (except logistic
regression applied to classification only and linear regression to regression problem only).

One of the recent research studiesKuang et al., 2019a presented a two-step approach for traffic inci-
dent duration prediction. A cost-sensitive Bayesian network was used to perform binary classification
of traffic incidents by choosing a threshold of 30 minutes and then performing regression for each
class using the k-nearest neighbours approach. While the approach is functional, one major drawback
of the classification problem is to manually choose the class split threshold, as it can lead to severe
class imbalance; to overcome this issue, in our study, we perform both a fixed and a varying threshold
set-up to find the best class balance for our classification models; even-more, we propose as well a
comparison with a multi-class classification approach and debate on the benefits and drawbacks of
using classifiers for such problems; we also enhanced more advanced regression models together with
outlier removal procedures that would provide a better and more precise prediction of the incident du-
ration precondition in minutes. Overall, the cost sensitivity of incorrect classification can be further
extended to the cost-based regression metrics.

In one of the recent researches about the classification of driving state, multiple hyper-optimised
ML models were tested, and the entire feature space was visualised using t-SNE(Yi et al., 2019).
RandomForest provided the highest accuracy of prediction, but more advanced tree-based models
exist that utilise gradient boosting, which we will be using in our research (e.g. gradient-boosted
decision trees).

To verify the performance of advanced tree-based methods (such as LightGBM), additional con-
ventional ML models can be used (Chen et al., 2020). LGBM can be compared with conventional ML
and non-tree-based models (k-nearest neighbours, Logistic Regression).

The majority of prior works have studied the prediction of incident duration on specific types of
roads (freeways or motorways), where the data accuracy is higher than on arterial roads; as of 2018,
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very few applied the prediction strategies on normal arterial roads due to the high modelling com-
plexity and a location mismatching; the majority of traffic incident duration analysis researches focus
only on one type of road network (freeways, highways, etc) (Yu and Xia, 2012)-(Chung, Walubita,
and Choi, 2011)-(Hojati et al., 2012)-(Zhan, Gan, and Hadi, 2011); this is revealed by a recent state
of art published in (Li, Pereira, and Ben-Akiva, 2018b) which emphasises on the difficulty of solving
this problem for arterial roads and the lack of studies in this field.

2.4.1 Classification and regression tasks in the incident duration prediction

The machine learning pipeline follows the general structure including the use of regression/classification
models, feature correlation tests, data split according to train-test-validation schema, model calibra-
tion and validation, and prediction performance evaluation Gholami et al., 2020. One of the studies on
accident hot-spot clustering Al Hamami and Matisziw, 2021 highlights that methods applied for vehi-
cle accident analysis can be applied to various kinds of point-based events like crime, natural hazards,
etc. A supervised machine learning model built upon extreme gradient boosting models has been used
to predict rail-road accidents (derailments) and to rank, the importance of contributing factors using
ANOVA and Gini criteria Bridgelall and Tolliver, 2021. Crash prediction models can be historical and
real-time. The comprehensive review on real-time crash prediction approaches has been performed in
Hossain et al., 2019.

Classification and regression definitions

Using all available data sets and the incident information, we first denote the matrix of traffic incident
features as:

𝑋 = [𝑥𝑖𝑗]
𝑗=1..𝑁𝑓
𝑖=1..𝑁𝑖

(2.1)
where 𝑁𝑖 is the total number of traffic incident records used in our modelling and 𝑁𝑓 is the total
number of features characterising the incident (severity, number of lanes, type, neighbourhood, etc.)
according to each specific data set.

The estimation of incident duration can be reduced to the classification task Mihaita et al., 2019b.
To do this, a specific threshold for the duration is set and a prediction is made whether the incident
will last longer than a specified time. Artificial neural networks show high average accuracy for the
prediction of four types of incident severity relying on data obtained from the state of the road (lane,
condition of the roadway, weather, light, etc.), time and date. Overall accuracy between deadly, severe,
moderate and minor severity accidents was found to be around 69-72% in Alkheder, Taamneh, and
Taamneh, 2017.

For the incident duration classification problem the incident duration classification vector is de-
fined as:

{

𝑌𝑐 = [𝑦𝑐𝑖 ]𝑖∈1..𝑁 𝑦𝑐𝑖 ∈ {0, 1}

𝑌𝑚𝑐 = [𝑦𝑚𝑐𝑖 ]𝑖∈1..𝑁 𝑦𝑚𝑐𝑖 ∈ {0, 1, 2}
(2.2)

where N is the duration of the traffic incident (in minutes), 𝑌𝑐 is the vector of binary values taking
values in {0, 1}, and 𝑌𝑚𝑐 is the vector of integer values for the multi-class classification problem defi-
nition, taking values in {0, 1, 2}. More specifically, a binary classification modelling has the purpose
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of identifying short versus long-term incident duration, split by the incident clearance threshold 𝑇𝑐 .
Thus the incident duration classification task is to predict 𝑦𝑐𝑖 , where 𝑌𝑐 takes one of the binary values:

{

𝑦𝑐𝑖 = 0 if 𝑦𝑖 ≤ 𝑇𝑐 , short-term incidents
𝑦𝑐𝑖 = 1 if 𝑦𝑖 > 𝑇𝑐 , long-term incidents (2.3)

where 𝑇𝑐 the incident duration threshold.

Evaluation of prediction accuracy

To evaluate the regression model performance the most commonly used metrics are 1) Mean Absolute
Percentage Error (MAPE) and 2) Root Mean Squared Error (RMSE) defined as:

𝑀𝐴𝑃𝐸 = 1
𝑛

𝑛
∑

𝑡=1

|

|

|

|

𝐴𝑡 − 𝐹𝑡
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|

(2.4)

𝑅𝑀𝑆𝐸 =

√

√
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1
𝑛

𝑛
∑

𝑖=1
(𝐴𝑡 − 𝐹𝑡)2 (2.5)

where 𝐴𝑡 are the actual values and 𝐹𝑡 - the predicted values, 𝑛 - number of samples.
The performance of classification models is most commonly evaluated using the Accuracy and

F1-score and defined as:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑝+ 𝑡𝑛

𝑡𝑝+ 𝑡𝑛+ 𝑓𝑝+ 𝑓𝑛
, (2.6)

𝐹1 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑟𝑒𝑐𝑎𝑙𝑙

. (2.7)

where 𝑡𝑛 represents true negatives, 𝑓𝑛 - false negatives, 𝑡𝑝 - true positives, 𝑓𝑝 - false positives.
For example, we refer to true positives the incidents which have been predicted to be in a specific

class (say short-term) and indeed they were short-term upon validation, false positives the incidents
which were predicted to be short-term but were not, etc.

F1-score is in general a better performance metric to use when there is an uneven class distribution
(especially data sets with fewer incident records). This metric takes into consideration the total number
of both false positives and false negatives together with true positives and true negatives.

Various metrics used for the regression tasks, RMSE and MAPE being the most common for the
regression task (see Table 2.3).

2.4.2 Feature importance and feature selection

There are models of different complexity used to approximate traffic incident duration and duration
of its phases. Khattak Khattak, Schofer, and Wang, 1995 used simple linear model to approximate
clearance time, which can be defined as a function of incident parameters and coefficients:

𝑐𝑙𝑒𝑎𝑟𝑎𝑛𝑐𝑒𝑡𝑖𝑚𝑒 = 𝐴1 ∗ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒1 +𝐴2 ∗ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒2 + ...+𝐴2 ∗ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑁 (2.8)
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By using this simple model, we can easily determine the most important features by consequently
removing them and estimating the resulting error (e.g. estimate change in mean squared error in
relation to the removed feature). This method for determining feature importance is called Recursive
Feature Elimination Guyon and Elisseeff, 2003 and is a general method which is applicable to different
approximation models.

The Shapley Additive explanation (SHAP) Lundberg and Lee, 2017 provides more advanced ap-
proaches for feature importance estimation because it fuses estimation from multiple models trained
across many different subsets (which selected both feature-scale and index-scale) of the dataset. These
studies motivated the utilisation of the Shap Values for Feature importance ranking and selection and
the analysis of such approach on three different data sets, all with different features and information.

The example SHAP plot is provided on Figure 3.14. Each point related to a feature is shown in
and represents the SHAP value score (Oy-axis), coloured by its value (from low to high),while the
Ox-axis shows the impact of that feature information on the entire prediction output.

It is generally not enough to use all the possible features for the regression analysis of traffic in-
cident duration. Using a high amount of features combined with a small data set size can lead to
over-fitting. Some features can be helpful or useless, more or less critical, while others do not im-
pact the prediction results. By performing a feature importance analysis, we can recommend traffic
management facilities record the most critical data and omit redundant data related to traffic inci-
dents. Also, we can increase the precision of specific observations (e.g. weather conditions), which
were found to play a significant role in some research studies (e.g. during summer and autumn sea-
sons, response team preparation time was higher on freeways in Washington, USA in 2009 Hou et
al., 2013, with no noticeable effect on clearance and response team travel time. Peak hours were the
most influencing feature on response team preparation delay, which was found to be linked to response
procedures (the goal of the response team was to resolve incidents during peak hours as soon as pos-
sible). A research study using Beijing traffic incidents data from 2008 Li and Shang, 2014a found
the importance of "peak hour" value for the response team travel time and clearance time, but not for
the intervention team preparation time. For example, one can use produced decision trees from the
tree-ensemble model Chen et al., 2020. A data-driven approach can be used to perform information
fusion from different sources Abou Elassad, Mousannif, and Al Moatassime, 2020, which involved
the use of Gini-index extracted from Random Forests as a method to estimate feature importance.
Nevertheless, the single random model can have a noticeable variance in data mapping when there is
a weak connection between features and the target variable by making the feature importance value
dependent on the random seed for the model.

A research study using Beijing traffic incidents data from 2008 Li and Shang, 2014a found the
importance of "peak hour" value for the response team travel time and clearance time, but not for
response team preparation time. Surprisingly, during summer and autumn, response team preparation
time was higher, with no noticeable effect on clearance and response team travel time. The type
of incident "overturned vehicle" found to have significant effect on response team preparation and
incident clearance time with no effect on travel time. The most important factors for the total incident
duration time were: 1) bike involvement, which can imply human injury and 2) night shift (10pm-
6am), which was linked to higher incident severity and consequently higher clearance time.

One important conclusion is that rather than using the number of affected lanesMihaita et al.,
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2019b (which is only part of information related to road segment), we can also add a resulting value
called “all lines affected”Javid and Javid, 2018 or even more informative - ratio of affected lanes (e.g.
50%) indirectly incorporating the number of lanes of a section, where incidents occurred into the
model. Also, we can include the number of lanes for the each involved section as a feature.

Modelling of freeway incident response time in Washington State, USA in 2009 Hou et al., 2013
found morning peak hours as the most influencing feature on response team preparation delay, which
was found to be linked to response procedures (goal of response team was to resolve incidents during
peak hours as soon as possible). Response time was also lower during summer and winter. Because
of the response strategy of the transport agency we can observe a clear difference in incident duration
due to response priority. Priorities in the elimination of traffic incidents (which consider, for example,
number of blocked lanes) can be defined as a part of traffic incident response guidelines. Priority
of traffic incident elimination (and corresponding response team actions, like involvement of towing
vehicle) can be used as a feature estimated from the traffic incident characteristics (and act as an
additional information to the model).

Weekend and nightly incidents were also associated with significantly longer clearance and impact
(including recovery) duration of traffic incidents on freeway Haule et al., 2019a. This observation was
attributed to a lower number of staff on duty during weekends and nights Haule et al., 2019a; Hou
et al., 2013.

The average traffic speed during a 60-min time interval was found to be statistically significant for
the traffic incident duration modelling Hojati] et al., 2014. One can use aggregated traffic flow data
(e.g. represented as a speed of traffic or possibly traffic flow count) within specific time intervals as a
feature.

Lighting conditions can be calculated much more precisely than just using binary day/night values
Haule et al., 2019a. Using longitude, latitude and time, we can determine the angle between the sun
and traffic direction at the time and place of the incident. Also, we can calculate precise lighting
conditions based on the elevation of the Sun above the horizon during the time of the incident.

Effects of lighting conditions on driver behaviour were assessed using an interactive driving sim-
ulator Hong et al., 2014. According to the research, driver perception was found to be limited during
night-time; drivers were also found to be limiting travel speed due to impaired visibility (which in-
cludes an incorrect and untimely perception of the road). Installation of road markers (to improve
the perception of the road curve) and rumble strips were proposed. The impaired visibility during
night-time and the proposed measures point that it is possible to derive visibility of the road structure
from the point of traffic incidents and corresponding lighting conditions (distance of driver’s eyesight
in relation to road segments).

2.4.3 Interpretable models

Interpretable machine learning was defined in Murdoch et al., 2019 as the extraction of relevant knowl-
edge (knowledge which provides insights into the problem, which is then used to guide further actions
and discovery) from a machine-learning model concerning relationships either contained in data or
learned by the model (e.g. feature importance, dataset visualisation, learned relationships).

Decision-tree-based methods allow us to represent the model as an interpretable decision tree and
logic of classification decisions and estimates of feature importance. Interpretability is not strictly
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limited to tree models and by using knowledge distillation one can extract tree rules from different
prediction models (e.g. Bayesian network Park, Haghani, and Zhang, 2016a ).

Bayesian networks can produce interpretable models for incident injury severity prediction O
textasciitilde na, Mujalli, and Calvo, 2011. Bayesian networks also outperform regression models
in incident severity prediction (involving three severity indicators: number of fatalities, number of
injuries and property damage) Zong, Xu, and Zhang, 2013.

In conclusion, interpretable machine learning is a valuable tool for extracting relevant knowl-
edge from machine learning models which later can be used by decision-makers. Decision tree-based
methods and Bayesian networks are particularly useful for representing interpretable models and for
estimating the importance of features.

2.4.4 Imbalanced dataset classification

In the case of traffic incident duration prediction, we can have incidents with a duration of more than
60 minutes, which are rare extreme values. We also need to consider that traffic incident duration
is modelled using Log-normal, Gamma and Weibull distributions as it has an asymmetric form and
long-tailed distribution. That is why methods for the classification of imbalanced data sets can useful
for the classification of these rare incidents.

There are three main approaches for dealing with imbalanced classes:
• Under-sampling - when the size of a bigger subset is reduced to achieve class balance.
• Over-sampling - when the size of a smaller subset is increased (e.g. by synthetically generating

additional samples) to achieve class balance.
• Combined approach - one can use both under- and over-sampling to achieve class balance be-

tween subsets Prati, Batista, and Monard, 2009.
There are different methods implementing each approach to deal with imbalanced data sets:
• random under-sampling Tahir, Kittler, and Yan, 2012, where the majority class is reduced by

randomly choosing samples in order to achieve a higher class balance with the minority class.
• SMOTE - synthetic minority oversampling technique Chawla et al., 2002 which implies the

oversampling of minority class by introducing synthetic examples by picking random points on
line segments between k neighbours in multidimensional space.

• ADASYN: Adaptive Synthetic Sampling Approach for Imbalanced Learning He et al., 2008 -
a method which uses distance distribution among k neighbours to decide the number of gen-
erated synthetic samples. The process of sample generation is the same as for SMOTE, with
the difference that only the number of samples is adaptive (for more frequent distance among k
neighbours, more samples will be generated).

• Utilisation of Support Vector Machines (SVM) to perform under-sampling because in SVM
method only few support vectors are important to perform classification (Granular repetitive
SVM under-sampling) Tang et al., 2009.
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2.4.5 Boosted models and ensembles

Different machine learning techniques exist in the literature and each demonstrates different extrapola-
tion performance; AdaBoostSVM and Extreme, for example, are machine learning approaches which
has to property to make predictions with reduced overfitting.

AdaBoost is a meta-estimator, a machine learning method which implies a training of a set of weak
classifiers with adaptive change to weights samples depending on the correctness of classification
(after each boosting operation, weights of samples are adapted so next trained weak estimator gives
higher priority to miss-classified samples) Schapire, 2013. Classifiers are then combined into weighted
voting (linear) combinations.

AdaBoost and SVM were combined to solve the classification problem of imbalanced datasets
Wang, Ngan, and Yung, 2018a using spatial-temporal traffic data for the case of automatic incident
classification.

Extreme Learning Machines (ELM) Li et al., 2017 - is a machine learning method, which incor-
porates a feed-forward neural network initialised with random weights and consequent training step
based on produced random feature mapping, designed to avoid overfitting of neural network. The
method is two-step: 1) Neural network initialised using random weights (this way we perform feature
mapping into ELM feature space) 2) Then Moore-Penrose generalised inverse performed on the hid-
den layer output matrix and solving feature classification problem using Gaussian estimation. ELM is
very fast to train and provides better generalisation than Artificial Neural Network, also demonstrated
remarkable efficiency in comparison to SVM, Naive Bayess and ANN on the traffic incident detection
task on I-880 freeway in California Li et al., 2017.

2.4.6 Anomaly/outlier detection

The majority of studies in the literature have also concentrated on applying state-of-the-art machine
learning models mostly for classifying the incident severity (Nguyen, Cai, and Chen, 2017) or their
duration Li, Pereira, and Ben-Akiva, 2018b. However, very few have treated the problem of outliers
or imbalanced data classes.

Many studies Wang, Ngan, and Yung, 2018a; Barcellos et al., 2015; Li et al., 2017 rely on methods
for classification or clustering of traffic conditions for incident detection. However, there are very
few studies on traffic incidents involving methods for detecting anomalies (such as one-class SVM,
isolation forests, etc). Non-recurring traffic incidents are rare and unusual in nature and therefore
the detection of a traffic incident can be assessed as the task of detecting anomalies in traffic. By
relying on anomaly detection methods, the incident detection system can be adapted to previously
unseen situations. Thus, classification and evaluation of the applicable anomaly detection methods in
comparison to well-established classification and regression methods will be carried out. Also, road
situations detected as anomalous can be extremely valuable for further investigations in the duration
of a freshly reported accident.

Different anomaly detection methods will be used, including those which can produce a measure
of an anomaly for each data point (One-Class SVM, Isolation Forest). This will be used to compare
anomaly detection with regression methods (GBDT, ANN) for the task of incident probability es-
timation. Similarly, anomaly detection can be used in comparison with recently used classification
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(GBDT, ANN) and regression (e.g. Gaussian process regression) methods, for the task of incident
duration estimation. As stated in Ma et al., 2017, tree models perform badly at modelling incident
duration with the long-tail distribution. Thus, anomaly detection methods can be used to model such
kind of rare duration (which is placed in the long tail) as anomalies of duration.

The IsolationForest (IF) (Liu, Ting, and Zhou, 2008) is an outlier removal method, which uses
forests of random split trees. For each tree, the method randomly selects a feature and random feature
value. The dataset is divided into two parts in each step until each data point becomes “isolated” (split
from the rest of the data). If the data point is an outlier, it will have a small tree depth (i.e. data point
gets quickly separated from the rest by selecting values in just a few features). Tree depth is then
averaged between all the “isolation” trees and considered an anomaly score (e.g. if the average tree
depth for a point is 1.3, the point is easily separable after a small number of splits).

LocalOutlierFactor (LOF) (Breunig et al., 2000) is another outlier removal method, which esti-
mates the anomaly score from the local deviation of density within the k-nearest neighbourhood. LOF
relies on the calculation of local reachability density (LRD), which represents the inverse of the aver-
age reachability distance (RD) of neighbouring data points from the selected data point. Reachability
distance (RD) represents the distance to the most distant neighbour within a k-sized neighbourhood
(k is also a hyper-parameter). LOF of data point then represents the relation between LRDs of neigh-
bours and its LRD and can take values above 1 (higher LRD than neighbours), below 1 (lower LRD
than neighbours) and 1 (data point has the same density as neighbours). According to the LOF score,
we can sort data points and select a specific per cent of data points, which have the highest LOF to be
eliminated. LOF method relies on the fact that outliers belong to the area where the density of data
points is low, while not outliers belong to the high-density area.

One-class SVM, Covariance estimator, Local outlier factor and Isolation Forest has been applied
for outlier detection in machine learning pipeline to predict rail-road accidents Bridgelall and Tol-
liver, 2021. Anomalies detected in historical traffic state data (traffic flow, traffic speed, occupancy)
and vehicle trajectory Djenouri et al., 2019, which can be associated with disruptions produced by
traffic accidents. Three main approaches for anomaly detection include the use of statistical models,
similarity-based models (which rely on data difference measures and neighbourhood estimation meth-
ods to find outliers) and pattern-mining methods (which resolve the correlation problem of similarity-
based models but are very time-consuming).

Multiple models in many research studies failed to predict extreme values for the traffic incident
duration Li and Shang, 2014a; Shen and Huang, 2011. Machine learning method GBDT which demon-
strates superior performance on a wide variety of tasks also known as failing at predicting very long
incident duration, which is represented as extreme values within part of long-tailed distribution Ma
et al., 2017.

In conclusion, anomaly detection can be an effective tool for improving the estimation of incident
probability and duration, as it can identify and isolate rare events (or anomalous accident reports) and
also can eliminate data records which can contribute to the bias of the prediction model (which can
negatively affect model’s performance Won, 2020). As such, anomaly detection can be a valuable
addition to existing methods when attempting to model complex data sets.
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2.4.7 Dimensionality reduction methods

Usually, traffic flow data is represented as traffic state readings across multiple (up to hundreds) vehicle
detectors in the transport network. Options to use such a high-dimensional data set include: 1) use
the closest to the point of interest readings (e.g. traffic flow on 5 closest road segments) Mihaita et al.,
2019b 2) use all the data available on traffic flow in the network Mihaita et al., 2019b 3) Perform
dimensionality reduction before modelling Wang, Ngan, and Yung, 2018a.

Principal Component Analysis (PCA) is a statistical method that uses an orthogonal transformation
to transform multidimensional data into a sequence of linearly uncorrelated variables (components).
Each resulting component is a linear combination of input features. The very first component has the
greatest variance. The method was proposed in 1901 by Pearson Wold, Esbensen, and Geladi, 1987.
PCA was used to reduce 23 dimensions of spatial-temporal signals to 2 dimensions for the task of
Automatic Incident Classification proposed in Wang, Ngan, and Yung, 2018a.

Uniform Manifold Approximation and Projection (UMAP) McInnes and Healy, 2018 is a new
dimension reduction method (2018), based on the use of Riemann geometry and algebraic topology.
UMAP optimises the placement of data in a small dimension space to minimize cross-entropy be-
tween two topological representations. The disadvantage of the method is its non-interpretability and
non-invertibility (one cannot inverse mapping to feature data). UMAP can be used both for dimen-
sional reduction and data visualisation. To perform clustering and modelling of data points in reduced
dimensions and to perform the data visualisation, it is necessary to use different sets of options (e.g.
minimal distance between points in reduced dimension needs to be set to zero when preparing data
for clustering).

Dimensionality reduction methods can help when we have multidimensional data with a lot of
dimensions. A lesser number of dimensions can provide simpler and faster models or allow to process
of large data sets within computational resource constraints.

2.4.8 Summary on the use of Machine Learning models

The majority of studies rely on Support Vector Machines or Naive Bayes for traffic incident duration
prediction (see Table 2.4). The use of more advanced methods like XGBoost or GBDT is rare which
is surprising given their effectiveness. This can be explained by a generally slow attribution of both
sophisticated models and data-driven approaches to the traffic accident research which we observe in
the literature. Also, the complexity of machine learning pipelines has increased in recent years due
to the need for the incorporation of more data science knowledge to merge with traditional transport
modelling techniques.

Another finding is that various Machine Learning pipeline elements (like dimensionality reduction
or feature selection) are rarely used across incident duration prediction studies (see Table 2.5). This
reflects a lack of advanced machine learning techniques that can be explored for incident modelling.
The lack of popularity among these pipeline approaches leaves room for more innovative ideas for
data filtering and feature ranking from the beginning of the incident duration prediction modelling.
The use of SHAP and feature selection is found to be lacking in studies, while it may provide a list
of entries in the incident reporting form with the highest contribution to the accuracy of the traffic
incident duration prediction. An additional description of the most important features may provide
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a further increase in prediction accuracy. Bi-level frameworks allow the separation of the task of
the incident duration prediction into incident duration classification and regression tasks. Allocating
different kinds of models to each task may improve the overall model performance. The use of bi-
level frameworks as a technique for prediction performance improvement is also found to be rare.
Dimensionality reduction had a low relevance in multiple prior studies due to the small size and low
dimensionality of incident reports (see the table of data set sizes used in years prior to 2018 Li, Pereira,
and Ben-Akiva, 2018b), but with current advancements in traffic data collection (see Section 2) and
significant consequent increase in amount and variety of data collected, we see a rise in the relevance
of data pre-processing methods.

2.5 Deep Learning in traffic accident analysis

Another example of classification task in accident modelling includes accident detection and accident
risk prediction, which can rely on high-resolution traffic data (speed, occupancy, volume) and use Deep
Learning methods like Convolutional Neural networks Huang, Wang, and Sharma, 2020. Variational
Long Short-Term Memory Encoder has been proposed in Farahani et al., 2020 to perform a short-
term traffic flow prediction. It demonstrated better performance than LSTM and Stacked Autoencoder
models. Short-term (5 to 30 minutes), mid-term (30 minutes to multiple hours) and long-term predic-
tion (day to multiple days) capabilities of the method were explored. The methodology is in general
intended to predict the traffic state using historical data.

Deep learning is becoming increasingly important in the field of traffic accident modelling. By
leveraging the power of artificial intelligence and machine learning, deep learning algorithms can be
used to detect patterns in historical accident report data that may be indicative of future accidents
Nguyen et al., 2018. This methodology can help to develop more effective strategies for preventing
accidents, as well as allow traffic management agencies to analyze existing road structures for the
probability of accident risk. Deep learning has been used to develop predictive models that can identify
accident-prone areas Ren et al., 2018 and predict accident risk based on driver behaviour Shi et al.,
2018, as well as to predict the impact of various events on traffic flow Yu et al., 2017.

Overall,the majority of studies implementing Deep Learning techniques for traffic incident dura-
tion prediction rely on classic ANN/MLP and rarely use recurrent or convolution networks (see the
summarising Table 2.6 of the most popular deep learning techniques used so far). The use of recur-
rent networks is mostly attributed to the analysis of textual incident reports or messages over social
networks. This short summarising of Deep learning shows that there is a significant gap in the current
incident modelling to leverage such powerful techniques and this is mostly related to the data avail-
ability - traffic flow counts, speed, details traffic signal control, etc. There are different approaches that
can be used to improve the incident duraiton prediciton and in the following subsections we detail the
most common ones as follows.

2.5.1 Spatial-temporal models for traffic incident modelling

In the past years, traffic accident research has seen an increased use of data-driven methods. Different
problems were addressed, including: 1) traffic accident duration prediction methods (see methods
in Li et al., 2018), 2) accident detection methods (see Parsa et al., 2019), 3) estimation of severity
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(reader can refer to ) Singh and Yadav, 2021, and more recently, 4) the development of spatial-temporal
modelling methods which have allowed to perform accident risk prediction using high-dimensional
spatial, semantic and temporal data sets (see the work of Wang et al., 2021b). The use of such methods
has enhanced the automated analysis of traffic data together with the increasing number of publicly
available data sets. Traffic accident risk prediction allows to: a) detect high-risk areas within a traffic
network, which may facilitate the decision-making inside traffic management authorities, b) to allocate
resources and assess the road design to reduce the number of accidents in the future, c) to predict timely
high-risk situations on the road and d) to allow implementation of risk-reducing traffic management
strategies.

One of the first works on traffic accident risk prediction using Deep Learning has been performed
with human mobility data using a Stack Denoise Autoencoder (SDAE) on the Japan traffic network
Chen, Chen, and Hsieh, 2016, but traffic flow and time-related matters (including periodicity) were
not considered. Another research Ren et al., 2017 relied on the LSTM network to improve the risk
prediction in comparison to SAE by considering, in addition, the air quality, traffic flow and weather
data, represented as short-term and periodic components. Authors in Zhou et al., 2020a proposed also
a Coarse and Fine grained prediction on the target accident risk map. RiskOracle Zhou et al., 2020b
relied on a Graph-Convolution network, utilizing hierarchical coarse-to-fine modelling and propos-
ing minute-level predictions in comparison to day-level Yuan et al., 2018 and hour-level Chen, Chen,
and Hsieh, 2016. In Yuan et al., 2018 authors have constructed over the ConvLSTM by highlighting
the spatial heterogeneity problem and proposing an ensemble of region-specific ConvLSTM mod-
els (Hetero-ConvLSTM); they considered weather, the environment and the road condition in Iowa,
US for over 8 years of observations, but points of interest (POIs) were not considered. Semantic
features, coarse and fine-grained risk maps were considered in Wang et al., 2021a, where also Graph-
convolution neural networks and attention-based LSTMs were used. A more recent work in Wang
et al., 2021b represents the State-of-Art (SoTA) in the field of accident risk prediction, where the au-
thors proposed a weighted loss function to address the zero-inflated issue (increase in the number of
zero-risk grid cells due to the increase in the granularity of predictions) and made an ensemble of
models by processing semantic and geo features.

Deep learning algorithms can provide a better understanding of accident risks and impacts in
traffic networks in which drivers are operating, allowing traffic management agencies to develop more
effective strategies for preventing accidents or mitigating their impact. Additionally, deep learning
algorithms have the potential to improve the accuracy and speed of emergency response. However,
the use of deep learning in traffic accident prediction is not without drawbacks, such as the need for
large amounts of data and the potential for bias in the results due to the algorithm’s reliance on existing
data Tommasi et al., 2017 (these algorithms may need to be tested against extrapolation between time
intervals, different areas and reporting source). Nevertheless, deep learning methodology allows to
develop important tools for traffic authorities, as it can provide valuable insights into the causes of
accidents, and data patterns which can point to potential risks and impacts and in total, help traffic
management authorities to develop better strategies for preventing, responding and reducing the impact
of traffic accidents.
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2.5.2 Textual Accident Description analysis

Traffic accident reports usually contain a textual description of the accident Moosavi et al., 2019a
Moosavi et al., 2019b. In recent years, multiple systems were presented to detect traffic accidents
using text analysis of social networks content Vallejos et al., 2021; Salas, Georgakis, and Petalas,
2017; Ali et al., 2021. Various methods were also proposed for traffic-related sentiment analysis of
social networks: sentiment classification using ontology and latent Dirichlet allocation Ali et al., 2019,
the use of gated recurrent unit (GRU) model and generative adversarial networks to estimate the traffic
information sentiment Cao, Wang, and Lin, 2018. Overall, sentiment analysis has been performed for
various traffic rules including ’yellow light rule’ using social network analysis Cao, Wang, and Lin,
2018; Lu et al., 2021.

Also, accident reports can contain a category and subcategory definition of the accident (e.g. types
of vehicles involved, multiple or single-vehicle crash, etc). The unique property of text description of
an accident is that it can contain information regarding event categories not predefined in the accident
reporting form Vallejos et al., 2021.

A typical pipeline for textual description preprocessing includes Ali et al., 2021: 1) Tokenization
- text being split into a list of words called tokens, 2) Stop-word removal - the removal of pronouns,
prepositions, symbols and articles not providing any valuable information for accident description, 3)
Lemmatization and stemming - words are reduced to their base form (e.g. involved -> involve, injuries
-> injury, reported -> report) or to their root form (e.g. injuries, injury -> injur) 4) Case-conversion
- text is converted into lower case, where the difference between uppercase and lowercase words is
not relevant 5) Part-of-speech (POS) tagging - each word gets its type associated to it (e.g. traffic
-> noun, stop -> verb), 6) text representation conversion, which relies on a Bag-Of-Words (BOW)
representation (each word is represented as a one-hot encoded vector) or on a neural-network-based
word embedding method like Word2Vec or FastText, which capture semantic similarities between
words. The Word2Vec approach has a significant limitation - the inability to represent a new word
which was absent in the training data set with a vector. The FastText resolves this issue by representing
each word as a sum of related n-gram vectors.

After the data preparation and representation conversion, various recurrent models are then used
to perform tasks related to text analysis.

Incident description features were used in topical text modelling Das, Mohanty, and Bhattacharyya,
2019. Previously, the LSTM architecture has been used for the task of detection of incidents from so-
cial media data Zhang, Chen, and Zhu, 2018. LSTM was also successfully used for stock price time-
series prediction Sen and Dhar, 2018, making it applicable for the modelling of traffic flow/speed
time-series data.

Text analysis of accident reports is vital for understanding the underlying causes of traffic acci-
dents. By providing insight into the information provided to describe accidents, text analysis can help
to identify dangerous conditions that lead to accidents. Traffic accident descriptions can contain in-
accuracies due to human factor (e.g. inaccurate accident timeline), which highlights the importance
of automated accident detection and timeline estimation from traffic state data Taghipour et al., 2022.
Ultimately, text analysis is a powerful tool for gaining even deeper insight into the causes of traffic
accidents unconstrained by accident reporting forms and developing strategies to reduce them.
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2.6 Conclusion

Today, we can use several methods for solving the incident duration prediction, among which we
name the spatial-temporal incident impact analysis and traffic simulation. However, each of the above
topics present several challenging aspects which can range from data collection, cleaning, anomaly
detection, up to strategies of using the best artificial intelligence model, or various techniques to model
and estimate the impact of traffic incidents across the network and regions. This motivated our current
literature review which was organised to provide the reader with a systematic review and understanding
of the complexities of each modelling step.

2.6.1 Summary of challenges and gaps

Traffic accident analysis has the following challenges which we address in this review:
• Traffic accident reports contain multiple characteristics of a traffic accident. Each characteristic

can have various effects on accident modelling performance. To solve the problem of determin-
ing which data to collect and what details (features) we need to use feature importance estimation
methods.

• The task of predicting traffic accident duration group (e.g. predicting if an accident will be short-
term or long-term) can create a problem of imbalanced classification due to uneven number of
accidents in duration groups. To solve this issue, multiple approaches for imbalanced classifi-
cation exist including the use of specific models, metrics and data processing techniques.

• Traffic accident duration distribution usually follows log-normal or log-logistic distribution
which is a skewed distribution. Machine learning models show better performance with nor-
mally distributed predicted variables. Therefore, the target variable needs to be processed to
enhance predictions.

• Accident reports also may contain reporting-specific errors or anomalies in reporting. In gen-
eral, the outlier removal procedure improves the performance of machine learning models.

• Accident reports can represent very large data sets with high dimensionality. For example,
CTADS contains 1.5 million accident reports, 49 features each. When working with high-
dimensionality data it may be necessary to use dimensionality reduction to reduce the model
training time and memory requirements.

• In particular cases, data availability on accidents can be low. In that case, we need to seek ways
to improve the extrapolation performance of our models. The extrapolation ability and noise
resistance of ML models can be improved by using model ensembles and bi-level frameworks.

• The specifics of accident report data sets is the presence of textual accident descriptions, which
can contain valuable information to enhance the prediction performance of accident modelling.
Various natural language processing techniques are of high importance for the task of utilizing
accident description.
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• Historical traffic speed or traffic flow data can be available for accident reports. In this case,
time-series modelling techniques can be utilized to extract useful information to enhance the
performance of accident modelling.

• One of the main challenges in incident identification from traffic flow is to provide descriptive
statistics for abrupt changes in traffic state Liu et al., 2021.

• There are multiple novel machine learning and deep learning models, which have not been used
in traffic accident modelling so far, but many hybrid or advanced frameworks can still can be
applied to enhance the performance of the incident duration modelling

Traffic jam identification methods (which rely on vehicle detector data) can be further extended
from the use of algorithms to the use of machine learning methods intended for time series processing.
Further research on the topic of incident-related traffic state identification can be performed using
merged data sets of traffic accident reports and traffic states (flow, speed, occupancy) recorded in their
proximity Liu et al., 2021.

The use of anomaly detection methods in urban traffic data was found to be seldom Djenouri et
al., 2019 which implies that future research can be performed in that direction. The use of Machine
Learning methods in transportation was found not being used to its full advantage Behrooz and Hayeri,
2022: 74% of papers were found to be relying on prediction methods like XGBoost, Random Forest,
LSTM and Multilayer Perceptron with only minimal use of sophisticated ML methods.

The main limitations of using Deep Learning models for traffic incident duration modelling are:
1) data availability: deep learning models require large volumes of data for training, which can be
difficult to access or cannot be provided by the traffic management authorities due to privacy or secu-
rity concerns, 2) Data Quality: deep learning models are sensitive to data quality, including outliers,
missing values, and user-input errors (like incorrect labelling, misreported incident duration), 3) in-
terpretability: deep learning models are often represented as "black box" models (which means that
relationships developed between inputs and outputs are hidden inside the model) Olden and Jackson,
2002, making it hard to understand how the model arriving at a particular result, which may limit
the model deployment due to possible model bias towards data. The absence of interpretability is
particularly critical since black-box models can’t be considered reliable in traffic safety applications.

2.6.2 Future research directions in incident modelling

The application of traditional clustering methods can provide insights on spatial-temporal patterns and
hot spots of traffic accidents Al Hamami and Matisziw, 2021. The evolution of cluster size over time
can provide valuable insight into contributing factors, which lead to accident hot spot appearance,
disappearance, growth and decline. The procedure of accident hot-spot detection and their evolution
prediction can provide important information to traffic management authorities. Runtime performance
of the online algorithms to find sub-trajectory outliers (which may help to detect accidents in real-time)
was found to be low and may require the development of more efficient methods Djenouri et al., 2019.

The following topics of future research can be addressed:
• Data set integration and fusion models. There are various data sets which exist adjacent in

time and space to incident reports like PeMS, which contains data on traffic flow, speed and
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occupancy in the proximity of traffic accident reports from the CTADS data set, which may be
used to enhance traffic incident duration modelling. The availability of multiple data sets of
different types that describe the accident may require the use of data fusion models Wang et al.,
2021b and/or feature embedding methods Grigorev et al., 2022c.

• The use of textual data: the textual incident report can contain information unconstrained to
reporting form, which may be used to enhance the incident duration prediction accuracy. This
approach requires knowledge and techniques from the field of Natural Language Processing.

• The use of sophisticated ML and DL models. Multiple studies on traffic crashes indicate nonlin-
ear relationships and threshold effects between independent variables and dependent variables
Parsa et al., 2020; Yang, Chen, and Yuan, 2021. Also, it was highlighted by one of the previous
reviews that this study area relies mostly on classical ML models,

• The use of sophisticated ML pipeline elements like anomaly detection, hyperparameter opti-
mization and dimensionality reduction, oversampling and undersampling found to be rarely
used and may enhance the incident duration prediction performance

• The effect of combined use of Traffic Incident Duration Prediction with Variable Message Signs
(VMC) on traffic flow can be studied further to assess the study the potential of VMS use for
traffic incident impact mitigation Ghosh, 2019

• Further study on real-time incident reporting data can be performed using PeMS data set, which
includes a timeline of textual incident description availability over time

• The use of feature importance estimation techniques to assess the impact of specific reported
values on the incident duration prediction accuracy. In particular, the effect of weather condi-
tions on incident duration can be studied Hamad et al., 2020a

• The requirement of extrapolation tests: the deployment of the incident duration prediction model
requires multiple considerations like model bias for data or time/space extrapolation perfor-
mance Hamad et al., 2020a.

• The rise in relevance of advanced data pre-processing methods. In particular, dimensionality
reduction techniques become more relevant due to the significant increase in the amount and
variety of data collected across traffic networks.

In conclusion, traffic incident duration prediction is a complex and important task, which may
benefit from further research with the use of sophisticated models of artificial intelligence. Intelligent
models, such as those based on machine learning, can provide predictions with high accuracy. The use
of these models can help traffic management authorities to improve traffic flow and reduce the impact
of traffic incidents. Further research is needed to improve the accuracy of these models, such as data
set integration, complex and hybrid ML and DL models, the use of textual data, anomaly detection,
and hyperparameter optimization. This research has the potential to enhance traffic incident duration
prediction performance, ultimately leading to improved traffic flow and reduced impact from traffic
incidents.
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FIGURE 2.5: Machine Learning Pipeline for Traffic Accident Duration prediction
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Haghani, and Zhang, 2016bLi and Shang, 2014bMohammed,
Abdullah, and Al Hussaini, 2021Al-Najada and Mahgoub,
2017Hamad, Khalil, and Alozi, 2020Zou et al., 2021
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2020aWang, Li, and Guo, 2018Li, 2015Hamad et al., 2020aLi,
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Abdullah, and Al Hussaini, 2021Al-Najada and Mahgoub,
2017Hamad, Khalil, and Alozi, 2020 Li et al., 2020bGrigorev et
al., 2022cOzen et al., 2019Lin and Li, 2020Zou et al., 2021Ghosh
and Dauwels, 2022Araghi et al., 2014Grigorev et al., 2022a

MAPE Valenti, Lelli, and Cucina, 2010aYu et al., 2016Ghosh et al.,
2018Li, Pereira, and Ben-Akiva, 2015aWei and Lee, 2007Zou
et al., 2018aKalair and Connaughton, 2021Haule et al., 2019b
Shang, Xie, and Yu, 2022Tang et al., 2020aWang, Li, and
Guo, 2018Li, 2015Reza and Pulugurtha, 2019 Pereira, Ro-
drigues, and Ben-Akiva, 2013Lin, Wang, and Sadek, 2016 Lee
and Wei, 2010aMihaita et al., 2019bLi, Pereira, and Ben-Akiva,
2015cLi and Shang, 2014bMohammed, Abdullah, and Al Hus-
saini, 2021Li, Pereira, and Ben-Akiva, 2018bTang et al., 2020b
Grigorev et al., 2022cOzen et al., 2019Lin and Li, 2020Zou et
al., 2021Ghosh, 2019Ghosh and Dauwels, 2022Araghi et al.,
2014Grigorev et al., 2022aChung, 2010Zou et al., 2016bKuang
et al., 2019b

MSE Al-Najada and Mahgoub, 2017Grigorev et al., 2022c
AUC Zheng et al., 2021Motamed et al., 2016Zhu et al., 2021
Recall Saracoglu and Ozen, 2020Mihaita et al., 2019bGrigorev et al.,

2022a
Precision Saracoglu and Ozen, 2020Mihaita et al., 2019b
F1 Saracoglu and Ozen, 2020Mihaita et al., 2019bGrigorev et al.,

2022a
TABLE 2.3: Metrics used across reviewed papers.
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FIGURE 2.6: Feature importance for All-to-All regression using XGBoost for San-
Francisco, USA Grigorev et al., 2022a

Method Studies
Random Forest Shang et al., 2019Motamed et al., 2016Mohammed, Abdullah,

and Al Hussaini, 2021
XGBoost Mihaita et al., 2019bTang et al., 2020bParsa et al., 2020Grigorev

et al., 2022cGrigorev et al., 2022a
Support-vector ma-
chines (SVM)

Yu et al., 2016Zheng et al., 2021Shang et al., 2019Huang et
al., 2020Tang et al., 2020aMotamed et al., 2016Park, Haghani,
and Zhang, 2016bMohammed, Abdullah, and Al Hussaini,
2021Li, Pereira, and Ben-Akiva, 2018bHamad, Khalil, and Alozi,
2020Lin and Li, 2020Hossain et al., 2019Ghosh et al., 2016Shang,
Xie, and Yu, 2022Mohammed, Abdullah, and Al Hussaini, 2021
Tang et al., 2020bWu, Chen, and Zheng, 2011Ghosh, 2019Ghosh
and Dauwels, 2022

Linear Regression Ghasri et al., 2016Pereira, Rodrigues, and Ben-Akiva, 2013Lin,
Wang, and Sadek, 2016Ozen et al., 2019Lin, Wang, and Sadek,
n.d.Kuang et al., 2019b

Naive Bayes Lu, 2021aOzbay and Noyan, 2006bZheng et al., 2021Shang et
al., 2019Tang et al., 2020aMotamed et al., 2016Park, Haghani,
and Zhang, 2016bLi, Pereira, and Ben-Akiva, 2018bTang et al.,
2020bKim and Chang, 2012Zou et al., 2021Ghosh and Dauwels,
2022Lin, Wang, and Sadek, 2015Wang et al., 2022Hossain et al.,
2019Kuang et al., 2019b

Decision Tree Saracoglu and Ozen, 2020Ozbay and Noyan, 2006bWang, Li, and
Guo, 2018Hamad, Khalil, and Alozi, 2020

Gradient-boosted De-
cision Trees

Mihaita et al., 2019bGrigorev et al., 2022cGrigorev et al., 2022a

K-Nearest Neighbours Lu, 2021aLin, Wang, and Sadek, 2015
TABLE 2.4: Most popular Machine Learning methods used across reviewed papers
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Method Studies
Principal component Analysis
(PCA)

Bridgelall and Tolliver, 2021Wang, Ngan, and Yung,
2018b

Linear discriminant analysis (LDA) Li, Pereira, and Ben-Akiva, 2015aShang, Xie, and
Yu, 2022Pereira, Rodrigues, and Ben-Akiva, 2013

SHapley Additive exPlanations
(SHAP)

Kalair and Connaughton, 2021Parsa et al.,
2020Grigorev et al., 2022a

Feature Selection Vlahogianni and Karlaftis, 2013Shang et al.,
2019Lee and Wei, 2010a

Clustering Ghosh et al., 2016Kalair and Connaughton,
2021Ghosh, 2019Lin, Wang, and Sadek, 2015

Ensemble Motamed et al., 2016Hamad, Khalil, and Alozi,
2020

Bi-level frameworks Kuang et al., 2019aGrigorev et al., 2022a
TABLE 2.5: Most popular Machine Learning pipeline elements used across reviewed

papers.

Network type Studies
Artificial Neural Net-
work (ANN)

Valenti, Lelli, and Cucina, 2010aYu et al., 2016Wei and
Lee, 2007Shang et al., 2019Motamed et al., 2016Pereira, Ro-
drigues, and Ben-Akiva, 2013Lee and Wei, 2010aHamad et al.,
2020aMohammed, Abdullah, and Al Hussaini, 2021Li, Pereira,
and Ben-Akiva, 2018bHamad, Khalil, and Alozi, 2020Chang and
Chang, 2013Zhu et al., 2021Grigorev et al., 2022cLin and Li,
2020Ghosh, 2019

Multilayer Perceptron
(MLP)

Ghosh et al., 2016Shang, Xie, and Yu, 2022Mohammed, Abdul-
lah, and Al Hussaini, 2021Zhu et al., 2021Ghosh, 2019

Recurrent Neural Net-
work (RNN)

Zhu et al., 2021Wang et al., 2022

Long Short-Term
Memory (LSTM)

Shang, Xie, and Yu, 2022Zhu et al., 2021Grigorev et al.,
2022cGhosh, 2019Wang et al., 2022

Convolutional Neural
Network (CNN)

Kalair and Connaughton, 2021

TABLE 2.6: Most popular Deep Learning methods used across reviewed papers
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with outlier removal and intra-extra joint
optimisation
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3.1 INTRODUCTION

3.1.1 Context

Traffic congestion is a significant concern for many cities around the world. Congestion arises due to
various factors, including increased population, workforce concentration in central areas, or the lack
of efficient public transport modes. Two forms of congestion are typically predominant: a) recur-
rent traffic congestion during peak hours when traffic demand exceeds the road capacity, and b) non-
recurrent traffic congestion caused by unplanned events such as car accidents, breakdowns, weather,
public manifestations etc. Previous studies have shown that almost 60% of traffic congestion is due to
non-recurrent incidents with a stochastic behaviour in space and time Schrank and Lomax, 2002. In
Australia, the number of road deaths per year has been reduced by 70% since the 1970s. However, the
annual economic cost of road crashes was estimated at $27 billion per annum in 2017 (Government,
2017). Traffic Incident Management Systems (TIMS) collect data on traffic incidents, including infor-
mation on different incident duration factors. Accurately predicting the total duration shortly after an
incident took place could save operational costs and end-user time (through affecting the route plan-
ning). Moreover, the clearance time of accidents is highly related to the ongoing traffic congestion and
several external factors with different weights of importance. Therefore, it is essential to estimate the
incident factor importance to improve the accuracy of predictions. Most prior studies related to this
topic concentrated on testing different machine learning models on specific road types like freeways
or highways and focused primarily on different phases of the incident duration such as clearance time,
recovery time, and the total incident duration Li, Pereira, and Ben-Akiva, 2018a. There is currently a
lack of an advanced approach that can be applied on all road types, for all accident types and across
various countries with different driving behaviour.

3.1.2 Challenges and contribution

The accuracy of predicting the incident duration is often determined more by the modelling method-
ology, the feature construction, and the result interpretation rather than by the model in use. In this
work, we address several open questions or challenges concerning the prediction of the traffic incident
duration.

The first challenge is to develop a universal bi-level framework applicable to different incident data
sets reported on various road network layouts. The majority of prior works had studied the prediction
of incident duration on specific types of roads (freeways or motorways) (Yu and Xia, 2012)-(Chung,
Walubita, and Choi, 2011)-(Hojati et al., 2012)-(Zhan, Gan, and Hadi, 2011), where the data accuracy
is higher than on arterial roads; as of 2018, very few applied the prediction strategies on normal
arterial roads due to the high modelling complexity and a location mismatching; the majority of traffic
incident duration analysis studies focus only on one type of road network (freeways, highways, etc.);
this is revealed by a recent state-of-the-art paper published in (Li, Pereira, and Ben-Akiva, 2018a)
which emphasises the difficulty of solving this problem for arterial roads and the lack of studies in this
field. Our study proposes a framework capable of predicting the incident duration regardless of the
road network or its complexity.
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Secondly, the majority of studies in the literature have concentrated on applying state of the art
machine learning models mostly for classifying the incident severity (Nguyen, Cai, and Chen, 2017)
or their durationLi, Pereira, and Ben-Akiva, 2018a. However, very few have treated the problem of
outliers or imbalanced data classes. Our study addresses both of these issues by proposing a varying
threshold procedure that can facilitate binary duration classification threshold selection by consider-
ing both class balance and model performance. We also test multi-class classification on data sets
split into three equally-sized parts according to incident duration: short, medium or long term. Pre-
vious research studies were selecting incident duration thresholds by simple reasoning (e.g. choosing
mean, median, percentiles, etc) (Kuang et al., 2019a)-(Zou et al., 2018b)-(Li, Pereira, and Ben-Akiva,
2015b)-(li, 2014). We, on the contrary, test multiple different thresholds for three different data sets.
Furthermore, we propose our own optimisation approach which we denote intra-extra joint optimisa-
tion (IEO) together with an outlier removal procedure (ORM) and advanced machine learning mod-
elling.

Thirdly, we further solve the incident duration regression problem and also perform different
regression scenarios to test the extrapolation performance of ML models on various incident data sets.
We utilise thresholds selected during the classification threshold evaluation procedure to analyse the
extrapolation performance by training ML models and making predictions on several duration subsets.
It allows us to find the best ML model and the best extrapolation approach for the regression problem
on each duration subset (e.g. short-term incidents) of each data set. For the regression problem,
we also detect the most influential factors that affect the incident duration that traffic centres need to
prioritise in order to predict incident duration with higher accuracy. Our end goal is to improve the
extrapolation ability of machine learning models on the task of incident duration prediction and find
the best modelling approach for short-term and long-term incidents.

Lastly, the majority of studies are primarily focusing on choosing a single winning algorithm or
approach that works for a specific case study. Unfortunately, we show that the performance of ML
models is highly affected by the data set and the chosen methodology: data quality, the available
features, and the additional parameter tuning and optimisation techniques applied in this work. We try
to develop the universal framework for traffic incident duration prediction applicable to different traffic
incident data sets. We choose and adapt the best modelling approaches to each data set and show how
this can affect the accuracy and performance of the models. This method allows high flexibility that
can be applied for classification and regression predictions on various network types and different data
sets.

The most similar research to the current work was published in Kuang et al., 2019a and relied
only on one data set, one method for classification (Bayesian network), one method for regression
(K-nearest neighbours), and authors selected static threshold (30 min) to alleviate the class-imbalance
problem. This current paper provides a significant contribution by advancing on multiple aspects
from a large pallet of machine learning models to multiple data sets with unique features, up to outlier
removal and joint optimisation.

Overall, our main paper contributions are the following:
• to the best of our knowledge, this is the first research study proposing a bi-level prediction frame-

work using a large pallet of several machine learning models applied for both incident duration
classification and regression, with the scope of predicting the incident duration on different road
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types across two different countries (Australia and U.S.A.). Overall, our methodology is agnos-
tic of the location, the network, or the size of the network and can be adapted to any new incident
log data set that can be made available.

• we propose a binary versus multi-class classification approach in order to find the best optimal
threshold to identify short versus long-term incidents via both quantile analysis and varying
threshold data split.

• we propose a novel intra/extra joint optimisation algorithm that integrates baseline ML models
with outlier removal and hyper-parameter optimisation techniques across the validation cycle.

• we propose several extrapolation scenarios of analysing the impact of missing logs in the pre-
cision of the prediction model and reflect on what type of logs should be best used for tailoring
to the prediction problem needs.

• we conduct a feature importance selection sing the SHAP method, which allows graphical in-
terpretation of variables impact on the model output, before we conclude on the most important
factors affecting traffic incidents.

Overall, this research lays the foundation stone of bi-level predictive methodologies regarding
the traffic incident duration and can provide accurate information for both the end-user route choice
modelling as well as for the operational centres which need to optimise their operations under non-
recurrent traffic congestion. Moreover, this work contributes to our ongoing objective to build a real-
time platform for predicting traffic congestion and to evaluate the incident impact during peak hours
(see our previous works published in (Mihaita et al., 2019b)-(Shafiei et al., 2020)-(Mao et al., 2021)).

The paper is organised as follows: Section 1 discusses related works, Section 2 presents the data
sources available for this study, Section 3 showcases the methodology, Section 4 presents the numerical
results for binary and multi-class classification tasks, Section 5 presents the numerical results of the
regression part of the framework, Section 6 details on the feature importance evaluation and Section
7 is reserved for conclusions and future perspectives.

3.1.3 Related works

Incident data interpretation: The definition of traffic incident duration phases is provided in the
Highway Capacity Manual Alkaabi, Dissanayake, and Bird, 2011, and it consists of the following time-
intervals: 1) incident detection time which is the time interval between the incident occurrence and
its reporting, 2) incident response time standing for the time interval between the incident reporting
and the arrival of the first investigator at the location of the accident, 3) incident clearance time
representing the time interval between the arrival of the first investigator and the clearance of the
incident, 4) incident recovery time indicating the time interval between the clearance of the incident
and the return of traffic flows to normal conditions.

The total incident duration is the time interval between the first incident log, and the returning of
traffic flows to normal conditions. In our work, we use the term incident duration for the time lapse
between the detection of an incident and the clearance of the incident, as officially reported in traffic
logs provided by local traffic authorities. Therefore we do not include the incident recovery time as
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this information is not recorded in the three data sets provided. However, different phases of traffic
incident duration (e.g. clearance, recovery time) can be modelled individually upon availability; this
type of research is rare because of the complexity of data collection for traffic incidents and small
amounts of recorded traffic incidents in real-life datasets Li, Pereira, and Ben-Akiva, 2018a; Alkaabi,
Dissanayake, and Bird, 2011.

When it comes to the data interpretation in the literature, the incident duration distribution has
been modelled as log-normal Sullivan, 1997 and more recently as log-logistics distribution Chung,
Walubita, and Choi, 2010; Smith and Smith, 2001. In a recent study, Haule et al., 2019a, incident
clearance time and the total impact duration were modelled using Weibull, log-normal, log-logistic
distributions and compared using the Akaike information criterion (AIC) criteria; findings have re-
vealed that log-logistic distribution was outperforming other distributions. As distribution utilisation
is highly related to the specificity of each data set, for this study, in which we use three different data
sets, we further apply a comparison among several distribution modelling choices by using the AIC
criteria.

According to Wali, Khattak, and Liu, n.d., different statistical methods were applied to model
traffic incidents: 1) fixed parameter regression 2) random parameter regression 3) quantile regression.
In this study, log-transformation of the target variable (incident duration) also applied. Random pa-
rameter regression found to give better statistical fit for incident duration models than fixed parameter
regression, and therefore provide more accurate predictions of incident durations. It also highlighted
that fixed-parameter regression model may give non-accurate incident duration predictions due to
over/under- estimation of dependency between variables and incident durations. Also, there were no
substantial difference found between fixed parameter regression and quantile regression in the case of
2015 Virginia incident data set. The benefit of quantiled regression is the ability to model the relation-
ship of any quantile (rather than only average incident duration) of the incident duration vector with
a set of explanatory variables Khattak et al., 2016. Ordinary Least Squares model can provide the
predicted mean of the incident duration. On the contrary, quantile regression provides estimates for
every quantile, which represented as a conditional distribution of incident durations, without providing
single value as the incident duration prediction. Quantile regression coefficients represent the change
in the incident duration in a given quantile category in relation to independent variables. Similar to
this approach, variable importance can be estimated within each traffic incident duration group.

Machine Learning for incident duration prediction: While several statistical modelling tech-
niques have been applied previously, more recently, new approaches in machine learning (ML) mod-
elling have emerged as a more advanced way of predicting the incident duration due to their capacity
to easily account for new data sources, as well as for removing the linearity assumptions between fea-
tures and the predicted class Hojati] et al., 2014. Examples of such approaches are: artificial neural
networks (ANNs) Lopes et al., 2013, genetic algorithms Lee and Wei, 2010b, support vector ma-
chines (SVMs) Valenti, Lelli, and Cucina, 2010b, k-Nearest-Neighbours (kNNs) Wen et al., 2013
and decision-trees (DTs) He et al., 2013. The recently proposed Gradient-Boosted Decision Trees
(GBDTs) have been shown to provide superior prediction performance when compared to Random
Forests, SVMs and ANNs Ma et al., 2017. However, it is known that GBDT can easily over-fit when
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the prediction target has a long-tail distribution, as is the case of the traffic incident duration distribu-
tion Ma et al., 2017. XGBoost Chen and Guestrin, 2016 is another decision-tree enhancement method
that has gained popularity recently in the machine learning community due to its tree boosting capa-
bility, loss function regularisation and adaptive learning rate. It was employed in several international
competitions, winning 17 out of the 29 Kaggle competitions singled out on the 2015 Kaggle blog;
it was also employed by every team in the top-10 in the 2015 KDDCup Bekkerman, 2015 for solv-
ing various problems such as store sales prediction, web text classification, hazard risk prediction,
and product categorisation. XGBoost’s popularity is also due to its scalability (it can run on a single
machine, as well as on distributed and paralleled clusters), its capacity to handle sparse data and its
ability to handle instance weights in approximate tree learning (see the recent paper published by Chen
and Guestrin, 2016 where authors proposed an end-to-end tree boosting system with cache-aware and
sparsity learning features). While each of these methods has its advantages and disadvantages, build-
ing a fast and reliable prediction framework that could be applied for real-time operations represents
a true challenge.

One of the recent research studies Kuang et al., 2019a presented a two-step approach for traffic
incident duration prediction. A cost-sensitive Bayesian network was used to perform binary classifi-
cation of traffic incidents by choosing a threshold of 30 minutes and then performing regression for
each class using kNN. While the approach is functional, one major drawback for the classification
problem is to manually choose the class split threshold, as it can lead to severe class imbalance; to
overcome this issue, in our study, we perform both a fixed and a varying threshold set-up to find the
best class balance for our classification models; even-more, we propose as well a comparison with a
multi-class classification approach and debate on the benefits and drawbacks of using classifiers for
such problems; we also enhanced more advanced regression models together with outlier removal
procedures that would provide a better and more precise prediction of the incident duration precondi-
tion in minutes. Overall, the cost sensitivity of incorrect classification can be further extended to the
cost-based regression metrics. We propose our enhanced ML models with a proposed intra and extra
joint optimisation technique and outlier removal procedure to have even more precise predictions.

In one of the recent research studies on applying machine learning, which was related to the clas-
sification of driving state, multiple hyper-optimised ML models were tested, and entire feature space
was visualised using t-SNE for entire feature space visualisation (Yi et al., 2019). RandomForest pro-
vided the highest prediction accuracy, but more advanced tree-based models exist that utilise gradient
boosting, which we will be using in our research (e.g. gradient boosted decision trees).

To verify the performance of advanced tree-based methods (as LGBM - Light Gradient Boosted
Model), additional conventional ML models can be used (Chen et al., 2020). We decided to also
include LGBM and compare it to conventional ML models with non-tree based models (KNN and
Logistic Regression).

On the feature selection: It is generally not enough to use all the possible features for the regression
analysis of traffic incident durations. Using a high amount of features combined with a small data set
size can lead to over-fitting. Some features can be helpful or useless, more or less critical, while others
do not impact the prediction results significantly. By performing a feature importance analysis, we can
recommend to traffic management facilities to record the most critical data and omit redundant data
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related to traffic incidents. For example, one can increase the prediction accuracy by using as additional
features the weather conditions, which were found to play a significant role in some research studies
(e.g. during the summer and autumn seasons in Washington – USA in 2009, the preparation time of
the rescue team was higher on freeways Hou et al., 2013). In some countries with cold weather, the
response times can be much higher, while in regions with sunny weather most of the year, the weather
impact on the intervention team can be neglected. Overall, the weather impact on the traffic incident
duration prediction needs needs customised via a data-driven feature important analysis. Peak hours
were the most influencing feature on response team preparation delay, which was found to be linked
to response procedures (the goal of the response team was to resolve incidents during peak hours
as soon as possible). A research study using Beijing traffic incidents data from 2008 Li and Shang,
2014a found the importance of "peak hour" value for the response team travel time and clearance time,
but not for the intervention team preparation time. Our study conducts a feature importance ranking
based on the best performing ML models we have proposed and provides a detailed overview of their
impact. Different approaches to feature importance estimation use tree-based models (e.g. Random
Forest, Light Gradient Boosted Machines - LGBM, extreme gradient bosoting models - XGBoost).
For example, one can use produced decision trees from the tree-ensemble model Chen et al., 2020. A
data-driven approach was used to perform information fusion from different sources Abou Elassad,
Mousannif, and Al Moatassime, 2020, which involved the use of Gini-index extracted from Random
Forests as a method to estimate feature importance. Nevertheless, the single random model can have a
noticeable variance in data mapping when there is a weak connection between features and the target
variable by making the feature importance value dependent on the random seed for the model. The
Shapley Additive explanation (SHAP) Lundberg and Lee, 2017 provides a more advanced approach for
feature importance estimation because it fuses estimation from multiple models trained across many
different subsets (which selected both feature-scale and index-scale) of the dataset. These studies
motivated the utilisation of the Shap Values for our feature importance ranking across three different
data sets, all with different features and incident information.

On the future application of our research: In comparison with other work, the research proposed
in our paper comes not only with a significant prediction capability for all types of incident data
sets with various features, but it can be further extended for solving the route scheduling problem
within traffic simulation modelling, which will incorporate the adaptation of agents to occurring traffic
incidents. Apart from analysing the effects of traffic control measures Knapen et al., 2014, it is possible
to analyse the effect of additional information such as the predicted incident duration, which can be
performed both for scheduling and online rescheduling of dynamic agent re-routing. Furthermore,
simulation can be performed with and without such information to estimate the possible benefits of the
incident duration prediction modelling within the traffic system. Also, using an online rescheduling
procedure requires the simulation to be performed at the level of dynamic agents within a micro-
simulation model, which could benefit from new re-routing schemes when traffic disruptions occur
along the route.

In order to test the efficiency of the proposed bi-level framework, we have used three different
data sets from two different countries: Australia and U.S.A. The three data sets represent incident logs
from an arterial road suburb in Sydney, a motorway in Sydney, Australia, and a road area from San
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Victoria subnetwork M7 Motorway  (M) San-Francisco network  (SF)(AR)

a) )c)b

)f)e)d

h))g i)

FIGURE 3.1: Data profiling for all data sets in our study: Victoria Rd (A) - a) network
mapping, d) ecdf - empirical cumulative distribution function g) distribution plot; M7
motorway (M) - b) network mapping, e) ecdf h) distribution plot; San Francisco (SF)

- c) network mapping, f) ecdf i) distribution plot.

Francisco, U.S.A. The data sets are all recorded by different means and allow us to explore the impact
of the prediction framework across various types of road networks. The three data sets are represented
in Fig. 3.1 and are detailed as follows.

Victoria Rd - arterial network, Sydney: The first data set (dataset AR) contains one-year incident
logs from the Victoria arterial road from Sydney, Australia (in 2017) (see Table 3.1 for a summary
of features, in which the + symbol under each data set column and for each line indicates whether
that variable is present or not in the data set - for example, the TZName variable is present in the
Arterial Roads data set but not in the M motorway data set). It contains information on 5,134 traffic
incidents with different incident types (e.g. hazards, breakdowns, accidents) and subtypes (e.g. work
zone, accident with truck). Our current study focuses on 574 “Accidents” since these induce the
longest clearance time in the current subnetwork according to the traffic management centre (TMC).
Traffic ’Accidents’ have a mean duration of 44.59 minutes and a maximum of 719 minutes. Weather
data represented as average daily temperature (in Celsius) and precipitation rate (in millimetres) are
obtained from the Observatory Hill station in Northern Sydney, which is the closest station to the
analysis area. Public holiday data represented as boolean values for public and regional holidays in
2017 in New South Wales, Australia. The area geometry features contain the sector ID as defined by
TMC, the code of the official area where the accident occurred (as defined by the Bureau of Transport
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Variable AR M Values Description
Location + + N,N 𝑋, 𝑌 in GDA Lambert coordinates
Hour of day + + {0, 1,… , 23} -
Peak Hour + + {1, 0} Value is 1 if hour belongs to {7…9} or {16…18} hour interval
Day of the week + + {1…5} Weekday numbers from Monday to Friday
Weekend + + {0, 1} Value is 1 for Saturday and 0 for Sunday
Month of the Year + + {1, 2,… , 12} -
Incident Subtype + + {𝐵𝑢𝑠, 𝑐𝑎𝑟, 𝑏𝑖𝑐𝑦𝑐𝑙𝑒, 𝑎𝑛𝑖𝑚𝑎𝑙𝑠, 𝑒𝑡𝑐.} Field indicating cause of incident
Affected lanes + + {1, 2, 3, 4, 𝐴𝑙𝑙𝑙𝑎𝑛𝑒𝑠, 𝑏𝑟𝑒𝑎𝑘𝑑𝑜𝑤𝑛, 𝑛𝑜𝑑𝑎𝑡𝑎} Number of lanes affected by the accident
Direction + + E, W, N, S, E-W, N-S, One/Both Affected traffic direction
Incident Source + + {𝐼𝐶𝐸𝑀𝑆∕𝐼𝑆𝐸𝑁𝑇𝑅𝑌 ,𝑂𝑃𝐸𝑅𝐴𝑇𝑂𝑅, 𝑒𝑡𝑐} Source of the incident report
Unplanned + {0, 1} Value is 1 if incident is planned, 0 otherwise
Average Temperature + + {11.13𝐶 − 32.4𝐶} Average temperature for the time of the incident
Rainfall + + {0 − 85𝑚𝑚} Rainfall for the time of the incident
Public holidays + + {0, 1} Value is 1 if days is a public holiday
Sector ID + + R+ Defined by TMC
TZName + R+ Traffic zone name as Defined by the Bureau of Transport Statistics
Section ID + R+ Road section on which the incident occurred
Section Speed + 𝑅+ [𝐾𝑚∕ℎ] Section speed limit
Section Lanes + {1, 2, 3, 4, 5, 6} Number of section lanes
Section class + 𝑅+ As defined by TMC
Street ID + 𝑅+ As defined by TMC
Intersection ID + 𝑅+ As defined by TMC
Distance from CBD + 𝑅+ distance between the traffic incident and the city CBD
Section Capacity + {0…3100 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠∕ℎ𝑜𝑢𝑟} Maximum flow capacity of the section

TABLE 3.1: Traffic incident features for Sydney Arterial roads (AR) and M7 motorway
(M).

and Statistics), and supplementary information such as section capacity, section speed limit, and the
number of lanes. These features are available for all road sections in the Victoria sub-network, and they
were extracted from the official traffic simulation model of the Victoria network, developed in Aimsun
and previously used by the authors for conducting an incident impact analysis and traffic prediction
(Wen et al., 2018).

M7 motorway, Sydney: The second data set is a motorway data set (data set M), consisting of
7,194 traffic accidents along the M7 motorway in Sydney, Australia, during the same year 2017. The
mean duration of motorway accidents is 47.2 minutes, with a maximum duration of 598 minutes (9.96
hours). This data set also includes weather data (average daily temperature and precipitation). This
set of features is similar to the arterial roads data set AR without the geometric features of the lanes
(section lanes, section class), intersection ID, distance from the central business district (CBD); this
is due to the complexity of mapping of a traffic incident to a correct location along the motorway. We
make the observation that for both Data set AR and M, the traffic flow information of the affected
road sections was omitted for this study since we found previously no significant improvement to the
prediction accuracy (Mihaita et al., 2019b).

San-Francisco road network: The last data set is from San-Francisco, U.S.A. (data set SF) and
includes information on accidents from all types of roads in the city. It is part of a more considerable
initiative entitled "A Countrywide Traffic Accident Dataset", recently released in 2021, which contains
1.5 million accident reports collected for almost 4.5 years since March 2016 (Moosavi et al., 2019b).
The SF data set contains 49 features describing the accidents as detailed in (Moosavi et al., 2019b)
(due to a large table of feature, we refer the reader to the cited paper and not duplicate this feature
information). This study focuses on the "accident” type duration prediction as being the most severe
one. We extract and use 8,754 accident records related to the San-Francisco area. As observed from
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FIGURE 3.2: The proposed bi-level modelling framework for traffic incident duration
prediction.

Fig. 3.1 c), a significant part of the accidents occurred along the “US-101” highway and “John F.
Foran” Freeway. Accidents have a mean duration of 100 minutes and a max duration of 2,715 minutes.

Data sets profiling: Each data set undergoes a profiling procedure by investigating the empirical
cumulative distribution functions (ECDF) - as plotted in Fig. 3.1 d), e), f), and their equivalent log-
space distribution plots (as represented in Fig. 3.1 g), h), i). The ECDF function presents thresholds
of data behaviour (marked in red) across each data set which reveal indicative thresholds of a different
behaviour around specific incident duration (see for example Fig. 3.1d) versus Fig. 3.1f) where the
first inflection point is around 40min for data set AR versus 100min for data set SF. Findings reveal
significant anomalies representative of each data set. For example, data set AR contains a reduced
amount of traffic accidents with small incident duration (zero or less than 4 min), data set M contains
an increased number of accidents with zero or one-minute duration, while the data set SF despite not
presenting any short term incident duration below 17 minutes, it contains a large number of incidents
of 29 and 360 minutes which raises the question of either these are outliers in the data set or simply
reveal a road network behaviour in terms of incident management in the area; this also might indicate
that it will present unique behaviour under the prediction framework and that different processing
techniques needs to be applied for this data set. We also observe that the incident duration is long-tail
distributed, which is likely to pose difficulties for prediction algorithms due to the presence of extreme
values (either small or large).



3.2. METHODOLOGY 53

3.2 METHODOLOGY

Clearing accidents in a short time represents a high priority task for traffic management centres (TMC)
worldwide. For example, in New South Wales, Australia, the target clearance time for traffic incidents
is 45 minutes, but this limit might differ in other countries. Therefore, in the rest of this paper, we
will refer to this threshold as “incident clearance threshold (𝑇𝑐)” and any incidents cleared before this
threshold (e.g. < 45 min) as "short-term"; incidents which lasted more than the clearance threshold
(e.g. >= 45 min) will be referred to as “long-term” traffic incidents. A unique threshold will be
derived for each dataset and will be discussed further in this paper. The methodology of this paper
has its origins in our previous work applied only for arterial roads (Mihaita et al., 2019b), which
we further extend and improve via the joint optimisation and outlier detection enhancements of the
prediction framework. The methodology we propose for modelling the incident duration prediction
problem is using a bi-level prediction framework combining a classification and regression modelling,
as represented in Fig. 3.2. This approach has been constructed by considering the real-time operational
goals of TMC and providing short duration prediction into the life-cycle of the incident management.

Based on the initial traffic incident information, the first step is the deployment of a fast classifi-
cation method which would only predict whether the accident will be either short-term (subset A) or
long-term (subset B) - see incoming data set from Fig. 3.2 where the data is split in two parts based
on 𝑇𝑐). Next, we test various duration thresholds and select the optimal 𝑇 𝑜

𝑐 , which provides a good
class balance and classification performance for each dataset. Once the optimal 𝑇 𝑜

𝑐 has been found, a
further regression modelling is applied for predicting a more precise duration of future incidents down
to the minute level.

Due to the main challenge of this task, we further propose an outlier removal approach (ORM)
detailed in Section 3.2.7 and our innovative Intra/Extra Joint Optimisation modelling coupled with
several machine learning models trained via a hyper parameter tuning (we denote this approach as
IEO-ML and is further detailed in Section 3.2.9).

The boosted regression framework is finally applied under several regression scenarios (see section
Section 3.2.6), which are constructed to evaluate the framework capability to predict under all possible
situations. For example, when we only have a subset A available (short-term incidents) but the TMC
would like to predict long term incident (subset B) we denote this as a Scenario A-to-B (training the
models on subset A and making predictions on subset B); all scenarios are constructed based on the
assumptions that the framework needs to be robust in order to predict any type of incident durations,
under all possible data shortage or lack of information availability. In the following subsection, we
further provide the mathematical and theoretical modelling of each of the steps described above.

3.2.1 Classification and regression definitions

Using all available data sets and the incident information, we first denote the matrix of traffic incident
features as:

𝑋 = [𝑥𝑖𝑗]
𝑗=1..𝑁𝑓
𝑖=1..𝑁𝑖

(3.1)
where 𝑁𝑖 is the total number of traffic incident records used in our modelling and 𝑁𝑓 is the total
number of features characterising the incident (severity, number of lanes, type, neighbourhood, etc.)
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according to each specific data set (see examples provided in Table 3.1). For the incident duration
classification problem, we denote the incident duration classification vector as:

{

𝑌𝑐 = [𝑦𝑐𝑖 ]𝑖∈1..𝑁 𝑦𝑐𝑖 ∈ {0, 1}

𝑌𝑚𝑐 = [𝑦𝑚𝑐𝑖 ]𝑖∈1..𝑁 𝑦𝑚𝑐𝑖 ∈ {0, 1, 2}
(3.2)

where N is the duration of the traffic incident (in minutes), 𝑌𝑐 is the vector of binary values tak-
ing values in {0, 1}, and 𝑌𝑚𝑐 is the vector of integer values for the multi-class classification problem
definition, taking values in {0, 1, 2}. More specifically, in the first stage we create a binary classifica-
tion modelling with the purpose of identifying short versus long-term incident duration, split by the
incident clearance threshold 𝑇𝑐 . Thus our task is to predict 𝑦𝑐𝑖 , where 𝑌𝑐 takes one of the binary values:

{

𝑦𝑐𝑖 = 0 if 𝑦𝑖 ≤ 𝑇𝑐 , short-term incidents
𝑦𝑐𝑖 = 1 if 𝑦𝑖 > 𝑇𝑐 , long-term incidents (3.3)

where the threshold is varied every 5min between 𝑇𝑐 ∈ {20, 25, ..., 70}. Subsequently, the multi-
class method identifies the best two thresholds to separate between short, mid and long-term incident
duration. The main purpose of this approach is to test the limits of the class balance which would
maintain good model performance, and is expressed as follows:

⎧

⎪

⎨

⎪

⎩

𝑦𝑚𝑐𝑖 = 0 if 𝑦𝑖 ≤ 𝑇 1
𝑐 , short-term incidents

𝑦𝑚𝑐𝑖 = 1 if 𝑦𝑖 ∈ [𝑇 1
𝑐 , 𝑇

2
𝑐 ], mid-term incidents

𝑦𝑚𝑐𝑖 = 2 if 𝑦𝑖 ≥ 𝑇 2
𝑐 , long-term incidents

(3.4)

where 𝑇 1
𝑐 and 𝑇 2

𝑐 take several values as further detailed in Section 3.3.3. The binary classification
approach implemented with a computation time constraint for operational purposes (more details on
computation time comparison can be found in ??).

The regression problem is further structured with a more fine-grained incident duration prediction
in mind. The main objective motivating the regression modelling consists in more precise informa-
tion regarding the duration of incidents which can fall into a wide class which contains mostly incident
logs with a reported duration between and 0 minutes and 30 minutes (for these cases, the traffic centres
require more detailed precision to the minute level as a 5-min accident has different handling proce-
dures than more severe accidents of 30min for example). The incident duration regression vector (𝑌𝑟)
is represented as:

𝑌𝑟 = [𝑦𝑟𝑖 ]𝑖∈1..𝑁 , 𝑦𝑟𝑖 ∈ N (3.5)
and the regression task is to predict the traffic incident duration 𝑦𝑟𝑖 based on the traffic incident fea-
tures 𝑥𝑖,𝑗 . The regression models go via an extensive cross-validation procedure with hyper-parameter
tuning, with the test of outlier removal using a joint optimisation approach as further detailed in the
Section 3.2.4-Section 3.2.7-Section 3.2.9.
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FIGURE 3.3: Distribution of incident durations according to MUTCD duration classes:
a) Arterial roads, Sydney, Australia b) M7 Motorway, Sydney, Australia c) San-

Francisco, USA

3.2.2 Applicability of knowledge-based incident duration classification guidelines

According to the The Manual on Uniform Traffic Control Devices (MUTCD) official guidelines Trans-
portation, 2017 Section 6I, traffic incidents divided into three classes: a) Major - with expected du-
ration more than 2 hours b) Intermediate — expected duration of 30 minutes to 2 hours c) Minor —
expected duration under 30 minutes.

First, the MUTCD classification seems to be general knowledge-based system and does not con-
sider specifics of each data set / country regulations / specifics of applied incident response guidelines.
We approach the classification task from data analysis point of view in relation to application of ML
models and try to infer these thresholds from the actual data sets. Shifting to MUTCD classification
approach will also make incident duration classes imbalanced (see Figure 3.3). Second, this classifi-
cation may not be applicable due to road networks heterogeneity Li, 2018 and consequent differences
in incident duration distribution. As can be seen from Figure 3.1, all three data sets have different dis-
tribution of incident durations and therefore such classification may be biased in each case. Overall,
in our study, we aim to provide insights from data analysis point of view.

3.2.3 Selection of baseline machine learning models

We have tested and deployed several ML models for both the classification and regression problems
for this current work, which have served as baseline models to compare our proposed optimisation
approach. These are listed as follows: a) gradient boosting decision trees - GBDT (Friedman, 2000)
which rely on training a sequence of models, where each model is added consequently to reduce the
residuals of prior models; b) extreme gradient decision trees - XGBoost (Chen et al., 2015) which
finds the split values by enumerating over all the possible splits on all the features (exhaustive search)
and contains a regularisation parameter in the objective function; c) random forests - RF (Breiman,
2001) which applies a bootstrap aggregation (bagging, which consists of training models on randomly
selected subsets of data) and uses the average (or majority of votes) of multiple decision trees in
order to reduce the sensitivity of a single tree model to noise in the data; d) k-nearest neighbours
- kNN (Fix and Hodges, 1951) which uses for the prediction on data points the majority of votes
or the average from k closest neighbouring data points from the training set (based on a distance
metric); e) linear Regressions - LR - a standard predictor using linear equations to model the relation
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FIGURE 3.4: Performance testing of ML models across three different data sets

between the features and the regression variable; f) light gradient boosted machines - LGBM (Ke et al.,
2017) which applies gradient boosting to tree-based models; it also uses a Gradient-based One-Side
Sampling (GOSS) and excludes data points with small residuals for finding split value. The models
have been used for both classification and regression problems (except logistic regression applied
to classification only and linear regression to regression problem only). They are the main base on
which we further enhance and develop our outlier and joint optimisation prediction algorithm used in
the current bi-level incident duration prediction framework.

3.2.4 Hyper-parameter tuning through randomised search

Most machine learning algorithms have a set of hyper-parameters related to the internal design of the
algorithm that cannot be fitted from the training data. Both GBDT and XGBoost present dozens
of hyper-parameters, out of which the most important ones are max_ depth, learning_rate, min_
child_weight, gamma, subsample, colsample_ bytree and scale_ pos_ weight [24]. The hyper-parameters
are usually tuned through randomised search and cross-validation. The most extensive search tech-
nique is the grid-search, in which several equally spaced points are chosen in the most credible in-
terval for each parameter, and for each point combination, a model is fitted and tested through cross-
validation. The grid-search parameter tuning is straightforward; however, the grid-search scales poorly
as the number of hyper-parameters increases. In this work, we employ a Randomised-Search (Bergstra
and Bengio, 2012) which selects a (small) number of hyper-parameter configurations randomly to use
through cross-validation.

To determine the optimal number of iterations for models and data sets, we perform iterative test-
ing. The number of random-search iterations is from 25 to 250 with step 25. For example, on Fig. 3.4,
(Arterial roads, Sydney), we see that XGBoost is the best performing model starting from 120 iter-
ations, and it is already close to optimum starting from 175 iterations. The second-best performing
model is LGBM, but increasing the number of iterations does not seem to have a significant effect on
the model performance which seems to be quite stable without many fluctuations across all evaluation
metrics. Other methods perform significantly worse (more than 110% MAPE). For San-Francisco,
we see the superior performance of LGBM. The second best is XGBoost. Since there are no metric
improvements across iterations for most models, the number of iterations is essential only for XG-
Boost. According to the results, we decide to search for hyper-parameters for 250 random parameter
combinations for each model. We evaluate each combination using a 5-fold cross-validation and then
providing results using a 10-fold cross-validation using best combination.
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3.2.5 Model Performance Evaluation

The performance of classification model is evaluated using the Precision, Recall, Accuracy and F1-
score and defined as:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

𝑡𝑝+ 𝑓𝑝
, (3.6)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑝

𝑡𝑝+ 𝑓𝑛
, (3.7)

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑝+ 𝑡𝑛

𝑡𝑝+ 𝑡𝑛+ 𝑓𝑝+ 𝑓𝑛
, (3.8)

𝐹1 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑟𝑒𝑐𝑎𝑙𝑙

. (3.9)

where 𝑡𝑛 represents true negatives, 𝑓𝑛 - false negatives, 𝑡𝑝 - true positives, 𝑓𝑝 - false positives. For
example, We refer to true positives the incidents which have been predicted to be in a specific class
(say short-term) and indeed they were short-term upon validation, false positives the incidents which
were predicted to be short term but were not, etc.

We use F1-score as a target metric for classification experiments as F1 represents the balance
between Precision and Recall, and is in general a better performance metric to use when we are facing
an uneven class distribution rather than interpreting the Accuracy results which take into consideration
the total number of both false positive, false negative together with the true positives and true negatives;
therefore for uneven class balances (especially the ones with fewer incident records), one should rely
less on Precision and Accuracy metrics. To evaluate the regression models we use the mean absolute
percentage error defined as:

𝑀𝐴𝑃𝐸 = 1
𝑛

𝑛
∑

𝑡=1

|

|

|

|

𝐴𝑡 − 𝐹𝑡

𝐴𝑡

|

|

|

|

(3.10)

where 𝐴𝑡 are the actual values and 𝐹𝑡 - the predicted values, 𝑛 - number of samples. Other metrics
have been calculated but we will keep them concise due to large amount of experiments to show.

3.2.6 Regression scenarios definition

The main objective of the bi-level framework is that the regression accuracy can benefit from different
setups for different data subsets. For an even better accuracy compared to the classification prob-
lems, we are further developing more complex regression models that can provide incident duration
prediction at minute-level accuracy. This is the second step of the bi-level prediction framework to
be applied when more precision is needed at the minute level regarding the incident duration length.
When training such regression models, a crucial step is the size of the data set and the distribution
of the target variable (incident duration). Due to the long tail distribution of incident duration and
the class imbalance problem previously identified, we need to design and construct various regression
models capable of learning from various types of data sets to make accurate predictions. However,
with limited information (small data set size), the prediction results can be skewed. This is the primary
motivation that led to the construction of several scenarios of model training, validation and prediction
that can be applied under both complete or incomplete data sets from traffic centres. By using the clas-
sification thresholds identified previously, we split the traffic incident data set into two subsets: subset
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A (with duration below threshold 𝑇𝑐) and subset B (with duration above threshold 𝑇𝑐) as previously
defined at the beginning of Section 3.2. We further contract several scenarios of subset combinations
for training-validation-testing detailed with the aim of extrapolating the model performance:

Scenario All-All: we use the entire data set and apply several regression models using a 10-fold
cross-validation approach and different hyper-parameter search methods. This approach will show us
the general performance across various methods.

Scenario A-to-B: we use subset A (short-term incidents) for training the regression models and
evaluate the prediction on subset B (long-term incidents). In this scenario, we will analyse methods
to extrapolate to higher values of the target variable.

Scenario A-to-A: we use subset A for training the regression models and predict on subset A.
In this scenario, we will analyse the prediction ability of methods with long-term incidents excluded
(which includes values from the tail of the incident duration distribution).

Scenario B-to-A: we use subset B for training the regression models and predict on subset A. In
this scenario, we will analyse methods to extrapolate to lower values of the target variable.

Scenario B-to-B: we use subset B for training the regression models and predict on subset B. In
this scenario, we will analyse the prediction ability on long-term incidents.

Scenario All-to-A: we use all the data for training the regression models and predict on each fold
within subset A. In this scenario, we will analyse the effect of having access to all types of incident
logs in the training phases, both long-term and short-term incidents and how their presence might
affect or not, the prediction of short-term incidents duration only. This is to evaluate if using all types
of records, including rare events, will help or not to predict better short incidents.

Scenario All-to-B: we use all the data for training the regression models and predict on each fold
within subset B. In this scenario, we will analyse the effect of having access to all types of incident
logs in the training phases, both long-term and short-term incidents and how their presence might
affect or not, the prediction of long-term incidents duration only. This is to evaluate if using all types
of records, including short-term events, will help or not to predict better long incidents.

Indeed, from an operational perspective the scenario All-to-All is the ideal situation when traffic
management centres would have in their data base both long term and short-term incidents. However,
from an operational perspective, several records of short incidents for example and not being kept
all the time, while long incidents are often being transferred to various other division if they last
more than one day, and they become more of a road infrastructure problem rather than an operational
problem which requires constant intervention. Therefore, various incident logs can be imbalanced –
some containing more short-term incidents, and others more long-term incidents. The main idea is
to provide a good deep dive into the effects of data availability on the model training. For example,
training any model only on short term incidents as these are the only ones available will most likely
not provide good prediction results in case of long-term incidents and vice versa.

3.2.7 Outlier removal methods (ORM)

As previously discussed in ??-Fig. 3.2 during the data profiling, we observed that the traffic incident
logs contain outliers appearing as either minor incidents, rare traffic incidents with highly long duration
and/or as errors in incident reports. Therefore, to reduce the side-effect of outliers on all models, we
deploy two commonly used outlier removal methods. The IsolationForest (IF) (Liu, Ting, and Zhou,
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2008) is an outlier removal method, which uses forests of randomly split trees. For each tree, the
method randomly selects a feature and a random feature value. The data set is divided into two parts
in each step until each data point becomes “isolated” (split from the rest of the data). If the data point
is an outlier, it will have a small tree depth (e.g. data point gets quickly separated from the rest by
selecting values in just a few features). Tree depth is then averaged between all the “isolation” trees
and considered an anomaly score (e.g. if the average tree depth for a point is 1.3, the point is easily
separable after a small number of splits). LocalOutlierFactor (LOF) (Breunig et al., 2000) is another
outlier removal method, which estimates the anomaly score from local deviation of density within
k-nearest neighbourhood. LOF relies on the calculation of a local reachability density (LRD), which
represents the inverse of the average reachability distance (RD) of neighbouring data points from the
selected data point. Reachability distance (RD) represents the distance to the most distant neighbour
within a k-sized neighbourhood (k is also hyper-parameter). LOF of data point then represents the
relation between LRDs of neighbours and its LRD and can take values: a) above 1 (higher LRD than
its neighbours), b) below 1 (lower LRD than neighbours) and c) equal to 1 (data point has the same
density as neighbours). According to the LOF score, we can sort data points and select specific per
cent of data points, which have the highest LOF to be eliminated. LOF method relies on the fact that
outliers belong to the area where the density of data points is low, while regular data points belong to
the high-density area. To summarise, the above outlier removal procedures are applied in conjunction
with the proposed optimisation framework and regression models and show a significant improvement
in prediction accuracy as further detailed in Section 3.4.3.

3.2.8 Outliers from ORM point of view

We would like to make the observation that all the incidents have scalar degree of anomaly when
applying outlier removal method. herefore, there are no discrete categories of outliers and normal
data points from an outlier method point of view. We simply remove a per cent of data points (e.g.
2%) with the highest degree of anomaly. These points are either easily separable using IF method
(tree-based) or remain on a low local density area for the LOF method (distance-based).

So does our outlier removal method actually remove long-term incidents failing to distinguish them
from outliers? ML methods in our case, find outliers not only by the value of duration but by including
all reported variables (e.g. 25 in the case of Arterial roads). Our aim in this work is to remove incident
reports which have very rare characteristics overall, which are also known to negatively affect the ML
method performance Lu, 2021b.

Fig. 3.5 Showcases Data sets with 10% of points with the highest anomaly score removed us-
ing IsolationForest: a) Arterial roads, Sydney, Australia b) M7 Motorway, Sydney, Australia c) San-
Francisco, USA. By performing experiments with an outlier removal (isolation forest, 10% of point
with the highest anomaly rate removed), we see how many incidents were removed according to each
duration interval. An important finding is that outliers do not reside in the area of long-term incidents
but rather scattered among the general population of incidents.
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FIGURE 3.5: Data sets with 10% of points with the highest anomaly score removed
using IsolationForest: a) Arterial roads, Sydney, Australia b) M7 Motorway, Sydney,

Australia c) San-Francisco, USA
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FIGURE 3.6: IEO-ML algorithm with a) Intra joint optimisation schema for the EO-
ML algorithm, b) Extra joint optimisation schema for the IO-ML algorithm. Red dot
on schema blocks represents output in the form of the best combination of ORM and

model hyper-parameters
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3.2.9 Intra/Extra Joint Optimisation for ML regression prediction (IEO-ML)

This section presents our novel enhancements of ML regression models by constructing an intra/extra
optimisation technique to jointly optimise the hyper-parameters of the regression models together
with previous outlier optimisation methods. In the rest of the paper, we denote this approach as IEO-
ML, where ML is one of the regression models previously described (GBDT, XGBoost, RF, kNN,
LR, LGBM). We introduce this approach for multiple reasons: 1) the traffic incident data is prone
to errors during the data collection, which is attributed to human factors (e.g. presence of incidents
with 0 and 1-minute durations, for example), 2) an outlier removal performance cannot be assessed
on the new dataset with no marking for outliers; thus, we can assess outlier removal performance by
looking at model performance with outlier removal applied, use joint outlier removal and modelling to
assess the outlier removal performance metrics, 3) both the outlier removal method and models have
hyper-parameters forming a single hyper-parameters space, 4) we assume that the outlier removal can
be performed either inside (Intra - see Fig. 3.6a)) or outside (Extra - see Fig. 3.6b)) of the cross-
validation cycle, and we evaluate the effect of such an approach on the model performance, 5) Intra
joint optimisation can provide a more effective outlier removal since common hyper-parameters will be
found for different data subsets, which allows ORM to be adapted to different possible combinations of
incidents in case of the model deployment and prediction on the newly acquired incident log. Overall
we want to compare and observe the impact of each technique on the accuracy of regression models
and detect the best combination of Intra/Extra joint optimisation and various ML regression models.

Further, we present our proposed IEO-ML algorithm in conjunction with the two outlier removal
methods IF and LOF, and several regressions models. Our approach explores the following com-
binations of ML models in selected working base (decimal or logarithm) with outlier removal and
intra/extra joint optimisation; for example, we denote as iLOF-LT-MLmodel a “joint optimisation of
any available baseline ML model with LOF in a log-transform base within a cross-validation cycle
(an intra optimisation)”. As an observation, ORM has specific hyper-parameters but one parameter
in common - the percentage of removed samples, which we assume to be outliers (ORperc). Thus, to
solve the ORM problem, we assume that the amount of outliers in each data set (ORperc) can take
values up to 5%. EJO is performed only once and before the cross-validation cycle, but IJO is per-
formed within each fold in a number of times which is equal to the number of folds. Thus, ORperc
has values in {0, 1…5%} for EJO, in {0, 1∕5,… , 5∕5} for IJO to ensure a comparable amount of
removed samples from both approaches. Results for all combinations of the proposed approach inside
the incident duration prediction framework are further provided in Section 3.4.3 for eLOF-ML mod-
els, iLOF-ML, iIF-ML, eIF-ML (e.g. eIF-ML is a “joint ML optimisation using IF optimised outside
(e) of the cross-validation cycle”).
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Data: Traffic incident reports (feature vector 𝑋, duration vector 𝑌𝑟)
Input: HPSm (Hyper-Parameter Space for Model),
ORM: Outlier Removal Method,
HPSor: Hyper Parameter Space for ORM,
Model: ML regression model ∈ {𝐺𝐵𝐷𝑇 ,𝑋𝐺𝐵𝑜𝑜𝑠𝑡, 𝑅𝐹 , 𝑘𝑁𝑁,𝐿𝑅,𝐿𝐺𝐵𝑀},
Iters: Number Of Iterations (number of random search steps for hyper-parameter
optimisation),
Folds: number of folds for cross-validation,
sample: function for random sampling from the hyper-parameter space,
FoldIndexes: function to get sample indexes for training folds and test fold,
extra: boolean variable stating the use of extra joint optimisation,
intra: boolean variable stating the use of intra joint optimisation,
split: function to split data set into two parts - train/test and validation parts
Output: Predicted duration vector 𝑌𝑟
𝑥𝑡𝑟, 𝑦𝑡𝑟, 𝑥𝑡𝑒, 𝑦𝑡𝑒 = 𝑠𝑝𝑙𝑖𝑡(𝑥, 𝑦);
𝑃 = [] ; // temporary cross-validation prediction vector

𝑟𝑒𝑠𝑢𝑙𝑡𝑠 = []
for 𝑖𝑡 ← 1..𝐼𝑡𝑒𝑟𝑠 do

𝐻𝑌 𝑃𝑚 ← 𝑠𝑎𝑚𝑝𝑙𝑒(𝐻𝑃𝑆𝑚)
𝐻𝑌 𝑃𝑜𝑟 ← 𝑠𝑎𝑚𝑝𝑙𝑒(𝐻𝑌 𝑃𝑜𝑟)
𝑖𝑑𝑥𝑡𝑟𝑎𝑖𝑛 = [] ; // indexes of train samples

𝑖𝑑𝑥𝑣𝑎𝑙𝑖𝑑 = [] ; // indexes of validation samples

𝑟𝑒𝑠 = 0 ; // scoring results

if extra then
𝑥 = ORM(𝑥,𝐻𝑌 𝑃𝑜𝑟) ; // if EO then filter the outliers from the feature

vector

for 𝑘 ← 1..𝐹 𝑜𝑙𝑑𝑠 do
𝑖𝑑𝑥𝑡𝑟𝑎𝑖𝑛, 𝑖𝑑𝑥𝑣𝑎𝑙𝑖𝑑 = 𝐹𝑜𝑙𝑑𝐼𝑛𝑑𝑒𝑥𝑒𝑠(x,k);
𝑥_𝑡𝑟𝑎𝑖𝑛 ← 𝑥𝑡𝑟[𝑖𝑑𝑥𝑡𝑟𝑎𝑖𝑛0 ], ..., 𝑥𝑡𝑟[𝑖𝑑𝑥𝑡𝑟𝑎𝑖𝑛𝑁 ] ; // array of feature vector samples for

training

𝑦_𝑡𝑟𝑎𝑖𝑛 ← 𝑦𝑡𝑟[𝑖𝑑𝑥𝑡𝑟𝑎𝑖𝑛0 ], ..., 𝑦𝑡𝑟[𝑖𝑑𝑥𝑡𝑟𝑎𝑖𝑛𝑁 ] ; // array of duration vector samples for

training

𝑥_𝑣𝑎𝑙𝑖𝑑 ← 𝑥𝑡𝑟[𝑖𝑑𝑥𝑣𝑎𝑙𝑖𝑑0 ], ..., 𝑥𝑡𝑟[𝑖𝑑𝑥𝑣𝑎𝑙𝑖𝑑𝑁 ]
𝑦_𝑣𝑎𝑙𝑖𝑑 ← 𝑦𝑡𝑟[𝑖𝑑𝑥𝑣𝑎𝑙𝑖𝑑0 ], ..., 𝑦𝑡𝑟[𝑖𝑑𝑥𝑣𝑎𝑙𝑖𝑑𝑁 ]
if intra then

𝑥𝑡𝑟𝑎𝑖𝑛𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 = 𝐎𝐑𝐌(𝑥_𝑡𝑟𝑎𝑖𝑛,𝐻𝑌 𝑃𝑜𝑟) ; // if IO then filter outliers

𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒_𝑚𝑜𝑑𝑒𝑙(𝑀𝑜𝑑𝑒𝑙,𝐻𝑌 𝑃𝑚) ; // random hyper-parameter initialisation

𝑚 ← 𝑓𝑖𝑡_𝑚𝑜𝑑𝑒𝑙(𝑀𝑜𝑑𝑒𝑙, 𝑥𝑡𝑟𝑎𝑖𝑛𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 , 𝑦
𝑡𝑟𝑎𝑖𝑛
𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑) ; // fitting the model to the filtered

train set

𝑦_𝑝𝑟𝑒𝑑 ← 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑚, 𝑥𝑣𝑎𝑙𝑖𝑑) ; // performing predictions

𝑃 =
[

𝑃 ; 𝑦𝑝𝑟𝑒𝑑
]

end
𝑟𝑒𝑠 ← 𝑀𝑒𝑡𝑟𝑖𝑐(𝑦𝑡𝑟, 𝑃 ) ; // scoring the accuracy of predictions using performance

metric

𝑟 = [] ; // Initializing hash-array

𝑟
[′𝑚𝑒𝑡𝑟𝑖𝑐′

]

= 𝑟𝑒𝑠 ; // populating hash-array with resulting metric

𝑟
[′𝐻𝑌 𝑃𝑚′] = 𝐻𝑌 𝑃𝑚

𝑟
[′𝐻𝑌 𝑃𝑜𝑟′

]

= 𝐻𝑌 𝑃𝑜𝑟
𝑟𝑒𝑠𝑢𝑙𝑡𝑠 = [𝑟𝑒𝑠𝑢𝑙𝑡𝑠; 𝑟] ; // collecting results for sampled hyper-parameters into array

end
𝑏𝑒𝑠𝑡 = 𝑠𝑜𝑟𝑡(𝑟𝑒𝑠𝑢𝑙𝑡𝑠, 𝑏𝑦 =′ 𝑚𝑒𝑡𝑟𝑖𝑐′) [0] ; // selecting the best combination of

hyper-parameters

𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒_𝑚𝑜𝑑𝑒𝑙(𝑀𝑜𝑑𝑒𝑙, 𝑏𝑒𝑠𝑡
[′𝐻𝑌 𝑃𝑚′])

𝑥𝑡𝑟𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑 , 𝑦
𝑡𝑟
𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑 = 𝐎𝐑𝐌(𝑥𝑡𝑟, 𝑏𝑒𝑠𝑡

[′𝐻𝑌 𝑃𝑜𝑟′
]

) ; // applying ORM to the training set

𝑚 ← 𝑓𝑖𝑡_𝑚𝑜𝑑𝑒𝑙(𝑀𝑜𝑑𝑒𝑙, 𝑥𝑡𝑟𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑 , 𝑦
𝑡𝑟
𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑)

𝑌𝑟 ← 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝑚, 𝑥𝑡𝑒) ; // performing predictions
Algorithm 1: Intra and extra joint optimisation algorithm with outlier removal and ML regression
modelling.
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The algorithm represents the modified cross-validation cycle within the randomised hyper-parameter
tuning procedure. We use multiple iterations (in fact, attempts) to find optimal parameters both for
the selected model (HYPm) and the outlier removal method (HYPor). On every iteration, we sample
hyper-parameter sets from hyper-parameter spaces. Then, if extra joint optimisation selected, an out-
lier removal procedure performed using all the data before the fold-rotation cycle. Then we perform
an n-fold cross-validation procedure, where we split data set into training and testing parts (by preserv-
ing ratio between them at F-1:1, where F is the number of folds) according to sequentially generated
indexes (e.g. in case of 500 data points, fold 0 will represent indexes from 0 to 100 for the testing
set, rest of the folds - indexes from 100 to 500 for the training set, fold 1 - 100-200 for the testing set,
rest - 0-100 and 200-500 for the training set, etc). Then, if intra joint optimisation is selected within
the cross-validation cycle, we perform outlier removal with sampled hyper-parameters using only the
train subset within each train-test split. Hyper-parameters for ORM include the percentage of samples
to be removed. After removing outliers, we train a model using a train set and make predictions on
the test set.

All arrays with actual and predicted samples collected to be used after the fold-rotation cycle for
the model accuracy estimation using specified metric. Since we are selecting test folds in order and
making predictions on them, the predicted duration vector will be composed of prediction results
composed of these folds. So, first, we collect the resulting metric together with hyper-parameters,
actual and predicted labels. To collect data we use hash-array, which is represented as an array, where
each element can be addressed by name and not by index as for conventional array. Then we perform
the sorting procedure, which will order solutions according to the resulting metric, where we select the
best combination of hyper-parameters. Furthermore, finally, we obtain the predicted duration vector
by filtering data using the ORM method, training model on the train/test part and making predictions
on the validation part.

3.3 Incident classification results

This section details the results of the first layer of the bi-level prediction framework related to the
classification prediction findings, either via a standard binary classification with varying threshold
analysis or via a multi-class classification enhanced by outlier removal procedures.

3.3.1 Binary incident classification results using varying split thresholds

The first classification problem that we address is to predict whether an incident duration will be lower
or greater than a selected threshold (we classify short-term versus long-term traffic incidents), which
can then be used to supply the initial assessment needs of the traffic management centre (TMC) under
fast decision times. For example, an operational clearance threshold for the Sydney TMC has been
currently established at 45min based on previous operational field experience; however, choosing a
fixed threshold for classification can have a significant impact on the results of any prediction algorithm
and is highly dependent on the incident duration distribution chart (as represented in Fig. Fig. 3.1-g,
h, i). Fig. 3.2 showcases the data split for the binary classification problem where the threshold 𝑇𝑐
(dashed red line) is varying according to the two set-ups mentioned above: every 5 minutes (𝑇𝑐 ∈
{20, 25,… , 70}). We name as Subset A all incident duration records which are lower or equal to
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FIGURE 3.7: Incident duration classification using varying thresholds for a) data set
AR b) data set M c) data set SF. The red percentage above each set of ML results

indicate the percentage split of Subset A and B for that particular 𝑇𝑐 .

𝑇𝑐 , (if 𝑦𝑖 ≤ 𝑇𝑐), and as Subset B all the incident duration records which are higher than 𝑇𝑐 (if 𝑦𝑖 >
𝑇𝑐). Based on the variation of 𝑇𝑐 , the size of Subsets A and B will have an impact on the prediction
algorithms and this impact is further quantified.

The results of the binary classification approach of incident durations using a varying split thresh-
old are detailed in Fig. 3.7 (for a 5-minutes frequency split) across all data sets. More specifically,
Fig. 3.7 presents the F1 results obtained for each ML model that we have developed (XGBoost, LR,
LGBM, GBDT, kNN, RF); we observe that other performance metrics have been calculated such as
Accuracy, Precision and Recall and these are provided in the ??). For example, Fig. 3.7a) showcases
the classification results for data set AR in which the blue bar represents the F1-result of the XGBoost
classifier (F1=0.28) when the data set has been split in Subset A containing incidents with a duration
less than 20min (32% of all incident records fall in this subset) and Subset B containing incidents with
duration higher than 20min (the rest of 68% of incident records). Therefore, the percentage numbers
written in red above each ML result represent the percentage of records lower than the 𝑇𝑐 thresh-
old chosen for this experiment. The split around 𝑇𝑐 = 20𝑚𝑖𝑛 is not ideal given the data imbalance
(32% versus 68%) and the low F1 score; therefore further variations have been undertaken which have
reported an increased 𝐹1 = 0.8 for 𝑇𝑐 = 45𝑚𝑖𝑛. According to these results, if we use the best per-
forming binary classifier, we need to select a threshold between 35 and 50 minutes because: a) it will
reduce the imbalance between classes (and thus reduce the effects of imbalanced classification, which
is vital for modelling when using a small data set); b) there is only a tiny improvement in F1-score
after 𝑇𝑐 > 40min; c) it will be a reasonable split for short incidents lower in terms of field operation
management. An exciting finding is revealed for 𝑇𝑐 ∈ {20, 25}min: we record an overall lousy per-
formance across all ML models in all data sets (F1-score less than 0.5) while some did not even take
effect, such as GBDT; for this reason, we exclude from consideration any thresholds which provide
an F1-score of less than 0.5. Furthermore, we set our minimum acceptable F1-score to 0.75, and
any model performing lower than this threshold will not be considered for further optimisation. By
analysing all sub-figures in Fig. 3.7 which provide both a good F1 score and class balance, we conclude
that the optimal thresholds for the binary classification problem are the following: a) 𝑇𝑐 = 40min for
the arterial road network in Sydney (Fig. 3.7a: 𝐹1 = 0.79 and a class balance of 66% for small incident
duration), b) 𝑇𝑐 = 45min for the motorway network in Sydney, (Fig. 3.7b: 𝐹1 = 0.75, class balance
= 65%) and c) 𝑇𝑐 = 45min for the San Francisco network (Fig. 3.7c: 𝐹1 = 0.83, class balance=55%).

The other important finding is the cases when 𝑇𝑐 > 45min which present a significant improve-
ment across all models on all performance metrics, with the best result being the one when Subset A
incorporates all incidents lower than 70min (which represents the majority of incidents); this is easily
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FIGURE 3.8: Outlier removal for a) data set AR b) data set M c) data set SF

explained by the fact that we use almost all the entire data set for training of the models. However,
the binary classification can be a rough estimate. If TMCs need a higher prediction precision instead
of incidents less than 45min or higher (which can last up to several days), then several regression and
multi-class classification models are needed to provide more precise predictions. These will be fur-
ther detailed in Sections 6 and 7. We will further use the detected optimal thresholds for each data set
to perform the split between subset A and B in various scenarios of the incident duration regression
problem.

Tree-based models yield similar results. However, in multiple cases (e.g. 35, 45, 50, and 60-
minute thresholds for data set AR, 25, 30, 40, 60-minute thresholds for data set M), XGBoost produces
a slightly better result than other tree-based models. Thus, we are selecting XGBoost as the best model
for the incident duration classification.

3.3.2 Classification with outlier removal

After selecting the optimal thresholds for binary classification, we further assess the effect of: a) low-
duration outliers (LDO) (which we define as reports of incidents with zero or less than a few minutes
duration) and b) high-duration outliers (HDO) as in the San-Francisco data set, by trying different
outlier removal procedures, as depicted in Fig Fig. 3.8.

For example, an LDO Threshold of 1min represents removing outliers below 1 minute (e.g. 0min)
and the percentage above each removal test. For example, 99% indicates the number of samples re-
maining after such removal. Removing these outliers is essential since it represents errors in the
incident reporting and may affect the accuracy of prediction. For example, Fig. 3.8a represents the
LDO removal from the data set AR, up until 10min reported incident durations; by removing these
outliers, we observe that the F1-score does not fall below the acceptable threshold of 0.75 until 5min
(this indicates that removing all accidents reported with a duration of 0 or lower than 5min does not
reduce the model performance. Therefore, we applied an LDO removal for all traffic incidents for this
data set with a duration below 5min. For the data set M, the effect of LDO outlier removal is more
significant, as depicted in Fig. 3.8b. This data set contains a lot of incidents with duration of 0 and 1
minute (which represents almost 15% of the entire data set); by removing these, we observe that the
highest F1-score drops down to 0.74 across all ML models, which falls below the acceptable threshold
for a good prediction accuracy). Therefore, we decide to remove only incidents with duration of 0min
or 1min from this data set. Lastly, in the case of the San-Francisco data set, we have a completely dif-
ferent range of outliers since there are no incidents reported with a duration of fewer than 17 minutes
(see Fig. 3.8c). There are multiple incidents cleared off at around 29min and 360min (as represented
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as well in ??, which can be identified as HDO. However, by removing these HDO data points from
the ML model training (representing almost 38% of all incident records), we observe a depreciation
of the F1 score from 0.85 to 0.76 for XGBoost, while some models dropped to lower values below
0.7). Therefore, the removal of HDO for the San Francisco data set can not be adopted due to several
reasons: 1) we cannot separate “rounded” duration from actually reported duration, 2) the amount of
these values is almost half of the data, which becomes property of the data set, 3) these outliers still
convey information related to the separation between short-term and long-term traffic accidents and
4) all models perform better when using the entire data set than with outlier removal, which makes the
ORM procedure in this case non-necessary. Finally, we observe that the outlier procedure is highly re-
lated to the specificity of the data set and the incident area location, not by making default assumptions
on either LDO or HDO.

3.3.3 Multi-class classification

While binary classification can provide fast insights in the overall incident duration, traffic incidents
can have more precise duration definition and can be split (based on the histogram profiling) into
short-term, mid-term, long-term. In this case one needs to solve a multi-class classification problem.
We have split this problem in two subsection in which we analyse the impact of choosing three equally
sized classes, versus quantile varying split thresholds and analyse the best approach.

Equally split multi-class classification

Firstly, we analyse the impact of using equally-sized classes (based on duration percentiles of almost
33% from each data set). We use F1-macro to assess the performance of a multi-class classification,
defined as the unweighted average of class-wise F1-scores:

F1-macro = 1
𝑁
∑𝑁

𝑖=0 F1-score𝑖 (3.11)

where i is the class index and N is the number of classes. Table 3.2 contains the F1-macro scores
across all three data sets for a 3-class prediction problem which can be calculated across each data
set independently. For example, 𝐶1 for data set AR in Sydney contains incidents between 0 − 24min,
while 𝐶1 for the SF data set contains incidents between 0 − 30min; similarly, the 𝐶3 class for the SF
data set contains substantial incidents which can reach up to 2,715min (45h) (this is consistently larger
than 710min or 595min in Australia). The F1-macro score is aggregated across all classes, and a low
value (below 0.5) indicates that we cannot use a 3-class split for the data set AR (F1-macro=0.35) and
M (F1-macro=0.46), but we can do so for the data set SF (F1-macro=0.72). The significant difference
between these data sets is the number of records (584 incident records for the data set AR versus
8,754 records for the data set SF), which may affect model performance. The precision of predictions
on the data set indicates how many classes we can have to distinguish traffic incidents by duration.
However, each data set’s specificity seems to dictate the best classification approach to be done and
further justifies the need for a more refined regression prediction approach.
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Dataset [0 − 33%]𝐶1
[33 − 66%]𝐶2

[66 − 100%]𝐶3
F1-macro(3-class) F1 (2-class)

Data set AR 0-24 min 25-44 min 44-710 min 0.35 0.79
Data set M 0-24 min 25-54 min 54-598 min 0.46 0.74
Data set SF 0-30 min 31-71 min 72-2,715 min 0.72 0.85

TABLE 3.2: Multi-class classification results for equally-sized 3-class split

Varying multi-class classification via quantile split

To analyse the effect of splitting data into more varying groups we performed a multi-class classifica-
tion procedure using quantiles and the F1 results are provided in Figure 3.9 for three data sets: Figure
3.9a) when using the Arterial Roads in Sydney, Australia and b) when using M7 Motorway data set
and c) when using the San Francisco data set. The result metric represents an average of F1-scores
across classes, where multi-class classification performed as 3 one-vs-all classifications.

The low/high threshold matrix represented in Figure 3.9 indicates a 3-class split performance and
allows for the modelling of different size groups separated by quantile thresholds. As an example, the
Ox axis in Figure 3.9a) represents the first threshold split ranging from [10% to 80%], while Oy rep-
resents the second threshold split percentage ranging from 20% to 90%. The coloured dots represent
the F1 scores obtained when splitting the data according to the two thresholds; for example, the com-
bination quantile pair of [10%;20%] gives an F1 score of 0.34, meaning a multi-class split of data logs
between the following three classes {𝐶1 = [0 − 10%], 𝐶2 = [10%− 20%] and 𝐶3 = [20%− 100%]}
does not provide good accuracy. Instead, when using the first quantile threshold of 0.3 and the second
quantile threshold of 0.6 (meaning {𝐶1 = [0 − 30%], 𝐶2 = [30%− 60%] 𝑎𝑛𝑑 𝐶3 = [60%− 100%]}),
we obtain the highest F1-macro score, F1 = 0.44.

In the case of M7 Motorway (see Figure 3.9b), we obtain the best performance for 20% and
60% quantile thresholds (meaning {𝐶1 = [0 − 20%], 𝐶2 = [20% − 60%]𝑎𝑛𝑑𝐶3 = [60% − 100%]};
20%, 40%, 40% size grouping. Other options include {20%, 70%} and {10%, 60%} duration thresh-
olds.

In the case of San-Francisco (see Figure 3.9c), we obtain the best performance for 10% and 90%
quantile thresholds (meaning {𝐶1 = [0 − 10%], 𝐶2 = [10% − 90%] and 𝐶3 = [90% − 100%]}; this
means that the best data split when using quantile thresholds for San Francisco is a {10%, 80%, 10%}
size grouping. This is highly explained by the incident distribution plots for the San Francisco area
which is different than the rest of data sets.

To further see the impact on error by various incident duration groups we introduce the Quantiled
Time-Folding and present the results in Figure 3.10. Incident reports are separated into equally-sized
duration groups to perform the procedure of cross-validation (each 9 folds evaluated against 1 excluded
fold, repeated 10 times). For all three data sets, incidents with the longest duration have the highest
contribution to error, even though they represent only 10% of the data set. Considering this error, we
may choose to use the hybrid classification-regression framework, where we perform regression only
for intervals with acceptable prediction error. Qunatiled Time-Folding can also be useful to see the
contribution to error of every duration group and possible extrapolation error towards incidents with
unobserved duration groups. Also, the RMSE metric showcased in Figure 3.10 is related to the scale
of duration observed in the fold (e.g. high durations can easily translate in high errors), whereas if we
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FIGURE 3.9: Multi-class (3-class) classification using quantile splits for a) data set AR
b) data set M c) data set SF
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FIGURE 3.10: Regression using Quantiled Time Folding for a) data set AR b) data set
M c) data set SF
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FIGURE 3.11: Regression using randomised 10-folds for a) data set AR b) data set M
c) data set SF
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adopt a regular 10-fold cross validation (see Figure 3.11), the RMSE error remains below 125.0 for
most of the folds.

3.4 Incident duration prediction using regression: results

The final objective of the bi-level framework is to predict with an accuracy at the minute level the
length of a freshly reported incident, regardless of its previous classification as either short, medium
or large. Therefore, the second step of the bi-level prediction framework is to develop more advanced
regression models that can adjust to each data set independently and over-perform baseline ML models
previously used to solve classification problems. When training such regression models, a significant
step is the size of the data set and the distribution of the target variable (incident duration). Due to
the long tail distribution of incident duration and the class imbalance problem previously identified,
we need to design and construct various regression models capable of learning from various types
of data sets to make accurate predictions. However, with limited information (small data set size),
the prediction results can be skewed (this effect of prediction skewing will be further discussed).
This section first presents the regression results obtained across several scenarios of model training,
validation and testing, followed by results of our proposed Intra-Extra Optimisation algorithm applied
over all baseline ML models.

3.4.1 Regression scenarios results and comparison

In order to find the best set-up that works for traffic incident prediction in TMCs, we test various regres-
sion scenarios (detailed previously in Section 3.2.6), which show the extrapolation performance for
different ML methods. The outlier removal procedures (LDO, HDO) together with the classification
thresholds (which separate short-term and long-term duration of incidents) are selected as described
in Section 3.3.1-Section 3.3.2. The primary purpose of this section is to recommend the best scenario
set-up for model training and validation when parts of the data set might be hidden. Table 3.3, Ta-
ble 3.4 and Table 3.5 present the MAPE results for all 7 scenarios (All-to-All, AtoA, AtoB, BtoB,
BtoA, AlltoA AlltoB) using all the Baseline ML models across all three data sets (and a dedicated
winning regression model across each scenario - last column). Overall, XGBoost seems to be the best
regression model in a majority of scenarios across data set AR and M (Table 3.3,Table 3.4): 1) the
improvement from using XGBoost shows the lowest MAPE for scenario AtoA of 49.11 and 67.92
correspondingly (predicting short term incidents only using only short term training information), 2)
XGBoost also the best performing model for All-to-All regression (59.36% and 85.98% MAPE corre-
spondingly). The main difference between LGBM and XGBoost results is that LGBM struggles with
extrapolation to lower values as seen in scenario B-to-A for all data sets: 292.68% vs 77.66% MAPE
for data set A, 663.12% vs 180.77% MAPE for data set M, 166.06% vs 32.62% MAPE for data set SF
for LGBM and XGBoost correspondingly.

In the SF data set, the LGBM is the best performer reaching a MAPE of 9.34% for the AtoA
scenario (which is almost 10 times better than the same scenario for the M data set) and 33.16%
MAPE for All-to-All scenario. This is a significant improvement that reveals what model is adapting
to what data set, but most importantly, that each data set reacts differently to the seven scenarios.
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Model LGBM RF LR GBDT KNN XGBoost Best model
AlltoAll 82.76 117.28 110.99 113.41 107.79 59.36 XGBoost
AtoA 60.17 59.49 59.92 62.08 58.35 49.11 XGBoost
AtoB 64.46 64.39 64.34 63.82 64.68 64.39 GBDT
BtoA 292.68 381.61 367.16 348.09 349.62 77.66 XGBoost
BtoB 29.52 25.03 45.14 46.26 43.82 27.55 RF
AlltoA 117.78 121.82 175.48 176.71 120 51.18 XGBoost
AlltoB 34.39 37.47 32.11 31.67 35.57 37.46 GBDT

TABLE 3.3: MAPE results for all 7 scenarios on data set AR

Model LGBM RF LR GBDT KNN XGB Best model
AlltoAll 135.59 226.6 229.53 229.46 229.82 85.98 XGBoost
AtoA 95.89 95.38 107.29 104.87 105.26 67.92 XGBoost
AtoB 68.78 69.01 69.49 68.62 69.79 68.69 GBDT
BtoA 663.12 939.59 818.08 878.47 854.81 180.77 XGBoost
BtoB 34.14 51.02 52.33 50.99 48.68 31.18 XGBoost
AlltoA 233.48 406.43 387.25 398.13 402.02 76.71 XGBoost
AlltoB 34.38 34.34 34.21 34.48 36.89 34.98 LR

TABLE 3.4: MAPE results for all 7 scenarios on data set M

In the following, we provide a summarised comparison across a selection of few scenarios and their
performance.

Scenario AtoA uses short-term traffic accidents (below 𝑇𝑐) for both training and the prediction.
XGBoost shows a significant performance for AR and M data sets compared with other scenarios;
more specifically, they outperform by 10% all models in data set AR (MAPE=51.2) and 30% all models
in dataset M (MAPE=68.4). For the SF data set, the improvement is even larger (MAPE=12.7),
but XGboost loses ground over LGBM, which reaches a MAPE=11.0. The comparison of scenarios
AtoA and AlltoA shows that adding incidents with a longer duration can severely affect the prediction
performance across all data sets, regardless of the size or location of the incident logs. For the best
prediction performance on data sets AR, M and SF, we need to split the data and use separate models
for the short-term incidents as predictions become skewed towards longer incident duration. Thus, if
we predict short-term incidents using only short-term incidents data logs, we obtain a higher accuracy
across all data sets.

Model LGBM RF LR GBDT KNN XGBoost Best model
AlltoAll 33.16 36.88 128.42 41.85 64.24 37.03 LGBM
AtoA 9.34 11.91 16.07 12.56 14.05 11.44 LGBM
AtoB 68.08 65.77 67.21 65.53 66.26 65.84 GBDT
BtoA 166.06 191.55 389.07 211.61 302.46 32.62 XGBoost
BtoB 23.69 28.76 70.18 31.08 37.6 27.61 LGBM
AlltoA 45.35 50.74 218.49 60.03 99.06 35.49 XGBoost
AlltoB 24.28 23.97 45.08 25.49 30.82 24.78 RF

TABLE 3.5: MAPE results for all 7 scenarios on data set SF
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Scenario AtoB is unique because regression models are trained on Subset A, which contains
short-term incident duration logs while they are trying to predict long-term incidents; therefore, the
performance is much worse than for AtoA scenario since incidents with long duration are much scarcer
and have unique traffic conditions. BtoB scenario shows lower error than AtoB across all three data
sets (e.g. BtoB provides 23.69% MAPE and AtoB provides 65.53% MAPE for best models for data
set SF). Vice-versa, Scenario BtoA shows very high extrapolation errors across all methods to lower
values. Adding short-term incidents into the training set of long-term incidents (when we move from
BtoA to AlltoA scenario) significantly reduces the error (76.71% MAPE for scenario AlltoA, data set
M using XGBoost), but it is still significantly higher than for AtoA scenario (67.92% MAPE for M
data set using XGBoost). Scenario BtoB shows better performance (e.g. MAPE=31.18% for data set
M using XGBoost) than using data addition (such as the case of AlltoB, where MAPE=34.21% using
best model) or any extrapolation (as in the case of AtoB, where MAPE=68.62% using best model).
By comparing scenarios AtoB and AlltoB we observe a significant performance improvement when
adding data for long-term incidents and predicting subset B (from 63.82% to 31.67% MAPE for dataset
AR using best model), where error is still higher than for BtoB (25.03%, AR, best model). Scenario
BtoA shows high prediction errors across all scenarios highlighting a bad extrapolation accuracy when
predicting short-term incidents duration using long-term traffic incident data. It means that prediction
of the duration of short-term incidents should be performed separately from long-term incidents. Thus,
we can’t use long-term incidents to predict the duration of short-term incidents and vice versa if we
are looking at maximising model performance with limited data set; the second reason lies mainly in
different traffic behaviour along with severe accidents that can last for several hours which are harder
to clear off - these require similar previous events in order to be predicted for their duration.

Fusion framework for the incident duration prediction

In comparison to the above proposed framework, we also present a fusion framework approach, which
can be applied when the incident duration category is unknown. When an incident occurs, the incident
duration category is not known, but we have a historical data on traffic incidents which allows us
to predict the incident duration category and apply specialised regression models (oriented towards
the prediction on subsets of short-term and long-term incidents). We further propose two possible
approaches to this problem:

• the pipeline approach (see Fig. 3.12a ): we train a classification model using a historical data
available to predict the incident duration category. Then we predict the incident duration cate-
gory using the available incident reports. This prediction decides which model we need to use
for a further regression (either specialised on short-term or long-term incident duration predic-
tion). The prediction result of the specialised model is then considered to be the final prediction.
Specialised regression models are trained on their corresponding subsets. In this case, the deci-
sion about the incident duration class is made by the classification model only, which becomes
the most important part of the model that is highlighted by significantly improved results (see
Tables 3.3 to 3.5).

• the fusion approach (see Fig. 3.12b ): instead of relying on the classification model to decide
on the incident duration subset, we place a decision-making function on the additional "fusion
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FIGURE 3.12: Pipeline (a) and fusion (b) approaches for the bi-level framework struc-
ture

model", which is the global regression model; it now receives the prediction results from the
classification model, the regression models specialised on short-term and long-term incidents
(subsets A and B) and from the regression model trained on historical data of traffic incidents
regardless of the incident duration group. After training all these models on historical data, we
perform the incident duration prediction on this historical data. We then use these predictions
(such as the predicted incident class, the incident duration predicted by short-term incident
duration regression model, the incident duration predicted by the short-term incident duration
regression model, and the incident duration predicted by the regression model) in order to train
the global fusion model to make a final prediction of the incident duration; we call this the global
fusion model and the predicted duration is a result of multiple models fused in a centralised
architecture.

The fusion approach can be perceived as the ensemble model, which allows to solve the compu-
tational problem of model training. Ensemble models may perform better than single models due to
three main reasons: (Dietterich, 2000): a) statistical: without sufficient data, a model can find multiple
hypothesis about the data approximation which has the same accuracy. Each of these hypotheses can
lean towards its local optima. By averaging hypotheses, we may find a better approximation of the
data; b) computational: many machine learning models may get stuck in a local optima (e.g. stochastic
gradient descent in the case of neural networks or the greedy split finding in the case of decision trees).
An ensemble constructed by models performing local search from many different starting points may
provide a better prediction performance than the individual models (Dietterich, 2000; Ballings et al.,
2015), c) representational: each model forms an approximation (representation) of the data, which
forms a local representation hypothesis. By combining models it is possible to extend the space of
representable functions.
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FIGURE 3.13: Comparison of the fusion and single model performance for a) data set
AR b) data set M c) data set SF. Dashed lines represent the average RMSE score across

all folds for each corresponding model

In the case of a bi-level framework we have statistical, computational and representational reasons
to expect a better performance from using an ensemble model rather than a single model, since we use
different kinds of models on different subsets (in our case a simple regression model, a classification
model, a regression model for subset A, a regression model for subset B). In other words, by splitting
the data and by using multiple models we obtain models that are having different local optima (subset
A, subset B models) and a different representation of the data (classification and regression models);
in this way we can obtain a better prediction performance using model ensemble than using individual
models.

Finally, we compare the fusion model, single regression model (e.g. for the data set SF it is the
model with the best performance for the task of All-to-All regression) and the pipeline model (where
the choice between the regression models depends on the predictions from the classification model)
performance on all three data sets in Fig. 3.13. We evaluate all model performance on each fold
in a randomised 10 fold cross-validation. We observe that the fusion model performs at least not
worse than a single model on all three data sets. We use XGBoost as a fusion model. We also use
the corresponding best models for each subset of each data set (see Tables 3.3 to 3.5) with hyper-
parameter optimisation (e.g. LightGBM as a single model, performing All-to-All regression task for
the data set SF, RandomForest as a best classification model for data set SF according to Fig. 3.7).
There is a subtle difference in the average RMSE score among the folds for data set A ( see Fig. 3.13a)
where the average RMSE for the fusion model is 59, for the single regression model is 59.8, for the
pipeline model is 62.2). The same is for the data set M (see Fig. 3.13b) where 68.9, 68.4 and 70.8 are
the average RMSEs for the fusion, single and pipeline models correspondingly). There is a significant
improvement in the average RMSE score for data set SF (see Fig. 3.13c) with an improvement from
73.6 to 58 of the average RMSE when using of the fusion model instead of the single model); the
pipeline model didn’t show any improvement in the model performance. Overall, results show that
data availability (the amount of information available about the incidents, which is high for the data
set SF) can significantly affect the performance of the fusion model.

Given the observed performance (from a subtle difference to significant improvement) we rec-
ommend to use the fusion approach within bi-level framework for the task of the incident duration
prediction.
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3.4.2 Outcomes and recommendations

From an operational perspective the scenario All-to-All is the ideal situation when traffic management
centres would have in their data base both long term and short-term incidents. However, from an
operational perspective, several records of short incidents for example and not being kept all the time,
while long incidents are often being transferred to various other division if they last more than one
day, and they become more of a road infrastructure problem rather than an operational problem which
requires constant intervention.

Scenario modelling shows that the baseline ML models are not improving when facing incident
duration extrapolation or data addition (e.g. AlltoA versus AlltoA, BtoB versus AlltoB); these two
training set-ups badly affect the model performance extrapolating in any direction.

By evaluating regression scenarios, we highlight the importance that incidents from different dura-
tion groups need to be modelled separately in order to significantly improve the accuracy of duration
predictions (see (see Table 3.5) for SF data set: if we use all available data, to predict the incident
duration, we will have 𝑀𝐴𝑃𝐸 = 33.16% (lower is better), but if we managed to categorise inci-
dents into the short-term group, we could model these incidents with only 9.34% error, which is a
significant improvement. Also, the classification may point us to which data we need to include in
the modelling because if we use all data to predict the duration of the short-term incident (scenario
AlltoA), we will have a much higher error 45.35% MAPE than just using the short-term incident for
modelling. From the comparison regression of extrapolation scenarios (e.g. scenarios AlltoA versus
AtoA), we see how significant can be the impact of having incidents with long duration in the training
set when we need to predict the duration of short term incidents, and therefore ML methods become
biased towards long-term incidents, which significantly reduces their performance. If we can perform
incident duration regression, then we are able to perform incident duration classification as well. We
can do this before performing the regression in each group. In other words, our scenario modelling
shows modelling advantages of classifying incidents into duration groups.

Therefore, it is essential for the bi-level framework and traffic incident duration prediction to use
separate models for short-term and long-term traffic incidents. Moreover, tree-based methods signifi-
cantly outperforming LR demonstrates that traffic incident regression is a complex non-linear problem
that requires more advanced investigations. This aspect was the one that motivated our research to fur-
ther improve and build a better ML framework for any type of incoming data set, and the results of
this novel IEO-ML framework are further detailed in the following section.

3.4.3 Regression results for proposed IEO-ML model

In this section, we employ our proposed Intra-extra joint optimisation approach previously presented
in Section 3.2.9 and we further present the results of the All-to-All regression scenario, with a log-
transformation of incident duration and several outlier removal techniques such as the LocalOutlier-
Factor (LOF) and the IsolationForest (IF), previously described in Section 3.2.7. All results across the
three data sets are presented in Table 3.6-Table 3.7-Table 3.8.

For the data set A (Table 3.6), we observe a significant impact of using the log-transformation of
the incident duration vector via the resulting MAPE (see Unprocessed versus Log columns). Since
the log-transformation provides a significant improvement among majority of ML models, we decide



76Chapter 3. Incident duration prediction using a bi-level machine learning framework with outlier
removal and intra-extra joint optimisation

𝑀𝐿𝑗 Log Unprocessed iIF-Log eIF-Log eLOF-Log iLOF-Log Best approach
LGBM 80.4 81.1 79.9 82 78.4 80.8 eLOF-Log-LGBM
RF 80.3 121.9 79.5 80.7 78.5 79.1 eLOF-Log-RF
LR 80.0 128.4 80.4 81.6 80.5 80.5 Log-LR
GBDT 79.4 128.2 82.0 81.3 81.4 83.4 Log-GBDT
KNN 82.9 127.4 82.3 86.2 81.7 81.3 iLOF-Log-kNN
XGBoost 59.4 61.1 60.8 59.8 60.9 59.9 Log-XGboost

Best 𝑀𝐿𝑗 XGBoost XGBoost XGBoost XGBoost XGBoost XGBoost
TABLE 3.6: MAPE results for All-to-All scenario of data set A, using different ORM
approaches and incident duration transformation, via the proposed IEO-ML approach.

𝑀𝐿𝑗 Log Unprocessed iIF-Log eIF-Log eLOF-Log iLOF-Log Best approach
LGBM 124.6 138.0 123.6 126.8 125.1 124.1 iIF-Log-LGBM
RF 126.3 238.6 126.6 125.7 127.1 126.6 eIF-Log-RF
LR 130.7 245.9 129.8 129.9 131.1 131 iIF-Log-LR
GBDT 126.7 240.1 126.9 126.7 127.2 126.9 Log-GBDT
KNN 139 248.2 135.1 137 139.4 138.2 iIF-Log-KNN
XGBoost 78.6 113.2 77.5 80.6 78.3 79.6 iIF-Log-XGBoost
Best 𝑀𝐿𝑗 XGBoost XGBoost XGBoost XGBoost XGBoost XGBoost

TABLE 3.7: MAPE results for All-to-All scenario of data set M, using different ORM
approaches and incident duration transformation, via the proposed IEO-ML approach.

to use it in our outlier removal scenarios. When comparing results across all models, both regular
and re-enforced by our IEO approach (column comparison - see Best 𝑀𝐿𝑗 results), we observe that
XGBoost is the best performing baseline model for this data set reaching a 59.4 MAPE. Furthermore,
when comparing results across regular ML models versus our proposed IEO-ML enhancements (row
comparison), then the extra optimisation approaches seem to outperform the intra optimisation ap-
proaches (see iIF-Log versus eIF-Log and eLOF-Log versus iLOF-Log columns). The last column
indicates the best approach that won across all proposed IEO approaches where for example, eLOF-
Log-RF model is read as the extra optimisation method applied together with the Local Outlier Factor
and Random Forest over the log scale data transformation; for this data set A results indicate a similar
performance between using baseline ML models with log transformation versus enhanced IEO-ML
- for example the joint optimisation provides an improvement (eLOF-log-LightBGM, eLOF-log-RF)
versus the cases cases when only the baseline ML with the log-transformation was used (e.g. Log-LR,
Log-BDT). However, the A data set is very small and has a special behaviour when compared to the
others as further results revealed.

For the data set M (Table 3.7), when we use Log-transformation, we observe very high MAPE
scores (100% and higher), except for XGBoost, which provides a MAPE of 78.6%. When compar-
ing the models with each other against the IEO enhancements as well (column comparison), using
XGboost as a baseline seems to over-perform all the other approaches, with the best results being a
MAPE=77.5 for iIF-Log-XGBoost. When comparing against the proposed approaches (row compari-
son), the Intra joint optimisation using Isolation Forest in log-transform shows the best performance on
this data set for four models (iIF-Log-LGBM, iIF-Log-LR, iIF-Log-kNN, iIF-Log-XGBoost), which
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𝑀𝐿𝑗 Log Unprocessed iIF-Log eIF-Log eLOF-Log iLOF-Log Best approach
LGBM 29.9 32.6 29.7 29.5 30.2 29.9 eIF-Log-LGBM
RF 28.9 38.7 28.7 28.9 28.8 28.9 iIF-Log-RF
LR 72.6 140.5 72.8 73.1 73.3 72.4 iLOF-Log-LR
GBDT 31.2 46.3 31.5 31.4 32.4 32.2 Log-GBDT
KNN 61.5 108.6 61.7 62.5 62.2 61.8 Log-KNN
XGBoost 31.7 35.1 31.9 31.6 32.7 31.0 iLOF-Log-XGBoost
Best 𝑀𝐿𝑗 RF LGBM RF RF RF RF

TABLE 3.8: MAPE results for All-to-All scenario of data set SF, using different ap-
proaches for ORM and incident duration transformation, via the proposed IEO-ML

approach.

can be attributed to data set data structure - outliers can be better analysed using tree-based outlier re-
moval methods rather than distance-based LOF. For the majority of models (4 out of 6), our proposed
joint optimisation algorithm obtains the best results for this data set.

For the data set SF (Table 3.8), we observe two competing models - LGBM and Random Forests
with a prevalence for Random Forests (column comparison - see Best 𝑀𝐿𝑗 results). Also, we ob-
serve a considerably lower MAPE score for the best performing models which reached the lowest
threshold of 28.7 across all the data sets used in this study. This reveals the power of more complete
and larger data sets which can significantly improve the model performance. When comparing the
IEO approaches (row comparison), the intra joint optimisation shows improvement across three mod-
els and more specifically for the best performing model on this data set, RF. One consistent finding
across all results is the fact that the log-transformation of the incident duration vector should be used
at all times for incident duration prediction since it significantly improves predictions accuracy; this is
mostly related to the long tail distribution and extreme outliers which can affect the final errors in the
model performance evaluation. Overall, the best performing models are considered to be XGBoost
and Random Forests.

To summarise, every data set has its specifics in the data structure, which make some models
and outlier removal methods performing better than others. Thus, it is necessary to deploy differ-
ent models and outlier removal approaches on every data set. Conventional models (KNN and Lin-
ear Regressions) show the highest error which is almsot twice in comparison to tree-based models.
Thus, tree-based models are preferred options for solving the incident duration prediction together
with adapted optimisation and outlier techniques. Overall, we proved that our proposed intra joint
optimisation is improving the regression results across multiple data sets (especially data sets M and
SF in 7 out of 12 cases). The joint optimisation of the model together with the outlier removal method
shows a significant improvement in majority of cases (12 out of 18) across all three data sets.

3.4.4 Bi-level framework implementation

The code for the bi-level framework exploring previously described scenarios can be found by the
link:
https://github.com/Future-Mobility-Lab/bi-level-framework

https://github.com/Future-Mobility-Lab/bi-level-framework
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FIGURE 3.14: Feature importance for All-to-All regression using XGBoost for a) Ar-
terial roads, Sydney, Australia b) M7 motorway, Sydney, Australia c) San-Francisco,

USA

3.5 Feature importance impact and evaluation

Finally, we evaluate the feature importance using a Shapley value calculation in order to estimate the
contribution of each feature to the final prediction score. Each point related to a feature is shown
in Fig. 3.14 and represents the SHAP value score (Oy-axis), coloured by its value (from low to
high),while the Ox-axis shows the impact of that feature information on the entire prediction out-
put. The used models for this feature importance analysis are the winning models of each data set (A,
M, or SF) as previously discussed.

The hour-of-the-day when the incident started is among the top 5 features sorted by importance
(ranked on the 1𝑠𝑡 place for data set A, 3𝑟𝑑 for M and 4𝑡ℎ for SF). For example, Fig. 3.14a) showcases
that as the hour of the day increases (getting closer to midnight) the traffic durations are lower as the
congestion is lower and rescue teams arrive faster to the accident location; this is the opposite on the
motorways as Fig. 3.14b) reflects that rescue teams havea a harder time reaching the incident location
in the evening, which is mostly explained by the high distance of the motorway from the local incident
management centre. The incident reporting source also has a high significance ( ranked as 7𝑡ℎ most
important for A, 2𝑛𝑑 for M, 2𝑛𝑑 for SF). The Ox-axis on SHAP plots represents the impact on model
output (e.g. the effect on the predicted duration value). Even though the average temperature is con-
sidered significant, its effect on the regression model output is very small [−5𝑚𝑖𝑛; +5𝑚𝑖𝑛] for data set
AR, [−5𝑚𝑖𝑛; +5𝑚𝑖𝑛] for data set M, [−25𝑚𝑖𝑛; +25𝑚𝑖𝑛] for data set SF. The distance from CBD (Dis-
tanceCBD) is important in the data set A, as it can point at some problematic areas, therefore causing
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a higher incident duration. The number of affected lanes is also an important feature for incident du-
ration prediction on arterial roads in Sydney. The model outputs for the M7 motorway revealed that is
highly dependent on the sector ID (similar to the traffic zones in the data set A), which may be linked
to the nature of the location or to the distance from incident management agencies. The average daily
temperature also affects predictions (3𝑟𝑑 place in A, 7𝑡ℎ in M and 6𝑡ℎ in SF). Weather factors (rainfall)
are found to play a significant role in the M and SF data sets (humidity and barometric pressure may
be predictors of rainfall). Different incident sub-types in the M data set (e.g. car, motorcycle, truck,
multi-vehicle) contribute to the difference in the accident duration. Severity is weakly connected to
the incident duration in the A and SF data sets. It is important to note that the SF data set contains
49 features, but 39 are of very low importance for the incident duration prediction. The length of the
affected road segment (Distance in SF) may also be an essential feature which is not found in Syd-
ney data sets. Overall, the specificity of each data set is reflected once again not only in the models
that may be more successful than others but also in the way that the same model can provide various
feature importance due to each country, their unique landscape and different way of dealing with the
disruptions.

3.5.1 Short-term vs long-term incident duration prediction feature importance

We further perform a comparison of feature importance for the duration prediction of short-term vs
long-term traffic incidents, across all data sets.

Arterial Roads Feature Importance, Sydney Australia.

Fig. 3.15 showcases the Feature importance for All-to-All regression using XGBoost for a) short-
term incidents b) long-term incidents of Arterial roads, Sydney, Australia. When analysing long-term
incidents, one important observation is the direct influence of the number of affected lanes on the
severity and duration of disruptions. However, this feature is found to have low importance for short-
term incidents. The farther short-term incidents happen from the CBD, the longer it takes to clear them
off. The location of the incident is extremely important for both long and short term incidents, most
likely due to the easiness to reach the affected location by the intervention teams. Another important
factor affecting the short term incidents in Sydney seems to be the travel patterns for commuting
[month of the year, day of week, sectionID, section capacity]. Also, the DayOfWeek (value ranges
from 0 to 6), we see that the higher the value (closer to the end of the week), the longer it takes for the
incident to clear. Also, some sectors reflected by the SectionID feature demonstrate a lower incident
duration, which may highlight that some specific areas of the city are less affected by traffic incidents.

Motorway Feature Importance, Sydney Australia.

Fig. 3.16 showcases the Feature importance for All-to-All regression using XGBoost for a) short-term
incidents b) long-term incidents of M7 Motorway, Sydney, Australia. One immediate observation is
the fact that the data has 3 sources of reporting, and this can be seen as three different distributions in
the top 1 most important feature ranked in Figure 4a). The source reporting the incidents seems to be
the one factor which influence the most the incident duration. When comparing the top features for
both short versus long term incidents, these are almost the same in both subsets: average temperature,
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FIGURE 3.15: Feature importance for All-to-All regression using XGBoost for a)
short-term incidents b) long-term incidents of Arterial roads, Sydney, Australia
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FIGURE 3.16: Feature importance for All-to-All regression using XGBoost for a)
short-term incidents b) long-term incidents of M7 Motorway, Sydney, Australia
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FIGURE 3.17: Feature importance for All-to-All regression using XGBoost for a)
short-term incidents b) long-term incidents of San-Francisco, USA

the hour when the incident happened, the Sector ID, the direction of travel and the source of informa-
tion that reported the incidents. Overall, for this data set, same features can be collected for both types
of incidents.

San Francisco Feature Importance, U.S.A.

Finally, Fig. 3.17 showcases the feature importance for All-to-All regression using XGBoost for a)
short-term incidents b) long-term incidents of San-Francisco, USA. This data set is very different
than the rest, but as in the case of M7 motorway, the source reporting the incident seems to be most
important factor affecting the duration – this is mostly related to the way the information is received to
the centre (from road users, from local traffic agents, from video camera surveillance, etc.). We observe
that short-term and long-term incident are very different in their nature and incident characteristics
found to have different importance in the prediction of the incident duration. For the SF data set, the
most important features are Source, monthidx, Shour, regardless of the incident duration. In terms
of large accidents however, the distance from the CBD is very important while for small accident the
humidity plays an important factor ranking 4th (which might indicate that weather in San Francisco
can cause small traffic accidents to happen often). Overall, despite all data sets being different, their
specificity and feature important is highly related to their setup, the location of the network and the way
the management centre received and handle the disruption. In order to help improve the prevention
techniques more effort should be invested in understand which source of incident reporting causes the
most errors overall and why.

3.6 CONCLUSIONS

This paper proposed a novel bi-level framework for predicting the incident durations via a unique com-
bination of baseline machine learning models (for both classification and regression), together with
an outlier removal procedure and a novel intra-extra joint optimisation technique. The accuracy and



82Chapter 3. Incident duration prediction using a bi-level machine learning framework with outlier
removal and intra-extra joint optimisation

importance of the proposed approach have been proved via three different data sets from 2 countries
(Australia and the United States of America) under several scenarios for testing and validation.

Major contributions: Firstly, regarding the classification prediction of incidents into short versus
long-term: we found that the optimal duration classification thresholds are similar among the three
different data sets: 40min for data set AR, 45min for M, 45min for SF. Sydney TIMS also found 45
minutes to be the threshold for incident removal performance evaluation via their on-the-field exper-
tise; this represented a confirmation that our threshold split is in coherence with realistic operational
rescue times. Secondly, the best performing and robust models in the classification and regression
experiments were the tree-based models (XGBoost, RandomForest, etc.). Thirdly, our extensive re-
gression scenarios demonstrate that the short-term and long-term traffic accidents should be modelled
separately. Otherwise, we will observe a drop in performance due to the adverse effect of different
scale values in the training set on the model output. Fourthly, our proposed IEO-ML approach outper-
formed baseline ML models in 12 out of 18 cases (66%), showcasing its strong value to the incident
duration prediction problem. Finally, when evaluating the feature importance, we showed that fea-
tures related to time, location, type of accident, reporting source and weather are among the top 10
critical features in all three data sets. By improving the precision of the most important and removing
non-important features from the incident reports, TIMS can significantly improve the quality of data
acquisition.

Limitations of this study: One of the biggest challenges when studying the problem of incident
duration prediction represents data availability. In most cases, the privacy around traffic incidents
represents the main reason why data sets are not released publicly. For example, the two data sets
from Australia are private and have only been released for the purpose of this study, whereas only
the San Francisco data set is made open publicly. Many other countries around the world have not
yet fully released their incident logs, and this represents a challenge for this topic. However, if more
incident data logs become available, they can represent a good test best for our approach.

Regarding the model performance, we make the observation that the performance of ML methods
is highly affected by the data sets and the used methodology. Our approach shows a better performance
for 4 of 6 methods in the case of San-Francisco, but if looked more precisely into details, KNN (where
there is no improvement) produces an error that is twice as large as the best performing model (GBDT).
The same is for data set A when using the LR method. And, with only GBDT left with no improvement
may point to the fact that GBDT is robust to outliers and does not need outlier removal (as observed
on all three data sets). As can be seen for the data set A, where MAPE is high (80%), there is a very
weak connection between features and the labelled data, and thus the performance for all methods is
poor. Therefore, there is not much effect from the outlier removal approach on poor data sets or for
methods that are weaker by design.

Future research can be related to the usage of traffic simulation with information on predicted
traffic incident duration included in the decision making process during route planning. For example,
the vehicle can consider that a traffic incident is short-term and assume that it will be cleared before
arriving at the incident location and therefore reduce its travel time by not planning a route around
the incident site. Furthermore, the cost of prediction error and the benefit of traffic accident duration
estimation can be estimated from the simulation model, where occasional traffic accidents happen
within traffic flow. Also, the benefit of this approach can be estimated for online route planning and
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not only at the time of the departure.
Providing additional results for the threshold variation along all data sets such as (Accuracy, Pre-

cision and Recall).

XGBoost XGBoost XGBoost

Victoria road netowork, Sydney, Australia

XGBoost XGBoost XGBoost

M7 motorway, Sydney, Australia

XGBoost XGBoost XGBoostXGBoost

San-Francisco, U.S.A

FIGURE 3.18: Binary classification performance using varying incident duration
threshold

Providing additional information with regards to the computational time of various baseline ML
models across the three data sets. The findings indicate the RF and kNN seem to be the slowest models
to train versus LGBM and XGBoost and LR which are faster from a computational time point of view.
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4.1 INTRODUCTION

When traffic accidents occur, the majority of traffic management centres (TMCs) store a brief textual
description and the GPS coordinates of the incident. There is a lot of uncertainty at the beginning of
disruptions with regards to how long the traffic incident will last, and most of the time, centres do not
have an overview of the length or severity of the disruptions. Therefore, it is extremely insightful for
TMCs to be able to utilise the data on historical traffic flows or readily available accident description
to predict or improve predictions of the incident duration. In order to improve predictions, we need
more information on the factors (both readily-available and historical) which can have an effect on the
incident duration prediction accuracy. This paper presents an advanced incident duration prediction
framework which makes use of additional incident report variables and past incidents records, merged
into a hybrid machine learning (ML) modelling approach with deep learning encoding of additional
features (e.g. textual incident description and historical traffic flow in the vicinity of the section). Fea-
ture encoding is justified since the traffic incident description and traffic flow/speed measurements have
a high dimensionality, which can lead to overfitting when using ML models and it may be worsened
by the small size of a typical incident report data set.

This paper is organised as follows: Section 5.1 presents the challenges and reviews the related
works; Section 4.2 introduces the data sources we have used as well as our traffic flow mapping algo-
rithm for feature construction; Section 6.3 proposes our modelling framework and explains the ML
models we have used, the LSTM sentiment encoder for textual incident descriptions, and the ANN
encoder for traffic flow speed; Section 5.3.5 introduces the results before summarising all findings in
the Conclusions section.

4.1.1 RELATED WORK

There are multiple research papers which use baseline incident reports from TMC with different ma-
chine learning models to predict the traffic incident duration Li et al., 2018. The use of traffic flow and
incident description features is found to be rare and mostly specific - topical text modelling Das, Mo-
hanty, and Bhattacharyya, 2019 for the task of the incident duration detection, modelling or incident
impact prediction by using traffic flows Fukuda et al., 2020. And its scarcity is highlighted since it
requires the involvement of additional specific models with a feature fusion approach. In other words,
traffic flow data is rarely combined with textual incident description and an actual incident reports
since it requires a higher system complexity.

But feature combination can be observed in some specific research studies related to the traffic
incident impact prediction, which rely heavily on the historical traffic flow data with and without con-
sideration of features that are describing the incident Fukuda et al., 2020; other works have addressed a
similar approach WenTRB2018; Mihaita2019. Also, these works don’t focus on the incident duration
prediction.

Sometimes, researchers try to apply uniform ML approaches or specific models for all the sub-
tasks. Separate RBM models were applied to different kinds of features and feature fusion representing
a uniform application of ML method to different data sets Li et al., 2020a. Also, kNN and Bayesian
cost-sensitive networks were combined for the task of the incident duration prediction Kuang et al.,
2019a. But neither of these research studies investigated a deep dive into their model selection.
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Since we have the incident description and incident severity values in our incident reports, we
can utilise specific models for the task of sentiment classification. Previously, the LSTM architecture
has been compared with Support Vector Machines, Artificial Neural Networks, Deep Belief Networks
and Latent Dirichlet Association on the task of detection of incidents from social media data Zhang,
Chen, and Zhu, 2018. LSTM was also successfully used for stock price prediction Sen and Dhar,
2018, making it applicable for modelling of traffic flow/speed time-series data. Despite its superior
performance, we need to uplift and bring significant modifications to this architecture. Since we are
planning to use encoded time series with machine learning methods, we need a controllable size of the
feature vector to simultaneously avoid overfitting and provide enough information for ML methods.
This is why we propose to use LSTM coupled with ANN, where the ANN feature vector size and the
activation function are varied.

4.2 CASE STUDY

In this study we assume that textual incident reports as well as historical traffic flows and speed data
(including the ones from the moment when an incident happened) are readily available at the moment
the incident was reported and sufficient to make the prediction of its duration.

4.2.1 Incident description data set and baseline feature set

A Countrywide Traffic Accident Data set (CTADS) has been recently published Moosavi et al., 2019a-
Moosavi et al., 2019b, which contains about 1.5 million traffic accident records across 49 states of
United States of America from February 2016 to December 2020 (version 4). Each incident report con-
tains 47 features describing the traffic accident. The majority of these traffic accidents were recorded
in the state of California. The most notable features include: a) Incident Severity (valued from 1
to 4), b) Start and End Time of the incident (from which the traffic incident duration is derivable),
c) The road extent affected by the accident, d) textual Incident Description, d) weather and lighting
conditions. For the extended description of features please refer to the original paper describing the
data set Moosavi et al., 2019b. This data set allows us to use the textual incident description and,
hence, apply a sentiment analysis methodology (based on the incident severity) Alkheder, Taamneh,
and Taamneh, 2017. We further refer to these features as a baseline feature set, excluding the textual
incident description.

4.2.2 Traffic flow and speed data

To collect the data on traffic flows and speed we rely on the Caltrans Performance Measurement System
(PeMS) Chen et al., 2001, which provides aggregated 5-minute precision measurements of traffic
movements across California. Although there is a lot more data for the Los Angeles area (which may
be considered in our future research), we decided to concentrate on the area of the city of San Francisco.
We focus on 83 Vehicle Detection Stations (VDS) placed in that area, and we try to manually associate
each incident occurred in that area with a VDS in their 500m proximity. VDS in PeMS may have
detector failures and incomplete readings, which is common across the data set and should be taken
into account. Even though the PeMS data set contains data on reported incidents, we decided to
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FIGURE 4.1: a) Traffic speed and b) Traffic flow plots for the VDS associated to inci-
dent A-4798 (accident on US-101 Southbound with duration of 31 5-minute iterations
- actual reported incident clearance time, without considering the incident recovery
time). The red line denotes the start of the accident, and the green line the end of the
accident. The blue line denotes the speed evolution in the vicinity of the incident lo-
cation (drops almost to 20km/h) while the flow is still running at high values due to

large numbers of vehicles blocked in traffic.
use the descriptions from the Countrywise Traffic Accident Data Set since it provides a high-quality
description of each incident (47 features in each incident report) extracted from Bing and MapQuest
services.

In total, from 9,275 incidents in the area (extracted from CTADS) we have obtained 1,932 traffic
incident reports in a 500m proximity next to VDS stations, which we were able to associate with the
correct (no detector faults) and complete traffic flows and speed readings. Incident to VDS association
is necessary since both are represented as points and it is not clear which incident is related to which
detector since incidents on different separate roads can be in proximity of one detector (also, since
we have a different representation of street names in VDS and the incident data sets). The task of
VDS-to-incident assignment can be a topic for additional research, but in this paper we summarize
our extracted mapping strategy as follows. We extract the following speed and flow readings from
each VDS station:

1. Speed – Traffic Speed from the 24h leading to the incident occurrence.
2. Flow – Traffic Flow from the 24h leading to the incident occurrence.
3. Speed7 – Traffic Speed on the same weekday, the week before the incident.
4. Flow7 – Traffic Flow on the same weekday, the week before the incident.
5. SD – the vector difference between the traffic speed on the day of the incident and on the same

weekday, the week before the incident.
6. FD – the vector difference between the traffic flow on the day of the incident and on the same

weekday, the week before the incident.
Each of these feature vectors contains 288 values, which correspond to 5-minute readings through-

out the day. Since each of these vectors have a high dimensionality, we decide to perform dimension-
ality reduction via an ANN autoencoder.
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FIGURE 4.2: The structure of the proposed framework

The use of dimensionality reduction is justified since a large number of explanatory variables can
cause model overfitting sawalha2006transferability; sahraei2021.

Regarding the 288 input values on the day of incident: the traffic data is taken from the time
between the incident start and minus 24h before of its occurrence and not during the entire day after
the incident has been lodged.

Figure 4.1 shows an example of a traffic speed drop during the incident A-4798. After we have
analysed different traffic flows and speed plots we expect that the traffic speed will be the most useful
single feature for the task of incident duration prediction as the traffic flow measurement seems to be
not affected by the accident (as the majority of vehicles will be waiting for the congestion to clear off
the road, and will still be counted as part of the traffic flow). We will also use speed measurements
from the weekday, 7 days before the incident in order to obtain the complete picture between what is a
regular traffic flow condition versus disrupted traffic condition on the same time and same day of the
week. We make the observation that we have also conducted a detailed feature ranking and selection
(via SHAP values, forward feature selection, etc.) to several incident data sets which are not presented
here due to space limitations.

The point A-4798 point was selected just as an example for a traffic speed drop and its usefulness
to the prediction problem; in reality, we have analysed about 100 traffic flow and speed plots before
drawing the conclusions (we provide several shapshots of flow and speed reading in the supplemen-
tary material appendix). As an observation, by adding severity classification probabilities (from the
LSTM-ANN model) to the feature vector for the task of incident duration prediction doesn’t seem to
be useful since we already included Severity, which is a strong feature.
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Accident on I-280 Northbound at Exit 57 King St.
Right hand shoulder blocked due to accident on I-280 Northbound after Exits 54 54A 54B US-101.
Lane blocked due to accident on US-101 Presidio Pkwy Southbound at Exit 438 CA-1.
Accident on I-80 Westbound at Exits 1 1C / Bryant St / 8th St.
Second lane blocked due to accident on I-80 Eastbound at Exits 2B 2C Harrison St.
Lane blocked due to accident on US-101 Golden Gate Brg Southbound at Exit 439 Transit Transfer Facility.
Right hand shoulder blocked due to accident on I-280 Northbound at Exit 52 San Jose Ave.
Right hand shoulder blocked due to accident on US-101 Southbound at Exits 429B 429C Bay Shore Blvd.
Lane blocked on exit ramp due to accident on I-280 Northbound at Exit 55 Cesar Chavez.
Right hand shoulder blocked due to accident on I-280 Northbound at Ocean Ave.

TABLE 4.1: Example of the Incident Description values
TID – traffic incident description
S – accident severity class
h(T) – hidden state at time T

Hyper‐parameters:
Number of units [n]
Activation function [φ]
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LSTM 
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unit
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FIGURE 4.3: LSTM sentiment encoder structure.

4.3 Methodology

Figure 4.2 shows how we use the data to perform the incident duration prediction. We combine the
baseline feature set with either the encoded textual description or the encoded traffic flow/speed values.
The encoder parts of both LSTM-ANN network and the ANN autoencoder have hyper-parameters in
the form of number of units and used activation functions to ensure an optimal encoding for the specific
ML method. After obtaining encoded representations associated with the incident, we search for the
optimal hyper-parameters for each ML regression model at each case of the encoded representation.
It allows us to adapt the model parameters to work with encoded data and provide the best cross-
validation results.

4.3.1 LSTM-ANN for the textual incident description encoding

Textual Incident Description in the CTADS data set describes type of disruption caused by the incident
and/or location (Table 4.1).

To perform the encoding of the textual description of the incident we use a combination of character-
level LSTM and ANN for the sentiment analysis (Figure 4.3). We use the textual incident description
from all the available traffic incident reports for the San Francisco area (9,275 incident records). Firstly,
we set the target variable for the LSTM classification model as the incident severity (values 1 to 4).

Secondly, we use the encoded representation of the textual description extracted from the LSTM
sentiment classification model to use it as additional features for the task of incident duration predic-
tion.
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FIGURE 4.4: Example of LSTM network training results using 12 units, a ReLU acti-
vation function, 10 epochs, 80 hidden units. a) Train-validation score over 20 epochs

The incident description text is only provided at the beginning of the incident reporting timeline,
and no temporal evolution is found across multiple countries for which we analysed the incident logs
in our previous work ag2022.

Each textual description is formed into repeated strings up to 200 characters in length and each
character in that string is then encoded by using one-hot encoding.

In order to showcase the importance of the textual incident description for the tasks of incident
duration prediction and incident severity classification, we perform a word importance analysis using
the LIME method (provided in the supplementary material appendix). We further train a an LSTM
model with 80-units hidden state vector. We use the encoding of the incident description by using
different numbers of neurons and different activation functions. An example of training results for one
of the variants is shown on Figure 4.4. Traffic incidents descriptions were used to predict the incident
severity. The data set was split into train, validation and test sets by proportion 70:20:10. Training
results show that the LSTM sentiment encoder needs at least 15 epochs to converge, so we decided to
train each variant of the LSTM sentiment encoder for 15 epochs. We use Root Mean Squared Error
(RMSE) as the loss function.

The use of MSE versus cross-entropy

MSE is a legitimate metric for the classification when the target feature is represented as an ordered
variable gaudette2009evaluation in which MSE is preferred instead of the Cross-Entropy (CE) loss in
order to reduce the model complexity and the probability of over-fitting. In our research we determined
that CE required Nx5 sized matrix for the intermediate feature vector to the target value classification,
while the MSE solution requires only Nx1 matrix, where N is size of the intermediate feature vector).
MSE loss is also superior to CE loss for class-imbalanced datasets kato2021mse and our incident
severity feature distribution poses an imbalanced classification problem.

4.3.2 Artificial Neural Network Encoder for the traffic flow/speed encoding

As additional data sources apart from the incident baseline features, we use the general structure
of Artificial Neural Network (ANNs) Autoencoder kramer1991nonlinear with varying number of
neurons and different activation functions in the bottleneck layer to produce the encoded speed/flow
data sets. Flow and speed values are normalised to the corresponding maximum observed traffic speed
and flow in the data set. To improve the performance of the encoding model we use all the time series
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FIGURE 4.5: The structure of the ANN autoencoder

data available for each incident which could be matched to a VDS station. We combine normalised
flow and speed data sets to perform the ANN model training which allows the model to grasp actual
time series without focusing on speed and flow on an individual level. We do make the observation
that while speed and flow could be used as raw features in any ML prediction framework, the benefit
of using ANN for auto-encoding is mainly a dimensionality reduction and improved accuracy in case
of extreme outliers. Last, we extract the outputs of the ANN autoencoder bottleneck layer and use
them as features in the ML models shown in Fig. 4.5.

The following activation units were used in the bottleneck layers of the ANN autoencoder and the
LSTM sentiment encoder: a) the Rectified Linear Unit (ReLU) agarap2018deep which is a piecewise
linear function (output values are [0; +∞] b) the Exponential Linear Unit (ELU) trottier2017parametric,
which was developed to reduce bias shift (which leads to weight oscillations) c) the Tanh - a hyperbolic
tan function which has the property of equalizing training over layers kalman1992tanh; its output can
take values in the interval (−1; +1) d) the Sigmoid activation function which output can take values
in the interval (0; 1).

4.3.3 Baseline Machine Learning model selection

When all encoding has been finalised, we first use the following ML regression models as a baseline
to perform the incident duration prediction:

a) gradient boosting decision trees - GBDT Xia2017TrafficFF which rely on training a sequence
of models, where each model is added consequently to reduce the residuals of prior models; b) extreme
gradient decision trees - XGBoost chen2015xgboost which rely on an exhaustive search of split values
by enumerating over all the possible splits on all the features and contains a regularisation parame-
ter in the objective function; c) random forests - RF 8283291 which applies a bootstrap-aggregation
(bagging, which consists of training models on randomly selected subsets of data) and uses the aver-
age (or majority of votes) of multiple decision trees in order to reduce the sensitivity of a single tree
model to noise in the data d) Support Vector Regression (SVR) machines drucker1997support which
are characterized by the use of kernels and symmetrical loss function (equal penalization of high and
low errors), e) Decision Trees (DT) regression models breiman1984cart which rely on the repetitive
process of splitting and generates a set of rules which can be used for the value prediction, f) Linear
Regression (for which we use standard Ordinary Least Squares optimisation) which represents the
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relation between features and the target variable as a linear equation targeting to minimize the residual
sum of squares between the actual and the predicted values of the target variable.

Model performance evaluation

To evaluate the regression models on the task of the incident duration prediction we use the mean
absolute percentage error and the root mean squared error defined as:
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where 𝐴𝑡 are the actual values and 𝐹𝑡 - the predicted values, 𝑛 - the number of samples. We do make
the observation that other performance metrics have been obtained (MAE, SMAPE), but given the
current page limitations, we focus on MAPE, RMSE results only.

Hyper-parameter tuning for the proposed regression model

We use 10-fold cross-validation to overcome the over-fitting problem geisser1993vol and to assess
the generalization performance of the ML models. In each scenario, the data set is partitioned into 10
folds. The ML regression model is trained on 9 folds to make prediction on the remaining fold. The
procedure is then repeated 10 times and the accuracy results are averaged across several repetitions.

4.3.4 MAPE versus RMSE comparison and their non-linear relationship

There is a non-linear relationship between MAPE and RMSE when performing regression, which can
be verified by using different regression data sets. We tested this hypothesis on the Concrete Com-
pressive Strength (CCS) Data Set from UCI Machine Learning Repository by using 1000 evaluations
of random 9:1 train-test splits using Random Forest evaluated against MAPE and RMSE. Fig. 4.6a)
presents the MAPE versus RMSE plot in which we observe that, the same MAPE result (e.g. 12%)
may be attributed to multiple RMSE results (e.g. from 3.5 to 6.5). A similar situation observed for
45% of MAPE on CTADS using Random Forest (see Fig. 4.6)b). Therefore, the occurrence of a higher
RMSE error when MAPE becomes lower (as in our paper) and vice-versa is a correct result. MAPE vs
RMSE compared between 100-units random vectors with 1-10 value interval using 10,000 evaluations
(see Fig. 4.6)c). As can be seen from all three sub-plots, the decrease in MAPE doesn’t necessarily
mean a decrease in RMSE. For our study we focused on discussing the MAPE metric, which is widely
used in the literature on the topic of incident duration prediction since its intuitive meaning (e.g. a 30%
MAPE means a 30% deviation of prediction from the actual incident duration) and a less inclination
to high errors from outliers such as the case of RMSE. The results are part of the optimal Pareto Front
[marked in orange] which showcases that our proposed method can obtain the set of optimal feature
combination scenarios rather than only one winning scenario. To conclude, despite an assumption on
linear dependence between the RMSE and the MAPE metrics (assumption that both metrics should be
reduced in an efficient solution), both in our incident duration case and the CCS data set, we observe
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FIGURE 4.6: RMSE vs MAPE results for a) CCS data set, b) CTADS - incident dura-
tion c) Random vectors

a Pareto front of efficient solutions (no solution is sufficient in both metrics, making our results stand
strong).

4.3.5 Comparison to other baselines

It is hard to perform a comparison between different studies on the traffic incident duration prediction
since different data sets are used for research purposes Li et al., 2018. Majority of these data sets are
also private and rely on different sets of features. CTADS data set appeared only recently (2019) and
there is still no uniform convention on which data subset to use as a baseline, since the data set is big
(1.5 million records) and heterogeneous (it includes reports from all kinds of traffic networks around
United States). Indeed, in our previous work we have compared various ML-DL approaches against
logs from Australia and USA, which can be used as extended results.

4.4 RESULTS

4.4.1 Best model selection

First, we try to find the three best models which show high performance of the baseline feature set
consisting of traffic accident reports for which we have available traffic flow counter data. We do so by
performing a cross-validation as described in 4.3.3 and a performance evaluation as detailed in 4.3.3.
Figure 4.7 shows the average MAPE score for the 10-fold cross-validation obtained across several
ML models such as Random Forests (RF), GBDT, XGBoost, kNN, Decision Trees (DTs), Linear
Regression (LR) and Support Vector Regression (SVR). Given that the majority of traffic incident
duration prediction methods published previously have reported a MAPE score below 50% Li et al.,
2018, we select RandomForest, GBDT and XGBoost as the best performing models as their MAPE
score falls below 46%. Next, we evaluate these three models against the baseline feature set when we
apply our novel modelling approach as previously explained in sections 4.3.1-4.3.2: traffic flow, speed
via ANN autoencoding and textual incident description via LSTM sentiment encoding.

There are in total 140 scenarios describing combinations of additional features [7 speed/flow/text
features x 5 unit count x 4 activation functions] for each of the top three ML models. Given the
restricted space allocation for this article, in Tables 4.2-4.4 we present only the top 8 best scenario
results ranked against MAPE for each ML model.

Findings reveal that the encoded textual description is among the top 3 configurations for every
regression model as seen from Tables 4.2-4.4. Models also demonstrate a preference for the way



4.4. RESULTS 95

FIGURE 4.7: Regression results for baseline feature set across different ML models.

AdditionData units activation MAPE RMSE
baseline 44.99 58.4
LSTM-sent 12 relu 41.89 65.03
Flow7 8 tanh 41.92 64.61
LSTM-sent 16 tanh 42.05 65.04
Speed7 16 tanh 42.28 63.97
LSTM-sent 8 tanh 42.43 64.13
LSTM-sent 16 relu 42.56 65.82
Flow 16 sigmoid 42.57 64.53
Speed7 2 sigmoid 42.59 64.76

TABLE 4.2: Top 8 best scenario results for GBDT-enabled framework

of encoding: 1) the Tanh activation function forms a majority in the top results for GBDT both for
encoding the incident description and flow/speed features (Table 4.2), 2) the ReLU activation function
forms a majority in the case of XGBoost (Table 4.4). This observation can point on a preference in
the way of encoding features when using specific regression models. The best performing model
among the top three finalists, when using all additional features seems to be GBDT: the best results
are obtained when encoding the traffic incident description and when using the traffic flow 7 days
before the incident with 12 units and the ReLU activation function [𝑀𝐴𝑃𝐸 = 41.89%, Table 4.2]
(therefore including the information on the regular traffic flow profile on the same weekday, together
with the incident report proves important for the task of incident duration prediction).

Other models show a higher MAPE or RMSE results for the incident duration prediction (see RF
enabled results in Table 4.3 with lowest 𝑀𝐴𝑃𝐸 = 43.2% for a combination of baseline, regular traffic
flow, 4 layer units and a tanh activation function); similar findings appear for XGBoost-enabled results

AdditionData units activation MAPE RMSE
baseline 44.58 57.6
Flow 4 tanh 43.02 63.88
LSTM-sent 4 elu 43.02 65.04
LSTM-sent 12 relu 43.06 63.32
Flow7 16 sigmoid 43.19 64.04
Flow 16 elu 43.30 63.92
FD 4 elu 43.32 64.12
Flow7 16 tanh 43.33 63.47
FD 4 sigmoid 43.39 64.53

TABLE 4.3: Top 8 best results for RF
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AdditionData units activation MAPE RMSE
baseline 45.44 63.41
Flow 8 relu 43.44 69.93
LSTM-sent 4 tanh 43.58 71.03
Speed7 16 tanh 43.63 71.62
SD 4 relu 43.73 70.58
Speed7 16 relu 43.80 71.92
LSTM-sent 16 elu 43.81 70.45
LSTM-sent 8 relu 43.82 72.19
Flow7 2 relu 43.85 72.94

TABLE 4.4: Top 8 best results for XGBoost
in Table 4.4 with the lowest 𝑀𝐴𝑃𝐸 = 43.44%, when using again the regular flow features, 8 layer
units and ReLU activation function. This experiment shows that an accurate incident duration predic-
tion immediately after the event has occurred is possible, leveraging the incident description and the
measured traffic flow on the day of accident, which may prove very useful for TMCs to incorporate di-
rectly in their incident management platforms. Lower MAPE does not necessarily mean lower RMSE
as seen from the baseline and additional data scenarios, but the LSTM sentiment encoding seems to be
the approach that obtains the best RMSE score (64.13) when combined indeed with other variations
of the activation function and number of hidden units (as shown in Table 4.2).

4.4.2 Parallel coordinates for scenario setup

To supplement the findings, we also provide a parallel categories representation of all the 140 scenarios
for the GBDT model in Figure 4.8, which highlights the best combination of activation functions that
seem to be working best alongside the character-level LSTM sentiment encoder of traffic flow incident
textual description and speed information - mostly from previous daily speed profiling using historical
data. The worst results seem to be the ones obtained when using only the speed or flow difference
vector alongside the baseline incident features.

Encoding using Sigmoid and Tanh activation units on average performs best, probably because
of the limited value range: Tanh an Sigmoid allow encoded representations to take values in ranges
[−1; +1] and (0; 1) correspondingly, ReLU and ELU can take unlimited positive values. These results
indicate which value ranges work best for encoded representation.

Comparison of MSE and CE implementations of LSTM severity classification metric for the pur-
pose of obtaining feature vector representation of Incident Description (see Fig. 4.8) shows that a
sentiment classifier with Cross-entropy (lstmsentCE) as a target metric with one-hot encoded sever-
ity values is more efficient (left column attributed to LSTMsentCE shows more blue rows associated
with low metric values than LSTMsentMSE - sentiment encoder which predicts severity as a single
value). Comparison between the number of units shows preference for 4 units since the presence of
the lowest error and absence of the highest error rows. Among the activation units, the Sigmoid is the
best performer showing more low error results than other units. This scenario is to show how feature
vector representing incident description may may be efficiently encoded to be used with conventional
GBDT machine learning method: using cross-entropy for the severity classification, using 4 units and
the Sigmoid as activation function.
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FIGURE 4.8: Parallel categories representation for all regression scenarios with GDBT.
4.5 Conclusion

In this paper, we have proposed a novel framework to predict the incident duration using an integra-
tion of machine learning with traffic flow and description features encoded via several Deep Learning
methods. This approach demonstrates the stable and noticeable improvement across all the perform-
ing models. The results give evidence to the importance of using specific deep-learning encoding
approaches for all regression models which provide a further boost-up in the model performance from
past historical traffic information and the textual incident description. Efficiently encoding incident-
related features for the task of incident duration prediction is the first step to model the traffic incident
impact on the traffic flow. Further work is currently being focused on exploring the spatial and the
temporal dynamic prediction of the incident impact via graph-based modelling approaches. The re-
search has the following limitations: a) we used as study area only San Francisco, but there is a data
availability on traffic accidents and traffic flow for the area of California, b) traffic speed and flow
were taken into account only before the incident; by collecting traffic count data for longer periods it
possible to build traffic speed/flow profiles which may provide more accurate predictions. The soci-
etal impact of the research is as follows: the data availability of the predicted incident duration can
improve for TMC incident and traffic management (e.g. TMC can announce when an incident is ex-
pected to dissipate, how many resources to allocate, etc), which in turn will reduce the time spent
by people in the traffic congestion caused by the incident. The code for the paper can be found:
https://github.com/Future-Mobility-Lab/TIDP_2022.

4.5.1 Word importance for severity classification

To estimate word importance in the Incident Description feature, word count matrix has been trans-
formed to a normalized TF-IDF representation (term frequency–inverse document frequency) TFIDF.
N-gram value range is (1,2). Then linear dimensionality reduction has been performed using truncated
singular value decomposition to 50 componenets for 7 iterations. Then we used GBDT classification
model to fit incident severity and three quantiled groups (ratio 33%:33%:33% to represent equaly sized
groups with duration intervals 0-29min, 30-71min and 72-2750min) of the incident duration. Clas-
sifer predictions were then analyzed for feature importance using LIME method LIME, where every
feature represents 1 word or 2 word combination presence in the incident description. One or more
combinations of word in the description can contribute to the incident being classifed into one of

https://github.com/Future-Mobility-Lab/TIDP_2022
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FIGURE 4.9: Word importance estimation using LIME method for incident severity
groups
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FIGURE 4.10: Word importance estimation using LIME method for incident duration
groups

severity groups (Fig. 4.9) - presence of "lanes blocked" and "two lanes blocked" has the highest con-
tribution to the incident being classifed into highest (3) or lowest (0) severity group. Severity 1 or 2 is
more related to the actual location, which represented as word describing Cesar Chavez St and I-280
Interstate Highway. High positive and opposite high negative contribution of words towards severity
group observed for severity groups 1 and 2, where "280" and "chavez" have high opposite contri-
butions, making this groups easily separable. When we perform classification towards equaly sized
incident duration groups, "lanes blocked" has the highest positive contribution of the incident to be
classified into low duration group. If accident happens on Cesar Chavez St, it can be easily classified
into low duration group signifying importance of location for the task of incident duration predic-
tion. High negative contribution of "lanes blocked" observed for duration group 1 with the highest
contribution of "280" word meaning that incident appears on I-280 Interstate Highway.
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4.5.2 Traffic flow and traffic speed on the day of the incident

The following plots represent recorded traffic speed and flow on the day of the incident and week
before in 500m proximity of the incident along the road (see Fig. 4.11 and 4.12). Reports in CTADS
data set indicate that the highest impact of traffic incident is attributed to significant decrease in traffic
speed, while traffic flow stays the least affected by disruption.
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FIGURE 4.11: Traffic speed and flow during the day of the incident. Part #1
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FIGURE 4.12: Traffic speed and flow during the day of the incident. Part #2
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FIGURE 5.1: City grid representation for our study.

5.1 Introduction

Traffic accidents represent a major concern for cities around the world due to a significant economical
and health impact to their populations. The number of vehicles has been substantially increasing
during the past decades, especially in developing countries, which lead to an increase in the number of
traffic accidents Organization, 2015. The National Highway Traffic Safety Administration (NHTSA)
reports more than 5 million traffic accidents happening in the United States each year Administration,
2013. The World Health Organization also reported 1.35 million fatalities happening worldwide which
resulted from traffic accidents in 2016 world2018global.

In the past years, traffic accident research has seen an increased use of computational methods.
Different problems were addressed, including: 1) traffic accident duration prediction methods, Li
et al., 2018 2) accident detection Parsa et al., 2019, 3) estimation of severity, and more recently, a
development of spatial-temporal modelling methods have allowed to perform accident risk prediction
using high-dimensional spatial, semantic and temporal data sets Wang et al., 2021b. The use of such
methods has enhanced the automated analysis of traffic data together with the increasing number of
publicly available data sets. Traffic accident risk prediction allows to: 1) detect high-risk areas within
a traffic network, which may facilitate the decision-making inside traffic management authorities, 2)
to allocate resources and assess the road design to reduce the number of accidents in the future, 3)
to predict timely high-risk situations on the road and 4) to allow an implementation of risk-reducing
traffic management strategies.

In the literature, the traffic accident risk forecasting problem is commonly formulated as a time-
series forecasting task, where given past historical traffic accidents data for a certain city/region, along
with an optional contextual information about those accidents, the objective is to forecast/predict the
future traffic accident risk for that city/region. Since the nature of the traffic accident risk problem im-
plicitly involves two types of modelling, e.g. the spatial approach (working on the affected geographic
region) and the temporal approach (applied over a period of time), thus this problem is often tackled
using at least two different types of model architectures.

One of the first works on traffic accident risk prediction using Deep Learning has been performed
with human mobility data using a Stack Denoise Autoencoder (SDAE) on the Japan traffic network
Chen, Chen, and Hsieh, 2016, but traffic flow and time-related matters (including periodicity) were
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FIGURE 5.2: The building blocks of our proposed C-ViT model.

not considered. Another research Ren et al., 2017 relied on the LSTM network to improve the risk
prediction in comparison to SAE by considering in addition the air quality, traffic flow and the weather
data, represented as short-term and periodic components. Zhou et al., 2020a proposed also a Coarse
and Fine grained prediction on the target accident risk map. RiskOracle Zhou et al., 2020b relied on
Graph-Convolution network, utilizing hierarchical coarse-to-fine modelling and proposing minute-
level predictions in comparison to day-level Yuan et al., 2018 and hour-level Chen, Chen, and Hsieh,
2016. In Yuan et al., 2018 authors have constructed over the ConvLSTM by highlighting the spatial
heterogeneity problem and proposing an ensemble of region-specific ConvLSTM models (Hetero-
ConvLSTM); they considered weather, the environment and the road condition in Iowa, US for over
8 years of observations, but POIs were not considered. Semantic features, coarse and fine grained
risk maps were considered in Wang et al., 2021a, where also Graph-convolution neural networks and
attention-based LSTMs were used. A more recent work in Wang et al., 2021b represents the State-of-
Art (SoTA) in the field of accident risk prediction, where the authors propose a weighted loss function
to address the zero-inflated issue (increase in the number of zero-risk grid cells due to the increase
in the granularity of predictions) and making ensemble of models by processing semantic and geo
features.

Current paper relies on the use of original Visual Transformer dosovitskiy2020image; wu2020visual,
which has been widely applied to various tasks in areas of Computer Vision. Transformer models
have multiple variations including Convolution Neural Network Enhanced Transformer, Hierarchical
Transformer, Transformers with Local Attention, Deep Transformer liu2021survey.

So far, risk accident prediction relied mostly upon graph-based methods and spatial-temporal mod-
elling. While this approach worked for limited case study applications, we highly believe that in order
to scale it up, this approach can benefit from using visual analysis techniques. Thus, in this work we
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are re-formulating the problem of traffic accident risk forecasting and we are proposing a novel ap-
proach inspired by one of the recent best performing deep learning based architectures for computer
vision tasks, the vision transformers dosovitskiy2020image. In our proposed model we jointly model
and take into account the spatio-temporal nature of the traffic accident risk forecasting problem as well
as the influence of contextual information on it using a single unified end-to-end model.

An earlier version of this paper was presented at the IEEE ITSC 2022 Conference and was pub-
lished in its Proceedings saleh2022traffic. The current paper provides a significant expansion (in-
cluding two new added sections) of our previous work to further improve accident risk prediction
results. The current paper expansion includes results on Coarse-Fine-Coarse and Static Map Visual
transformer architectures.

In Section 5.2, a detailed description about the proposed methodology will be presented. Then, in
Section 5.3, we will introduce the datasets we utilised for training and evaluating the performance of
our approach, the experiments setup and the baseline approaches from the literature we compared our
approach against. Next, we introduce the Coarse-Fine-Coarse Transformer architecture to improve
accident risk prediction results in Section 5.4. Then, we propose an incroporation of static maps into
ViT architecture in Section 5.5. Finally, in Section 5.6, we conclude our paper.

The code for the paper can be found by the following link: https://github.com/Future-Mobility-Lab/
ViT-traffic-accident-risk

5.2 Methodology

In this section, we will first start with definitions and the problem formulation for the traffic accident
risk forecasting task. Then, we will present and discuss the details of our proposed contextual vision
transformer (C-ViT) model (as shown in Fig. 5.2).

5.2.1 Definitions

Grid Representation: Given a city area bounded by certain latitude and longitude coordinates, we
partition it into a grid form with 𝐼 rows × 𝐽 columns (as shown in Fig. 5.1), where each cell share the
same size.

Traffic Accident Risk: At any given time 𝑡, the traffic accident risk 𝑌 𝑖
𝑡 for a grid cell 𝑖 is defined

by the summation of the different types of traffic accidents occurred at that grid cell. Similar to Wang
et al., 2021b, we have three types of traffic accidents and each one has a corresponding value, namely
a minor accident has a value of 1, an injured accident a value of 2 and a fatal accident has a value of 3.
For instance, if a grid cell incurred three fatal accidents and two minor accidents, the traffic accident
risk for it then would be 11.

5.2.2 Problem Formulation

In our formulation of the traffic accident prediction problem, we re-cast it as an image regression task
instead of the traditional formulation as a time-series prediction task. This new formulation enables us
to natively model the spatio-temporal nature of the traffic accident prediction problem in an end-to-end
fashion without the need to have a combination of more than one architecture to address it. To that

https://github.com/Future-Mobility-Lab/ViT-traffic-accident-risk
https://github.com/Future-Mobility-Lab/ViT-traffic-accident-risk
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end, given historical observations in the form of a traffic accident risk map 𝐙1∶𝑇 , where 𝐙 ∈ R𝐼×𝐽

over time period [1 ∶ 𝑇 ], we represent these observations as an image 𝑋 with a resolution of 𝐼 × 𝐽
and its number of channels to be 𝑇 . Then we feed it to our proposed C-ViT model that fuse it together
with the historical contextual information 𝐶1∶𝑇 to predict/regress the future accident risk map in the
next hour 𝐘̂𝑇+1, where 𝐘 ∈ R𝐼×𝐽 .

5.2.3 Contextual Vision Transformer (C-ViT) Model

Given the aforementioned formulation, we compile the traffic accident risk maps 𝐙1∶𝑇 as a unified
single image with size 𝑇 × 𝐼 × 𝐽 , where 𝑇 is the number of channels, 𝐼 is the image’s height and 𝐽 is
the image’s width, which we pass as an input to our proposed novel C-ViT model. Our C-ViT model’s
architecture is inspired by the recently introduced vision transformer network dosovitskiy2020image
that has been achieving competitive results to the convolutional neural network (ConvNet) architecture
for image classification tasks wu2020visual; dosovitskiy2020image. The main building blocks of our
C-ViT model are three components, namely the historical traffic accident risk map encoding stage, the
historical contextual information encoding stage and the transformer encoder stage. In the following
we will analyse deeper each component.

Historical Risk Map Encoding: Given the historical risk maps as a unified single image 𝑋 with
size 𝑇 × 𝐼 × 𝐽 , we first encode it into a representation that could be easily digested and learned using
our transformer encoder. As it was shown in vaswani2017attention, transformer encoders can work
better with input data as a sequence of tokens. Thus, we divide the unified single image into a sequence
of equally sub-images 𝑋𝑝 which we refer to it as an image patch sequence. We can think of the image
patches as a sub-spatial regions of a number of cells within the city’s grid representation that we
defined in Section 5.2.2. The rationale behind this patching process is derived by the assumption that
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grid cells that are spatially closer to each others will have some geographical and spatial correlations
that could potentially be exploited by our model for conducting a better traffic accident risk forecasting.

Here 𝑋𝑝 has a size of 𝑁 × 𝑇 ×𝑃 ×𝑃 , where 𝑃 is the height/width of the image patch and 𝑁 is the
total number of sequences of image patches, which is defined by 𝑁 = 𝐼𝐽∕𝑃 2. The operation of divid-
ing the unified single image into a sequence of image patches 𝑋𝑝 can be shown in Fig. 5.3. The image
patches sequence are then individually passed through a linear embedding layer which is essentially
a learn-able linear projection operation in order to get a sequence of trainable flattened image patches
of size 𝐷, which we refer to as patch embeddings. Additionally, similar to dosovitskiy2020image,
we have an extra learnable embedding token appended before the sequence of patch embeddings to
be passed to the transformer encoder and we refer to this embedding as a “regression token”. The
regression token embedding acts as an image representation which its output is transformed inside the
transformer encoder into the predicted accident risk map 𝐘̂𝑇+1.

Since the transformer encoder does not have the notion of order in its input sequence tokens, an
additional position embeddings are added to each patch embedding. There are a number of path-
ways to define position embedding, and in our current model we follow the formulation introduced
in vaswani2017attention. In this formulation, the position encoding 𝑃𝐸 vector is defined by using a
wide spectrum of frequencies of sine/cosine functions as follows:

𝑃𝐸(𝑎,2𝑘) = sin
(

𝑎∕100002𝑘∕𝐷
)

𝑃𝐸(𝑎,2𝑘+1) = cos
(

𝑎∕100002𝑘∕𝐷
)

(5.1)

where 𝑎 represents the position, and 𝑘 is the dimension. From the above formulation, once can con-
clude that for each dimension 𝑘 of 𝑃𝐸 vector, it has a corresponding sinusoid that spans a frequency
range from 2𝜋 to 10000 ⋅ 2𝜋. In other words, this will allow the model to be mindful of the order in
the sequential patch embedding by using unique relative positions. The dimension of the 𝑃𝐸 vector
is similar to the linear patch embedding layer’s dimension which is 𝐷.

Historical Contextual Information Encoding As discussed in Section 5.2.2, besides the histori-
cal accident risk maps, our C-ViT model takes into account also the historical contextual information
𝐶1∶𝑇 for the city grid representation. In our model and similar to Wang et al., 2021b, we took into
account the following contextual features: 1) the time period of the day, 2) the day of the week, 3)
whether the day is a holiday or not, 4) the weather condition (clear, cloud,..etc), 5) the weather tem-
perature, and 6) traffic condition (inflow and outflow). Given those contextual features, we encode
them via a learnable linear embedding layer of dimension 𝐷, whose output is fused together with the
output from the transformer encoder via a concatenation operation.

Transformer Encoder The main building block of our transformer encoder is the multi-head
self-attention module vaswani2017attention. In total we have six layers inside our transformer en-
coder. Internally, each layer is composed of a both self-attention head and feed-forward fully connected
sub-layers. Additionally, each sub-layer is followed by two residual connections and a normalisation
operation. The multi-head self-attention, or the multi-scaled dot-product attention, works based on the
mapping between the so-called ‘query’ vectors and the pair (key, value) vectors. The dimension of the
query and key vectors is 𝑑𝑘, where the values vector dimension is 𝑑𝑣. The attention operation itself is
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Dataset Attributes Range/Count

NYC
Reporting Duration 1 Jan 2013 - 31 Dec 2013

Accidents 147K
Taxi Trips 173,179K

POIs 15,625
Weathers 8,760

Road Network 103K

Chicago
Reporting Duration 1 Feb 2016 - 30 Sep 2016

Accidents 44K
Taxi Trips 1,744K
Weathers 5,832

Road Network 56K
TABLE 5.1: Datasets Statistics

computed by taking the dot-product between the query and the key vectors divided by the square root
of 𝑑𝑘 before finally passing them to the softmax function to get their weights by their values. Since
the scaled dot-product attention operation is done multiple times, the queries, keys and values vectors
are extended into matrices 𝑄,𝐾, 𝑉 respectively. The following formula is the description of how the
scaled dot-product attention operation is calculated:

Attention(𝑄,𝐾, 𝑉 ) = sof tmax(𝑄𝐾𝑇
√

𝑑𝑘
)𝑉 (5.2)

5.3 Experiments and Results

In this section, we first present the datasets we utilised for training and evaluating the performance of
our proposed approach. Then, we provide the details of the setup for our experiments, the evaluation
metrics and the compared baseline approaches from the the literature. Finally, the quantitative and
qualitative results of our proposed approach on real-life datasets are evaluated and discussed.

5.3.1 Datasets

In this study we use two publicly available real datasets for the traffic accident risk forecasting problem,
namely NYC1 and Chicago2. As it can be seen from Table 5.1, both datasets have historical traffic
accidents and historical taxi trips. The historical traffic accident data contains: time, date, location
(latitude and longitude), the number of causalities, the weather condition (clear, cloudy, rainy, snowy
or mist), the temperature and the road segment data (i.e. road length, width and type). The NYC
dataset has an additional Point of interest (POI) data regarding locations (i.e. residence, school, culture
facility, recreation, social service, transportation and commercial). The historical taxi trips include the
location and times of pick-up and drop-offs and this data is used to calculate the inflow/outflow of the
traffic condition in each area.

1https://opendata.cityofnewyork.us/
2https://data.cityofchicago.org/
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TABLE 5.2: Performance evaluation of our C-ViT model against a number of baseline
approaches from the literature over the NYC and Chicago datasets.

Dataset NYC Chicago
Model RMSE ↓ Recall ↑ MAP ↑ RMSE ↓ Recall ↑ MAP ↑

RNN-GRU chung2014empirical 8.3375 28.09% 0.1228 12.6482 17.83% 0.0664
SDCAE chen2018sdcae 7.9774 30.81% 0.1594 11.3382 18.78% 0.0753

H-ConvLSTM Yuan et al., 2018 7.9731 30.42% 0.1454 11.3033 18.43% 0.0716
GCN wu2019graph 7.7358 31.78% 0.1623 11.0835 18.95% 0.0805

GSNet Wang et al., 2021b 7.6151 33.16% 0.1787 11.3726 19.92% 0.0822
C-ViT (ours) 7.0053 33.86% 0.1875 9.4456 20.93% 0.0980

5.3.2 Experiment Setup

Before we train and evaluate our proposed C-ViT model, we first pre-process the two datasets. The
first pre-processing stage was to perform a grid representation by dividing each city map of the two
datasets (i.e. NYC and Chicago) into equally-sized grid cells each with a dimension of (2𝐾𝑀 ×
2𝐾𝑀). Secondly, similar to Wang et al., 2021b, we group all the accidents that happened in each
grid cell based on their location over the reported duration time for each dataset (for each grid cells
with no road segments/accidents, we set its traffic accident risk to zero). Thirdly, we split the data-sets
into training, validation and testing. The strategy we followed for the splitting is similar to Wang et
al., 2021b, where we use 60% for training, 20% for validation and 20% for testing while making sure
that there is no overlapping accidents based on time (i.e. no accident happened in specific grid cell
on specific time is shared between the three data splits). It is worth noting that the traffic accidents
periodicity according to the two datasets was set to 1 hour. Finally, each data split is standardised by
a mean and standard deviation normalisation so that it could help in accelerating the training process.

Regarding the implementation details of our C-ViT model, the size of the historical traffic risk
maps 𝑋 was set to 7× 20× 20 which corresponds to a total 7 historical traffic accident risks across the
city grid with 𝐼 rows × 𝐽 columns of size 20. Here we chose 7 historical accident risks specifically to
conform with the work done in the literature chen2018sdcae; Wang et al., 2021b for a fair comparison
provided later in the paper. For each grid cell, the 7 historical accident risks comes from the most recent
accident risks in past 3 hours in addition to the past accident risks in the last 4 weeks. The prediction
horizon pf the traffic accident risk was set to 1 (i.e next hour) similar to chen2018sdcae; Wang et al.,
2021b. The hyper-parameters for our C-ViT model itself were set according to the model performance
on the validation split. To that end, the 𝐷 dimension for the linear patch embedding, the position
embedding layer and the linear embedding layer of the historical contextual encoder was set to 64. The
resolution of input patches 𝑃 to the patch embedding layer was set to 5. The number of self-attention
heads were set to 8 and the final output fully connected layer of our C-ViT model was set to 128. Since
we formulated the traffic accident risk prediction task as an image regression task, we have therefore
optimised our C-ViT model during the training phase using a weighted mean-squared error (MSE) loss
function. The reason for using the weighted MSE loss function instead of using the standard MSE loss
function, is to try to combat the unbalanced nature of the traffic risk prediction problem, also known as
the zero-inflated problem bao2019spatiotemporal. The procedure for weighting our loss function is
motivated by the focal loss introduced in lin2017focal, where we holistically divided the total training
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samples into four distinctive classes based on their traffic accident risk values. Those risk values are
(0, 1, 2, ≥3). Similar to Wang et al., 2021b, the loss function weights were set to 0.05, 0.2, 0.25 and
0.5 respectively. In total, we have trained our C-ViT model for 200 epochs using the Adam optimiser
with a learning rate of 0.003 and the batch size was set to 32.

5.3.3 Evaluation Metrics

In order to evaluate the performance of our trained C-ViT model, we utilised the three commonly used
metrics for the traffic accident risk prediction task ma2018point; Wang et al., 2021b, namely root
mean squared error (RMSE), Recall and mean average precision (MAP). The three evaluation metrics
are calculated as follows:

RMSE =

√

√

√

√
1
𝑁

𝑁
∑

𝑛=1

(

𝑌𝑛 − 𝑌𝑛
)2, (5.3)
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, (5.5)

where 𝑁 is the total number of samples to be evaluated, 𝑌𝑛, 𝑌𝑛 are the ground truth and the pre-
dicted risk values for all grid cells of sample 𝑛 respectively. 𝐴𝑛 corresponds to the set of grid cells of
sample 𝑛 that have an actual/true traffic accident risk values. 𝐻𝑛 corresponds to the set of grid cells
within 𝐴𝑛 with the highest traffic accident risk values. On the other hand, PR(𝑗) corresponds to the
precision of the grid cells starting at 1 and ending at grid cell 𝑗. Similarly, REC(𝑗) corresponds to the
recall value for grid cell 𝑗 which is set to 1 in case there was a traffic accident risk at it and set to 0
otherwise.

Based on the definition of these three evaluation metrics, we can deduce that the lower the score
of RMSE is, the better is the quality of prediction coming out of the model. On the other hand, the
higher the recall and MAP scores are, the better is the accuracy of the model.

5.3.4 Baselines

We have compared the performance of our proposed C-ViT model to 5 different baseline approaches
from the literature and in the following we will briefly describe each approach:

• RNN-GRU chung2014empirical: This model is based on one variant of deep recurrent neural
networks (RNN), the gated recurrent unit (GRU) model. This model casts the traffic accident
risk forecasting problem as a time-series prediction problem and tries to model the temporal
dependency among historical traffic accidents risk.

• SDCAE chen2018sdcae: This model is based on the stacked denoised convolution auto-encoder
architecture, which focuses mainly on capturing/modelling the spatial features between different
cells within a city grid area for a better prediction of the traffic accident risk.
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TABLE 5.3: Performance evaluation of our C-ViT model against a number of baseline
approaches from the literature over the high frequency times of accidents in the NYC

and Chicago datasets.
Dataset NYC Chicago
Model RMSE ↓ Recall ↑ MAP ↑ RMSE ↓ Recall ↑ MAP ↑

RNN-GRU chung2014empirical 7.3546 30.76% 0.1301 9.0421 18.66% 0.0758
SDCAE chen2018sdcae 7.2806 31.22% 0.1536 8.7543 20.58% 0.1002

H-ConvLSTM Yuan et al., 2018 7.2750 31.43% 0.1498 8.5437 18.93% 0.0770
GCN wu2019graph 7.0958 33.04% 0.1647 8.4484 20.42% 0.0933

GSNet Wang et al., 2021b 6.7758 34.15% 0.1769 8.6420 21.12% 0.1052
C-ViT (ours) 6.2658 34.46% 0.1802 7.0353 21.95% 0.1247

• H-ConvLSTM Yuan et al., 2018: As the name implies, this model combines both deep convo-
lution layers with RNN-based LSTM layers to extract the spatio-temporal features of the traffic
accident risk problem by having a sliding window over the city’s grid cells; this allows to have
sub-regions that could potentially capture the heterogeneity among the different types of spatial
regions.

• GCN wu2019graph: This model is a deep learning model that relies on graph convolution
neural network to represent the historical traffic accident data as a graph to capture the long-
term spatio-temporal dependency among historical traffic accidents risk data.

• GSNet Wang et al., 2021b: A recent model that learns the complex spatial-temporal correla-
tions of traffic accidents risk by using a combination of GCN, LSTM and attention mechanism.
To the best of our knowledge, GSNet is currently the SOTA method on the NYC and Chicago
data-sets.

5.3.5 Results

In Table 5.2, we report the results of our C-ViT model in comparison to the aforementioned baseline
approaches from the literature over the total testing splits for both NYC and Chicago data-sets. As it
can be noticed, our model has outperformed all the baseline approaches from the literature in terms
of RMSE, recall and MAP scores over the two data-sets. It is worth noting from the results, that those
models (our C-ViT, GSNet, GCN and H-ConvLSTM) which account for the spatio-temporal property
of the traffic accident risk prediction problem, are the top performing approaches on the two data-sets.

The closest competitor baseline approach to our C-ViT model, was the GSNet, which to the best
of our knowledge, was the SOTA on the two data-sets before our proposed approach. As it can be
seen, our C-ViT model has improved the RMSE, recall and MAP scores in comparison to GSNet
especially across the Chicago dataset by a relatively large margin. Furthermore, our C-ViT has more
competitive advantage over GSNet in terms of the efficiency. As it can be shown in Fig. 5.4, the
number of parameters required by our C-ViT model for training are far lower than those needed for
GSNet (saving more than 23x parameters) which makes our approach more suitable for real-time
deployment.
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FIGURE 5.4: Comparison between our proposed C-ViT model and GSNet Wang et al.,
2021b, in terms of the number of training parameters.

In order to further evaluate the performance of our proposed C-ViT model, in Table 5.3 we report
the RMSE, recall and MAP scores of our model when compared to all the other baseline approaches
over peak hours of frequent traffic accidents that resulted from the testing split of both the NYC and
Chicago data-sets. Those times of high frequency of traffic accidents are essentially during morn-
ing/evening rush hours which are within 7:00-9:00 AM and 04:00-07:00 PM. As it can be seen from
the reported results, our C-ViT model continues to achieve more robust results than all other compared
baseline approaches. This further prove the utility and quality of our proposed approach that it has a
consistent performance across different settings.

5.4 Coarse-Fine-Coarse Visual Transformer (CFC-ViT)

One of the issues to solve in the topic of accident risk prediction is the zero-inflated issue - the imbal-
ance between the amount of non-zero and zero accident risk cells. This issue can be resolved by using
a comparison mask or variations of focal loss Wang et al., 2021b. Another issue, which is usually
ingnored is the fine granularity of accident risk map. For example, in the grid representation, cells
can be separated and of minimal 1x1 cell size (see Fig. 5.5).

Current computer vision methods applied to the task of accident risk prediction produce ‘blurred’
results due to intrinisic limitations of convolution network architectures li2021survey; gu2018recent.
To resolve this issue we propose an alternative approach which consists of up-scaling the patches
before the embedding to allow fine-grained processing by internal layers of transformer, and then
down-scaling embedding to match the original output shape 5.6. Up-scaling may be a necessary step
in the of use of asymmetric convolutional networks for segmentation to increase the detailization of
results lo2019efficient since there are no upscaling layers at the final part of the asymmetric network.
We upscale patches before the embedding to perform fine-grained processing of these patches. The
dimensionality of embedding is also increased proportionally to the patch size; processed embedding
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FIGURE 5.5: Example of GSNet predictions (after training for 2 epochs, when the best
performance is observed): a) Actual map of the accident occurrence b) Predicted map

of the accident occurrence.
TABLE 5.4: Performance evaluation of our CFC-ViT model on Chicago data set

RMSE Recall MAP HFT-RMSE HFT-Recall HFT-MAP Data set CFC Scale factors
0 8.62 19.38 0.08 6.48 19.89 0.09 chicago 4x, 0.25x
1 9.24 18.84 0.06 6.85 20.85 0.07 chicago 2x, 0.5x
– – – – – – – – –
- 9.45 20.93 0.098 7.035 21.95 0.125 chicago 1x,baseline (multi-epoch)

then downscaled by the same rate. This allows the network to form intermediate results of higher
dimensionality, which when down-scaled, will produce more fine-grained image.

Results for the Chicago data set show a significant improvement in the RMSE metric results both
for 2x and 4x scale factors (see Table 5.4 where the RMSE is 8.62 as compared to 9.45 translating
in a 8.78% improvement). There is an inverse dependence observed between the scale factor and
the Recall or MAP metrics: the increase in the scale factor lowers RMSE but MAP and recall also
decrease. However, given the robustness of the RMSE metric, the improvement is consistent.

Results for the NYC data set show that the prediction performance can increase at a specific scale
factor (2x) and decrease at different scale factor (4x) (see Table 5.5. These results suggest that the
optimal scale factor for each data set can exist, which leads to a deciated optimization task of finding the
optimal scale factor value. Results both for NYC and Chicago data sets show a non-linear dependency
between the RMSE, the MAP (mean average precision) or Recall metrics. These metrics are intended
for different purposes (RMSE for the regression, MAP and Recall for the classification results) and
therefore can produce different results based on the characteristics of the predicted values.

Overall, our new proposed CFC-ViT approach shows an improvement in the RMSE results, but

TABLE 5.5: Performance evaluation of our CFC-ViT model on NYC data set

RMSE Recall MAP HFT-RMSE HFT-Recall HFT-MAP Data set CFC Scale factors
0 7.09 33.17 0.1808 6.45 33.90 0.1751 NYC 4x, 0.25x
1 6.81 32.15 0.1838 6.14 33.24 0.176 NYC 2x, 0.5x
– – – – – – – – –
- 7.0053 33.86 0.1875 6.2658 34.46 0.1802 NYC 1x, baseline (multi-epoch)
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FIGURE 5.6: Coarse-Fine-Coarse Transformer

these results and other metrics depend on the scale factor parameter. The optimal scale factor can vary
for each data set and can be found using other optimization techniques.

5.5 Application of the Static Map Generation

The use of Attention layers is a computer vision technique which implies an estimation of attention
maps from different images. Since each image may have different areas of attention, the attention map
is generated for every case of prediction (which we can call the dynamic attention estimation). But
in the case of accident risk prediction, we predict on the same area each time. Therefore, we can use
the statically generated attention map (static attention estimation). We evaluate multiple scenarios of
combining dynamic (DA) and static attention (SA) estimations using varying combination operations.
To further utilise the advantage of a non-volatile area, we also try to generate the Static Accident Risk
Map (S-ARM) so our network needs to predict the offset of the accident risk (relative accident risk)
from the statically generated risk map values instead of predicting the absolute accident risk values.
Therefore, another contribution of this work is to further combine the Predicted Offset Accident Risk
Map (PO-ARM) with the Static Accident Risk Map (S-ARM) (see Fig. 5.7).

5.5.1 Pipeline description

The generalisation performance of the Transformer model can be greatly improved by using one-epoch
training komatsuzaki2019one. Therefore we use results obtained from one-epoch training in further
scenarios. Other parameters of the setup are the same as in Section 5.3.2.



116 Chapter 5. Spatial-Temporal Traffic Accident Risk Forecasting using Contextual Vision
Transformers with Static Map Generation and Coarse-Fine-Coarse Transformers

Add & Normalize

Feed Forward

Add & Normalize

Self-Attention

Contextual Embedding

Fully Connected Layer

⊕

Linear Patch Embedding

⊕ Positional 
Encoding

Positional 
Encoding

Tr
an

sf
o

rm
e

r 
En

co
d

e
r

Hour of day

Day of week

Temperature

…
.

Historical Contextual 
Information 

Historical Risk Map 
Multi-channel Image

Risk Map

Predicted Accident 
Risk Map

Static Accident
Risk Map

Predicted Offset 
Accident

Linear Vector

Linear Vector

Static Attention Map *2

*2

*1

*1 - attention combination operation

- prediction combination operation

FIGURE 5.7: The building blocks of our proposed XViT model with Static Map Gen-
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5.5.2 Description of combination operations

The use of static map generation at the beginning of the attention layer as well as near the network
output can remove the necessity for the network to predict the absolute risk values (static map is
assumed to act as a static image and network is required to predict the relative risk from the one in
a static map). We test multiple different approaches to achieve the benefit of using the static map
generation. Different constraint functions can be used to limit the range of values observed from the
static map. Also, the actual static map can be combined differently with the final and the intermediate
network values.

Combination operations for the attention layer that we have considered:
1. None - using only the original pipeline structure with no static map,
2. tanh(map)+x - the static map is bounded by the tanh function in order to obtain the static map

values distribution between (-1,+1), combined with layer input values,
3. tanh(map)*x - the same as above, but combined using a multiplication operation,
4. map - we use the static map instead of the attention layer inputs,
5. map + x - we combine the static map with the attention layer inputs using the “plus (+)” oper-

ation,
6. sigmoid(map)+x - static map values are distributed between (0,+1) and are further combined

with the attention layer inputs by using the “plus (+0)” operation (a linear offset combination),
7. sigmoid(map)*x - the same as above, but combined using the “multiplication (*)” operation.
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Combination operations for the network output that we have implemented:

1. tanh(map)+x in which the static map values (map) are combined with the intermediate predic-
tions (transformer output - x),

2. sigmoid(map)+x - same as above, but using sigmoid as a static map constraining function,
3. tanh(map)*x - tanh is used as a static map constraining function, and the static map values (map)

are combined with the intermediate predictions by using the “multiplication (*)” operation,
4. head(map+non) - the static map values combined with the non-risk features and passed through

the feed forward neural network,
5. head(map)+head2(x+non) - the static map is passed through a separate feed forward neural net-

work, while other predictions together with the non-risk features are passed through the second
network of the same structure,

6. head(map)*head(x) - the accident features are passed through the same network as the static
map values and then combined using the “multiplication (*)” operation,

7. head(non)+head(x) - the non-risk features and the accident risk features are passed through the
same network, and then combined using the plus operation,

8. None (head(x+non))- this is the original ViT implementation.

The constraint functions (tanh and sigmoid) are tested with the assumption that values close to the
actual normalised accident risk values will be observed right after the network parameter initialisation.
Due to the variation, we name this derivative model an XViT model.

5.5.3 S-ARM results

The results for the Chicago and NYC data sets are provided in Tables 5.6-5.7, RMSE results con-
veniently represented on Figures 5.9-5.8. The results are also provided for the high-frequency hours
(HFT) - meaning the RMSE errors obtained only when using the HFT hours when more traffic is
normally expected in the city. The use of the static map generation didn’t show an improvement on
the NYC data set. In fact, the results are a bit worse but closely realted to the baseline (7.05 RMSE
for the best combination vs 7.00 RMSE using original baseline multi-epoch approach); however we
observe that there is an improvement in the recall results for the high-frequency hours (34.84 for the
best combination vs 34.25 when using the multi-epoch baseline). But results forthe Chicago data set
show a very significant improvement across all the metrics (e.g. from 9.45 to 9.01 in RMSE, from
20.93 to 22.24 in Recall, from 21.95 to 23.46 in HFT-Recall). More than that, the 1-epoch training
also shows a significant improvement in case of the baseline ViT structure (from 9.45 to 9.25 RMSE,
from 20.93 to 21.77 Recall, from 7.035 to 6.93 in HFT-RMSE).

This slight reduction in the model performance in case of the NYC data set and significant im-
provement in case of the Chicago data set can be interpreted through the concept of local optima and
data set size. There may be multiple local optima for the accident risk approximation across historical
accident risk records (e.g. multiple average risk maps for different months). This optima can have an
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TABLE 5.6: Performance evaluation of our XViT model for a number of combination
operations on NYC data set. Top 20 results.

RMSE Recall MAP HFT-RMSE HFT-Recall HFT-MAP Data set S-ARM Combination Operations
0 7.05 33.72 0.19 6.46 34.84 0.18 nyc tanh(map)*x, tanh(map)+x
1 7.07 33.49 0.19 6.48 34.43 0.18 nyc sigmoid(map)+x, sigmoid(map)+x
2 7.10 33.21 0.19 6.50 33.87 0.18 nyc sigmoid(map)+x, head(map)+head(x)
3 7.10 33.57 0.19 6.50 34.15 0.18 nyc sigmoid(map)+x, tanh(map)+x
4 7.11 33.26 0.19 6.49 33.76 0.18 nyc none, tanh(map)*x
5 7.11 33.38 0.19 6.52 34.53 0.19 nyc sigmoid(map)*x, tanh(map)+x
6 7.11 33.39 0.19 6.52 34.71 0.18 nyc tanh(map)*x, sigmoid(map)+x
7 7.11 33.85 0.19 6.50 34.81 0.19 nyc sigmoid(map)*x, tanh(map)*x
8 7.12 33.21 0.19 6.52 34.50 0.18 nyc tanh(map)*x, head(map)+head(x)
9 7.13 33.33 0.19 6.54 34.71 0.18 nyc tanh(map)+x, sigmoid(map)*x
10 7.13 33.36 0.19 6.52 34.64 0.19 nyc sigmoid(map)+x, sigmoid(map)*x
11 7.13 33.43 0.19 6.54 34.53 0.19 nyc tanh(map)+x, tanh(map)+x
12 7.14 32.88 0.19 6.55 33.41 0.18 nyc map+x, head(map)+head(x)
13 7.14 33.09 0.19 6.55 34.18 0.19 nyc map+x, sigmoid(map)+x
14 7.14 33.35 0.19 6.55 34.25 0.19 nyc none, tanh(map)+x
15 7.14 33.36 0.18 6.52 34.67 0.18 nyc tanh(map)+x, tanh(map)*x
16 7.14 33.55 0.19 6.54 34.81 0.19 nyc sigmoid(map)*x, sigmoid(map)+x
17 7.15 32.87 0.19 6.55 33.87 0.19 nyc sigmoid(map)*x, head(map)+head(x)
18 7.15 33.09 0.19 6.56 33.87 0.18 nyc map+x, tanh(map)+x
19 7.15 33.24 0.19 6.55 34.71 0.19 nyc map+x, sigmoid(map)*x
20 7.15 33.30 0.19 6.57 34.36 0.18 nyc none, sigmoid(map)+x
– – – – – – – – –
- 7.25 33.39 0.19 6.53 34.25 0.19 nyc baseline (1-epoch)
- 7.0053 33.86 0.1875 6.2658 34.46 0.1802 nyc baseline (multi-epoch)
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TABLE 5.7: Performance evaluation of our XViT model for a number of combination
operations on Chicago data set. Top 20 results.

RMSE Recall MAP HFT-RMSE HFT-Recall HFT-MAP Data set S-ARM Combination Operations
0 9.01 22.24 0.11 6.80 23.46 0.13 chicago tanh(map)*x, tanh(map)+x
1 9.06 22.30 0.10 6.85 23.59 0.13 chicago tanh(map)*x, head(map)+head(x)
2 9.09 22.30 0.10 6.81 23.18 0.11 chicago none, head(non)+head(x)
3 9.10 21.77 0.10 6.80 22.63 0.13 chicago none, head(map)+head2(x+non)
4 9.12 21.88 0.10 6.80 23.05 0.13 chicago sigmoid(map)*x, head(map)+head2(x+non)
5 9.14 22.90 0.11 6.82 24.14 0.12 chicago sigmoid(map)*x, head(non)+head(x)
6 9.15 22.12 0.11 6.91 22.63 0.13 chicago none, sigmoid(map)+x
7 9.15 22.18 0.11 6.94 22.91 0.13 chicago tanh(map)*x, sigmoid(map)+x
8 9.16 21.59 0.11 6.98 21.81 0.13 chicago tanh(map)*x, sigmoid(map)*x
9 9.17 22.72 0.10 6.82 24.01 0.12 chicago tanh(map)*x, head(non)+head(x)
10 9.19 21.59 0.10 6.83 22.63 0.12 chicago tanh(map)*x, head(map)+head2(x+non)
11 9.22 22.00 0.11 6.88 22.63 0.13 chicago tanh(map)*x, head(x+non)
12 9.22 22.18 0.11 6.97 23.18 0.13 chicago none, tanh(map)+x
13 9.22 22.24 0.11 7.00 23.18 0.13 chicago sigmoid(map)*x, tanh(map)+x
14 9.22 22.24 0.11 7.00 23.32 0.13 chicago sigmoid(map)*x, head(map)+head(x)
15 9.24 22.00 0.11 6.99 22.77 0.13 chicago none, head(map)+head(x)
16 9.25 21.77 0.10 6.93 22.36 0.12 chicago baseline (1-epoch)
17 9.29 22.00 0.11 6.96 22.63 0.13 chicago sigmoid(map)*x, head(x+non)
18 9.29 22.12 0.11 6.97 22.77 0.13 chicago tanh(map)+x, head(map)+head2(x+non)
19 9.31 21.88 0.10 7.08 22.50 0.13 chicago tanh(map)+x, sigmoid(map)*x
20 9.34 22.60 0.10 6.97 23.87 0.12 chicago sigmoid(map)+x, head(non)+head(x)
– – – – – – – – –
16 9.25 21.77 0.10 6.93 22.36 0.12 chicago baseline (1-epoch)
- 9.45 20.93 0.098 7.035 21.95 0.125 chicago baseline (multi-epoch)

ability to show a good approximation of the accident risk, but since the road networks and the city
structures change over time, different local optima can appear over time as well. So finding just one
static accident map may not be optimal for a large data set, but may show benefit in the case of small
data set (Chicago has just 44K accident records in comparison to 147K for NYC attributing to 1 full
year of records and these are mostly short-time accidents in Chicago - just 8 months). We conclude
that there is evidence that the proposed method and the use of multiple static maps can be a topic of
the future research which can bring improvement over large data sets.

Another important observation is that the same set of combination operations gives the best results
in the case of the ViT network with a generated static map: "tanh(map)*x" in the attention layer and
"tanh(map)+x" near the network output. This not only signifies the use of the constraint function tanh,
but also shows where to use each combination operator (addition and multiplication). We also observe
that the use of non-risk features is not present among the top 20 results for NYC data set (see Table
5.6, Figure 5.8), while for the Chicago data set it is present in 9 combinations out of 20, which may
indicate the difference in quality of these features in both data sets.

5.6 Conclusion

In this work, we have presented a novel approach for the task of traffic accident risk forecasting. In
our approach we re-formulated the problem as an image regression problem and introduced a unique
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FIGURE 5.8: Root Mean Squared Error from performance evaluation of our XViT
model for a number of combination operations on NYC data set
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model for a number of combination operations on Chicago data set
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contextual vision transformer network (C-ViT) that can efficiently model the traffic accident risk fore-
casting task from both spatial and temporal perspectives. The proposed approach has been evaluated
on two publicly available data sets for the traffic accident risk problem. Furthermore, our proposed
C-ViT model has been compared against a number of baseline approaches from the literature and it
has outperformed them with a large margin while only requiring less than 23 times the number of
training parameters.

The combination of static accident risk map with the ViT model (XVit) provides an even more
significant improvement over the previous method in case of the New-York data set, thus establishing
the new SoTA in the study area. The operation combination method has a potential for improvement
(e.g. more different combination methods and constraint functions can be tested). Improvements in
results obtained in the current research can also highlight the applicability of vision transformers for
non-visual tasks.

The Coarse-Fine-Coarse Visual Transformer (CFC-Vit) architecture allows for fine-grained pro-
cessing of the accident risk map and introduces an additional scale factor parameter which affects
(and may improve) the prediction performance. There is a non-linear dependence between RMSE and
the scale factor observed for both data sets, which may suggest that the optimal scale factor for the
accident risk map processing may exist and be different for each data set.

Overall, the use of visual transformers and its variations for traffic accident risk prediction out-
performs previously used approaches. Further applications of image and video processing methods
may provide further improved results and open alternative approaches for the task of accident risk
prediction.
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Chapter 6

Automatic Accident Detection,
Segmentation and Duration Prediction
using Machine Learning



124Chapter 6. Automatic Accident Detection, Segmentation and Duration Prediction using Machine
Learning

6.1 Introduction

The number of vehicles has been substantially increasing during the past decades, which currently
leads to an increase in the number of traffic accidents Organization, 2015. The National Highway
Traffic Safety Administration (NHTSA) reported more than 5 million traffic accidents happening in
the United States during year 2013 Administration, 2013. Traffic Managements Agencies usually
rely on Traffic Incident Management Systems (TIMS) to collect data on traffic accidents, including
information on various accident, traffic state and environmental conditions. Accurately predicting the
total duration of an incident shortly after it is being finished, will help in improving the effectiveness of
accident response by providing important information to decide the required resources to be allocated
(response team size, equipment, traffic control measures) Kim and Chang, 2011. Traffic accident is a
rare event with stochastic nature. The effect of the accident can be observed as an anomalous state in
the time series of traffic flow Theofilatos et al., 2016.

Challenges: The traffic accident analysis may be a challenging task due to incorrect or incom-
plete accident reports, including the set and the quality of the accident characteristics that have been
reported. Accident reports can contain user-input errors related to the accident duration such as: 1) an
approximate reporting of accident’s start and end time 2) reporting of the accident start time could have
been done after the incident finished in reality 3) a ’placeholder’ accident duration reporting (filling
report with the approximate duration value due to unavailability of data by the moment of reporting).
In our previous research Grigorev et al., 2022b; Mihaita et al., 2019b we found that timeline-related
errors are present in accident reports across three different data sets from both Australia and the United
States of America, which creates the possibility of observing that such errors can occur in other data
sets from around the world as well, due to multiple human and technical factors that can arise. To
forecast the accident impact it is crucial to have an accurate and correct data regarding the observed
disruption timeline. We emphasise that disruptions observed in a recorded traffic state can be auto-
matically segmented and associated with a reported accident at the same time and location as when the
accident occurred, which allows to eliminate user-input errors from reports and improve the accident
duration prediction performance in many traffic management centres around the world. To help ad-
dress this issue, in our paper we propose various methods for a correct traffic disruption segmentation,
the method for an association between vehicle detector stations and accident reports.

Another important challenge is that many incident data sets around the world are private and not
shared for public investigation; for those open data sets, there are several missing information fields,
or even worse, incomplete information regarding the traffic conditions in the vicinity of the accidents.
Even often publish crash data sets are limited in size as well and contain a very small number of records.
This represents a tight constraint when testing one framework over multiple countries with different
traffic rules and regulations. For our studies we have oriented our attention towards two big open data
sets - CTADS (Countrywise traffic accident data set) which contains 1.5 million accident reports and
the Caltrans Performance Measurement System (PeMS) which provides data on traffic flow, traffic
occupancy and traffic speed across California. Despite both being extensive data sets, vehicle detector
station readings from PeMS are not associated with traffic accident reports from CTADS either by
time, location or coverage area. The lack of such association makes it impossible to analyse the relation
between accidents and their effects on traffic flow and speed. To address this challenge, in our paper
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we introduce the following mapping algorithm which will secure several steps such as :
• an association of Vehicle Detection Stations (VDS) with reported accidents in their proximity,
• a segmentation of traffic speed disruptions from detector readings,
• an association of detector stations with reported accidents (we will further show that this step

is necessary due to many detected user-input errors in accident reports).
As a result, we obtain traffic disruptions segmented by the traffic speed associated with reported acci-
dents. This association makes it possible to perform various important tasks of the accident analysis:
1) prediction of the traffic accident impact on the traffic speed based on accident reports, 2) predic-
tion of the traffic accident duration derived directly from the effect of disruption on the traffic speed
(impact-based duration), 3) analysis of disruption propagation (each detected disruption can be stud-
ied for spatial-temporal impact within the traffic network). Through this work, we will focus on the
prediction of the impact-based accident duration and lay the foundation for a further research.

Overall, the main contributions (summarised in Figure 6.1) of our paper are as follows:
1. We conduct a fusion methodology of two large data sets (CTADS and PeMS) for a detailed

traffic accident analysis. To the best of our knowledge, this is the first research study proposing the
methodology for merging of two large data sets of such nature, which allows an association between
observed disruptions in traffic flow and the reported accidents.

2. We propose a novel methodology for the disruption mining using a combination of differ-
ent metrics (which we further find to have properties important for disruption segmentation): a) the
Wesserstein metric, which allows us to measure the disruption severity and b) the Chebyshev metric,
which provides a higher selectivity for the disruption mining and a rectangular shape of the disrupted
segments, allowing an automated disruption segmentation. We detail all unique properties of both
metrics utilized together to allow an accurate disruption segmentation.

3. We perform the estimation of traffic accident disruption duration from traffic speed via the
above metrics which allows us to alleviate user-input errors in accident reports.

4. We evaluate multiple machine learning models by comparing both the reported and the esti-
mated accident duration predictions extracted from traffic speed disruptions.

5. We introduce a new modelling approach which focuses on the amount and shape of the the
disruption associated with an accident, which allows a further analysis and modelling of accident
impact.

Overall, this research forms the foundation for a new early traffic accident disruption detection,
traffic disruption speed impact analysis and the use of observed traffic accident durations for correcting
errors in user reports. Moreover, this work contributes to our ongoing objective to build a real-time
platform for predicting traffic congestion and to evaluate the incident impact (see our previous works
published in (Mihaita et al., 2019b)-(Shafiei et al., 2020)-(Mao et al., 2021)).

The paper is further organised as follows: Section 6.2 discusses related works, Section 6.3.1
presents the data sources available for this study, Section 6.3 showcases the methodology, Section
5.3.5 presents the disruption segmentation results, showcases the result of data set fusion and Section
6.7 provides conclusions and future perspectives.
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FIGURE 6.1: Contributions and data-flow schema for association of traffic speed read-
ings with accident reports

6.2 Related Works

Multiple studies rely on user-input-based incident reports from Traffic Management Centers (TMC)
with different machine learning models to predict the traffic incident duration Li, Pereira, and Ben-
Akiva, 2018a. The use of traffic flow features is found to be rare and mostly specific - incident detection
and incident impact prediction by using traffic flow Fukuda et al., 2020. In other words, traffic flow
data is rarely combined with actual incident reports since it requires a higher system complexity and
extensive data collection.

There were numerous studies related to accident detection from traffic flow using anomaly de-
tection techniques Parsa et al., 2019. Various methods used for anomaly detection in time series are
applicable for the task of traffic disruption detection. The ability to perform the detection of actual
disruption, which should give us actual shapes of disruptions and time intervals allows in-depth anal-
ysis of usual accident statistics including the effect of the type of accident on the pattern of disruption
in traffic flow. By integrating data on traffic state with accident reports we are able to further connect
traffic flow disruption patterns to various accident characteristics (hour of the day, weather conditions,
crash type, type of vehicle involved - truck/car Eboli, Forciniti, and Mazzulla, 2020, the effect of road
pavement types Tsubota et al., 2018, road design and road operation Yannis et al., 2016, etc).

Various machine learning models are used to solve the task of traffic accident duration predic-
tionLi, Pereira, and Ben-Akiva, 2018a including k-nearest neighbours (KNN) and Bayesian networks
Kuang et al., 2019a, Recursive Boltsman Machines and Support Vector Machines(SVM) Xiao, 2021
and Random Forests (RF)Hamad et al., 2020b.
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The definition of traffic incident duration phases is provided in the Highway Capacity Manual
Alkaabi, Dissanayake, and Bird, 2011 and includes the following time-intervals: 1) incident detection -
the time interval between the incident occurrence and its reporting, 2) incident response - time between
the incident reporting and the arrival of the response team, 3) incident clearance time between the
arrival of the response team and the clearance of the incident, 4) incident recovery - the time between
the clearance of the incident and the return of traffic state to normal conditions. In this research, we
rely on total incident duration - the time between incident occurrence and return of the state to normal
conditions. Also, we analyse the subset of traffic incidents - traffic accidents. As we found during
the data investigation, traffic accident duration is reported at the time when the incident is cleared
by the response team, which doesn’t include the duration of the effect that the accident produces on
traffic flow. Traffic incident duration prediction studies rely on incident reports without emphasizing
on the duration of observed incident effects. In this research we try to solve this issue by proposing
the methodology for disruption segmentation from traffic speed.

Analysis of the effect of traffic incidents has been performed previously using Caltrans PeMS
data, where the measure of incident impact was represented as a cumulative travel time delay Miller
and Gupta, 2012, which is an aggregated value. However, traffic state recovery from disruptions is
not necessarily following a single pattern - it may be slowly dissipating, we may observe secondary
crashes, it may have a high or low impact, etc. Traffic accident duration prediction methodology
relies on reported traffic accidents, but actual reports may contain user-input errors and be misaligned
with the actual shape of disruption produced by the accident. Therefore, the approach for disruption
segmentation may provide the accident duration estimated from the actual shape of disruption in traffic
flow.

6.3 Methodology

The new proposed framework is represented in Figure 6.1 which we support across some initial defi-
nitions for our modeling approach (see next sub-section). First, we associate the road segments with
their corresponding Vehicle Detector Stations (VDS) from the Caltrans PeMS data set, as well with
the locations of reported accidents (see Algorithms 1 and 2 proposed in sub-section 6.3.4). The main
outcome of this algorithm is that traffic accidents will get associated with the traffic flow, speed and
occupancy readings from the VDS stations.

Second, we propose a new algorithm for early disruption detection and segmentation, detailed in
sub-section 6.3.5. By detecting disruptions that occurred in time-space proximity of reported traffic
accidents, we obtain the estimated traffic accident duration. This gives us much more information to
include in the model training than just the simple accident duration: 1) the disruption shape in terms
of modifications of speed data profiles from the standard patterns 2) the accident duration estimated
from the impact on the traffic speed 3) the cumulative accident impact estimation.

6.3.1 Case study

Before diving into the methodology, we provide a brief introduction into the data sets in use for show-
casing our approach, which helps establishing the modelling base and understanding of the steps taken.
We make the observation that the current methodology can be applied on any incident and traffic state
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data set which can contain a time component, and is not bounded to the chosen data sets for exempli-
fication.

CTADS: Accident reports data set

We rely on accident reports from the "Countrywide Traffic Accident Dataset" (CTADS), recently
released in 2021 Moosavi et al., 2019a; Moosavi et al., 2019b, which contains 1.5 million accident
reports collected for almost 4.5 years since March 2016, each report containing 49 features obtained
from MapQuest and Bing services. We select the area of San-Francisco, U.S.A and extract data for
9,275 accidents (see Figure 6.2).

FIGURE 6.2: CTADS reported accidents for San-Francisco

PeMS: Traffic speed and flow data set

We rely on Caltrans Performance Measurement System (PeMS) Chen et al., 2001 to collect data on
traffic flow and speed. This data set provides aggregated 5-minute measurements of traffic flow, speed
and occupancy across California. We decided to extract the data for the area of San-Francisco (see
Figure 6.3a), which contains 83 Vehicle Detection Stations (VDS) placed in that area (see 6.3b), and
we try to associate each traffic accident occurred with each of San-Francisco VDS in their 500m
proximity using the algorithm detailed in the following section. In total, from 9,275 accidents in the
area (extracted from CTADS) we have obtained 1,932 traffic incident reports which we were able to
associate with the correct and complete traffic flow and speed readings from a VDS.

6.3.2 Speed difference estimation definitions

In the current study we compare the performance of multiple difference metrics that will help us to
correctly estimate the impact of an accident and the deviation from the historical speed patterns. These
metrics are defined as follows:

a) The Chebyshev difference is a measure of the maximum difference between corresponding
elements of two one-dimensional vectors 𝑢 and 𝑣 and is expressed as:

𝐷Cheb(𝑢, 𝑣) ∶= ∫ max
𝑖
(|𝑢𝑖 − 𝑣𝑖|) (6.1)
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FIGURE 6.3: 1) PeMS data set area coverage for San-Francisco (the map is available
at https://pems.dot.ca.gov/) 2) Mapping of the Vehicle Detection Stations from
PeMS data set. OpenStreetMap excerpt showing San Francisco. Available at:https:

//www.openstreetmap.org/#map=12/37.7612/-122.4395

The metric that best captures the concept of similarity in relation to the application at hand should
be considered optimal, regardless of the model used for classification or regression. This hypothesis
has been tested and validated across nine datasets and five prediction models François, Wertz, and Ver-
leysen, 2011. This Chebyshev metric, commonly used in data analysis, has been found to outperform
other metrics on a variety of tasks.

b) The Wasserstein difference, also known as the earth mover’s distance, is a measure of the min-
imum "work" required to transform one probability distribution 𝑢 into another 𝑣. It is expressed as:

𝐷WD(𝑢, 𝑣) = inf
𝜋∈Γ(𝑢,𝑣)∫R×R

|𝑥− 𝑦|d𝜋(𝑥, 𝑦) (6.2)

This metric was introduced by Leonid Kantorovich in 1942 kantorovich1942translocation and
has found applications in fields such as computer vision, image processing, and natural language pro-
cessing.

c) The cosine difference, also known as the cosine similarity, is a measure of the similarity between
two one-dimensional vectors 𝑢 and 𝑣. It is expressed as:

𝐷C(𝑢, 𝑣) =
𝑢 ⋅ 𝑣

|𝑢|2|𝑣|2
. (6.3)

This metric is commonly used in information retrieval and has also found applications in recom-
mender systems and document clustering salton1988term.

d) The Euclidean difference is a measure of the distance between two one-dimensional arrays 𝑢
and 𝑣 in a Euclidean space. It is expressed as:

𝐷E(𝑢, 𝑣) =
(

∑

(𝑤𝑖|(𝑢𝑖 − 𝑣𝑖)|2)
)1∕2 (6.4)

https://pems.dot.ca.gov/
https://www.openstreetmap.org/#map=12/37.7612/-122.4395
https://www.openstreetmap.org/#map=12/37.7612/-122.4395
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This metric is commonly used in fields such as machine learning, computer vision, and signal
processing.

e) The Minkowski difference is a generalization of the Euclidean difference and is a measure of
the distance between two one-dimensional arrays 𝑢 and 𝑣 in a Minkowski space. It is expressed as:

𝐷M(𝑢, 𝑣) = (
∑

|𝑢𝑖 − 𝑣𝑖|
𝑝)1∕𝑝.

(

∑

𝑤𝑖(|(𝑢𝑖 − 𝑣𝑖)|𝑝)
)1∕𝑝

. (6.5)

This metric is a generalization of other distance metrics, such as the Manhattan distance (when
𝑝 = 1) and the Euclidean distance (when 𝑝 = 2), and is commonly used in fields such as physics,
engineering, and data science minkowski1909geometrie.

f) The Bray-Curtis difference metric bray1957ordination between two vectors 𝐮 and 𝐯 is given
by:

𝐷BC(𝐮, 𝐯) =
∑𝑛

𝑖=1 |𝑢𝑖 − 𝑣𝑖|
∑𝑛

𝑖=1(𝑢𝑖 + 𝑣𝑖)
, (6.6)

where 𝑛 is the number of dimensions in the vectors.
g) The Canberra difference metric ivankovic2006comparison between two vectors 𝐮 and 𝐯 is

given by:

𝐷Can(𝐮, 𝐯) =
𝑛
∑

𝑖=1

|𝑢𝑖 − 𝑣𝑖|
|𝑢𝑖|+ |𝑣𝑖|

, (6.7)

where 𝑛 is the number of dimensions in the vectors.

6.3.3 Accident duration prediction task definitions

Using all available data sets and the incident information, we first denote the matrix of traffic incident
features as:

𝑋 = [𝑥𝑖𝑗]
𝑗=1..𝑁𝑓
𝑖=1..𝑁𝑖

(6.8)

where 𝑁𝑖 is the total number of traffic incident records used in our modelling and 𝑁𝑓 is the total
number of features characterising the incident (accident severity, vehicles involved, number of lanes,
etc) according to the accident report data set.

Traffic Speed represented as a vector with 5-minute averaged readings from Vehicle Detector Sta-
tions:

𝑆 = [𝑠𝑖]𝑖=1..𝑁 (6.9)

where 𝑁 is the total amount of traffic speed readings.
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Within this research we assess the performance of Machine Learning models on tasks of predicting
reported and estimated accident duration. We define the task of accident duration prediction as a
regression problem.

The incident duration regression vector (𝑌𝑟) is represented as:

𝑌𝑟 = [𝑦𝑟𝑖 ]𝑖∈1..𝑁 , 𝑦𝑟𝑖 ∈ N (6.10)

and the regression task is to predict the traffic accident duration 𝑦𝑟𝑖 based on the traffic incident features
𝑥𝑖,𝑗 . The regression models go via an 10-fold cross-validation procedure with hyper-parameter tuning.

The estimate the accident duration prediction performance we use the root mean squared error
(RMSE):

𝑅𝑀𝑆𝐸 =

√

√

√

√

1
𝑛

𝑛
∑

𝑖=1
(𝐴𝑡 − 𝐹𝑡)2 (6.11)

where 𝐴𝑡 - actual value, 𝐹𝑡 - predicted value.

6.3.4 Algorithm for vehicle detector station to accident association

In order to match correctly what traffic conditions reflect best the effects of each incident, we further
define the association procedure between traffic accidents and VDS (Accident-to-VDS), for the San
Francisco area. We observe that only a few traffic accidents have VDS stations in their proximity to
allow a good traffic speed and flow extraction, as shown in Figures 6.2 and 6.3.

In order to find the traffic incidents for which we can have traffic flow and speed data, we develop
a mapping algorithm (Accident-to-VDS) which consists of two parts (see Algorithm 2-3), defined by
the following steps:

1. We extract primary and secondary road lines from Open Street Map.
2. Road segments are then transformed into points at 2-meters equal distance.
3. Each VDS station and accident are mapped to the closest road point (up to 10m distance).
4. From this step we use the following algorithm to process the point-based representation of VDS,

accidents and road segments (see Algorithm 2). The vdsPoints array contains tuple of form
(VDS ID, x and y coordinates), each point in accidentPoints contains an array visitedBy (ini-
tialized to be empty) to maintain a list of stations in proximity of the accident and assignedVDS
as a resulting nearest VDS station to the accident along the road.

The algorithm relies on a recursive function to implement the process of visiting road points (see
Algorithm 3). The association part of the algorithm works as follows:

1. We select the current VDS station.
2. We move (jump by points) in all possible directions available from the starting and forthcoming

points in a 3m radius. This radius allows us to move along the road jumping between road points.
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Algorithm 2: Accident-to-VDS: Accident to VDS mapping algorithm
Input: 𝑝𝑜𝑖𝑛𝑡
Output: 𝑁𝑜𝑛𝑒
Access global arrays: 𝑟𝑜𝑎𝑑𝑃𝑜𝑖𝑛𝑡𝑠, 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑃 𝑜𝑖𝑛𝑡𝑠, 𝑣𝑑𝑠𝑃 𝑜𝑖𝑛𝑡𝑠
Function 𝑣𝑖𝑠𝑖𝑡𝑁𝑒𝑎𝑟𝑒𝑠𝑡𝑃 𝑜𝑖𝑛𝑡𝑠(𝑉 𝐷𝑆𝐼𝐷, 𝑝𝑜𝑖𝑛𝑡, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐻𝑜𝑝𝑠)
𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑠 ∶= 𝑓𝑖𝑛𝑑𝑁𝑒𝑎𝑟𝑒𝑠𝑡𝐴𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑠(𝑝𝑜𝑖𝑛𝑡, 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑃 𝑜𝑖𝑛𝑡𝑠, 10𝑚)
for 𝑖 = 0 to 𝑙𝑒𝑛𝑔𝑡ℎ(𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑠) do

𝑎 ∶= 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑠[𝑖]
𝑎.𝑣𝑖𝑠𝑖𝑡𝑒𝑑𝐵𝑦.𝑎𝑝𝑝𝑒𝑛𝑑([𝑉 𝐷𝑆𝐼𝐷, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡ℎ𝑜𝑝𝑠]) ; //Recording visits from stations to
internal accident list

end
if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡ℎ𝑜𝑝𝑠 < 500∕2 then

; //Limiting the travel distance from VDS
roadpoints:=findNearestRoadPoints(point, roadPoints, 3m) for 𝑖 = 0 to 𝑙𝑒𝑛𝑔𝑡ℎ(𝑟𝑜𝑎𝑑𝑝𝑜𝑖𝑛𝑡𝑠) do

𝑟𝑝 ∶= 𝑟𝑜𝑎𝑑𝑝𝑜𝑖𝑛𝑡𝑠[𝑖]
if 𝑉 𝐷𝑆𝐼𝐷 not in 𝑟𝑝.𝑣𝑖𝑠𝑖𝑡𝑒𝑑𝐵𝑦 then

; //Preventing the infinite recursion
𝑟𝑝.𝑣𝑖𝑠𝑖𝑡𝑒𝑑𝐵𝑦.𝑎𝑝𝑝𝑒𝑛𝑑(𝑉 𝐷𝑆𝐼𝐷) 𝑣𝑖𝑠𝑖𝑡𝑁𝑒𝑎𝑟𝑒𝑠𝑡𝑃 𝑜𝑖𝑛𝑡𝑠(𝑝𝑜𝑖𝑛𝑡, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐻𝑜𝑝𝑠+ 1)

end
end

else
Return

end

Movement in all possible directions allows to grasp the propagation of the traffic congestion
associated with the accident. The maximum available distance is set to 500m (250 jumps) and
allows to limit the observable impact distance.

3. By moving across points we collect traffic incidents in the 5m proximity of each point and
associate them with the current VDS station.

Algorithm 3: The recursive function for traveling across road points
Input: 𝑟𝑜𝑎𝑑𝑃𝑜𝑖𝑛𝑡𝑠, 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑃 𝑜𝑖𝑛𝑡𝑠, 𝑣𝑑𝑠𝑃 𝑜𝑖𝑛𝑡𝑠
Output: 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝐴𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑠
for 𝑖 ∶= 0 to 𝑙𝑒𝑛𝑔𝑡ℎ(𝑣𝑑𝑠𝑃 𝑜𝑖𝑛𝑡𝑠) do

vds: = vdsPoints[i]
visitNearestPoints(vds, 0)

end
𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝐴𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑠 = []
for 𝑖 ∶= 0 to 𝑙𝑒𝑛𝑔𝑡ℎ(𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑃 𝑜𝑖𝑛𝑡𝑠) do

𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡 ∶= 𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑃 𝑜𝑖𝑛𝑡𝑠[𝑖]
if 𝑙𝑒𝑛𝑔𝑡ℎ(𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡.𝑣𝑖𝑠𝑖𝑡𝑒𝑑𝐵𝑦) > 0 then

𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡.𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝑉 𝐷𝑆 = 𝑠𝑜𝑟𝑡(𝑎𝑐𝑐𝑖𝑑𝑒𝑡𝑛.𝑣𝑖𝑠𝑖𝑡𝑒𝑑𝐵𝑦, 𝑠𝑜𝑟𝑡𝑣𝑎𝑙𝑢𝑒 = ℎ𝑜𝑝𝑠)[0] ; //Choosing
closes VDS station

𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝐴𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑠.𝑎𝑝𝑝𝑒𝑛𝑑(𝑎𝑐𝑐𝑖𝑑𝑒𝑛𝑡)
end

end
return 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑𝐴𝑐𝑐𝑑𝑒𝑛𝑡𝑠

The algorithm is recursive and relies on the list of visited points for each VDS. At the end of
the algorithm, we have a subset of traffic accidents with their associated VDS which allows us to
extract the traffic flow and speed in the vicinity of the accident. Ideally, all traffic accidents should
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have associated traffic flow but given their unavailability (due to detector coverage), we select accident
reports which have associated traffic flow information currently available from the PeMS data set.

6.3.5 Algorithm for automated disruption segmentation (ADS)

Once the accidents have been mapped and associated to their VDS stations which allows us to select the
flow/speed that match the day of the incident, etc, we are using the extracted traffic state parameters to
propose a new automated disruption segmentation (ADS) method. The algorithm for the segmentation
of disruptions via traffic speed works as follows:

1. A time series pre-processing step prepares all the data for segmentation (see Alg. 4):
(a) Calculate the average monthly profile for daily traffic speed measurements;
(b) Iterate over the traffic speed time series using a moving window of 1-hour time interval

(in total there are twelve measurements of 5-minute each)
(c) On each iteration perform a comparison of a 12-unit window between the monthly profile

and the current day of measurements. The resulting single value is added to the resulting
time series sequence.

(d) Calculated the time series differences (TS) choosing the above defined metrics will be then
adjusted by selectivity (using the power function, which will keep values closer to one for
the least affected by the function and minor values the most suppressed) and normalized
to produce nTS and pTS arrays respectively.

2. The time-series segmentation step (see Algorithm 5):
(a) A first order derivative (dTS) is calculated for the resulting time series of the previous

stage (nTS), which returns positive peaks when entering the disruption and negative peaks
when exiting the disruption state.

(b) We iteration over resulting derivative time series to record the opening and closing of
each disruption in each time series. If two consecutive positive peaks (opening times) are
observed then we choose the largest one between the two (we will further debate on this
aspect in our future work plans). We repeat the same for consecutive negative peaks.

(c) We then associate the detected disruptions with the accident reports: for each accident
report, we extract the traffic speed time series on the day of the accident and if both opening
and closing times are recorded, we perform an association of the accident with these times
and extract the actual time series sequence for further analysis.

Enhancing selectivity: We use the convolution with the kernel (1,1,1), which attributes to the
morphological dilation operation, to facilitate the work of the segmentation algorithm. By applying
this convolution we make multiple consequent differences to be accumulated ; for example, assuming
we have a sequence of 0.3, 0.1, 0.1, 0.2 and 0.2 as differences for each 5-minute step, therefore a total
of 0.9 change over 4 iterations. The convolution (1, 1, 1) will produce the values of 0.5, 0.4, and 0.5 by
making a sequence of high values from the sequence of small changes (see Figure 6.4). The dilation
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FIGURE 6.4: The application of dilation operation to an image and time series

operation is primarily used in computer vision tasks to make connected groups from closely placed
scattered points to facilitate a further image analysis.

To obtain the monthly profile, the traffic speed measurement sequence was obtained for a duration
of 1 month from the VDS before the accident occurred, and was done separately for each accident.
This sequence then gets reshaped into a matrix of the form [𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑑𝑎𝑦𝑠; 288], where columns
contain the total number of measurements across an entire day (24*12=288). The monthly average
was then calculated across axis 1 (number of days) to obtain a vector with 288 values of measurements.
This vector gets recalculated for a number of days of observations from each detector to be comparable
with the VDS daily measurements.

Algorithm 4: Algorithm for automated disruption segmentation. Part 1
Input: 𝑚𝑜𝑛𝑡ℎ𝑙𝑦𝑃 𝑟𝑜𝑓𝑖𝑙𝑒, 𝑠𝑝𝑒𝑒𝑑𝑅𝑒𝑎𝑑𝑖𝑛𝑔𝑠, 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦, 𝑠ℎ𝑖𝑓 𝑡
Output: 𝑐𝑇𝑆
; //Accidents array contains a day number, starting and ending index for segmented
traffic disruptions

𝑠𝑡𝑒𝑝 ∶= 1
𝑤𝑖𝑛𝑑𝑜𝑤𝑠𝑖𝑧𝑒 ∶= 12
𝑖 ∶= 𝑤𝑖𝑛𝑑𝑜𝑤𝑠𝑖𝑧𝑒
𝑙𝑎𝑠𝑡𝐷𝑖𝑓𝑓 = 0
𝐷𝑆 = []
while 𝑖 < 𝑙𝑒𝑛𝑔𝑡ℎ(𝑠𝑝𝑒𝑒𝑑𝑅𝑒𝑎𝑑𝑖𝑛𝑔𝑠) do

𝐴 ∶= 𝑠𝑝𝑒𝑒𝑑𝑅𝑒𝑎𝑑𝑖𝑛𝑔𝑠[𝑖−𝑤𝑖𝑛𝑑𝑜𝑤𝑠𝑖𝑧𝑒 ∶ 𝑖] ; //Look-back window of readings
𝐵 ∶= 𝑚𝑜𝑛𝑡ℎ𝑙𝑦𝑃 𝑟𝑜𝑓𝑖𝑙𝑒[𝑖−𝑤𝑖𝑛𝑑𝑜𝑤𝑠𝑖𝑧𝑒 ∶ 𝑖]
𝑑𝑖𝑓𝑓 ∶= 𝑚𝑒𝑡𝑟𝑖𝑐(𝐴,𝐵)
𝐷𝑆.𝑎𝑝𝑝𝑒𝑛𝑑(𝑑𝑖𝑓𝑓 )
𝑙𝑎𝑠𝑡𝐷𝑖𝑓𝑓 = 𝑑𝑖𝑓𝑓

end
for 𝑖 = 0 to windowsize do

; //Padding array with the latest observed value to obtain full-day readings
𝐷𝑆.𝑎𝑝𝑝𝑒𝑛𝑑(𝑙𝑎𝑠𝑡𝐷𝑖𝑓𝑓 )

end
𝑝𝑇𝑆 = 𝑝𝑜𝑤𝑒𝑟(𝑇𝑆, 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦) ; //The use of power function to improve selectivity of
significant disruptions

𝑛𝑇𝑆 = 𝑐𝑦𝑐𝑙𝑖𝑐𝑠ℎ𝑖𝑓𝑡(𝑠ℎ𝑖𝑓 𝑡) ; //The use of cyclic shift operation
𝑛𝑇𝑆 = 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝑝𝑇𝑆)
𝑑𝑇𝑆 = 𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒(𝑛𝑇𝑆) ; //First order derivative allows to decompose metric results
into positive and negative change to the disruption amount

𝑐𝑇𝑆 = 𝑐𝑜𝑛𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛(𝑑𝑇𝑆, [1, 1, 1])
return 𝑐𝑇𝑆

As an observation, the constants pThreshold and nThreshold represent thresholds for change that
observed in the time series of the metric derivative; they allow us to define a positive and negative
change of the difference metric, the selectivity defines power function coefficient to suppress the non-
significant and filter the most significant disruptions.
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Algorithm 5: Algorithm for automated disruption segmentation. Part 2
Input: 𝑐𝑇𝑆, 𝑝𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 𝑛𝑇 ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦
Output: 𝐴𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑠
; //Accidents array contains a day number, starting and ending index for segmented
traffic disruptions

𝑠𝑡𝑎𝑡𝑒 ∶= 0
𝐴𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑠 = []
for 𝑖 ∶= 0 to 𝑙𝑒𝑛𝑔𝑡ℎ(𝑐𝑇𝑆 do

if 𝑐𝑇𝑆[𝑖] > 𝑝𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
; //Significant positive peak identifies the start of disruption
if 𝑠𝑡𝑎𝑡𝑒 <> +1 then

𝑠𝑡𝑎𝑡𝑒 = +1
𝑒𝑛𝑡𝑒𝑟𝑖𝑑𝑥 = 𝑖

else
if 𝑐𝑇𝑆[𝑖] > 𝑐𝑇𝑆[𝑒𝑛𝑡𝑒𝑟𝑖𝑑𝑥] then 𝑒𝑛𝑡𝑒𝑟𝑖𝑑𝑥 = 𝑖;
; //Choosing the largest change from previously observed

end
end
if 𝑐𝑇𝑆[𝑖] < 𝑛𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then

; //Significant negative peak identifies the end of disruption
if 𝑠𝑡𝑎𝑡𝑒 <> −1 then

𝑠𝑡𝑎𝑡𝑒 = −1 𝑒𝑥𝑖𝑡𝑖𝑑𝑥 = 𝑖
else

if 𝑐𝑇𝑆[𝑖] < 𝑐𝑇𝑆[𝑒𝑛𝑡𝑒𝑟𝑖𝑑𝑥] then 𝑒𝑥𝑖𝑡𝑖𝑑𝑥 = 𝑖;
end

end
if 𝑖 𝑚𝑜𝑑 288 == 0 𝑎𝑛𝑑 𝑖 > 0 then

; //Reset segmentation procedure at the end of each day
𝑠𝑡𝑎𝑡𝑒 = 0
𝐴𝑐𝑐𝑖𝑑𝑒𝑛𝑡.𝑎𝑝𝑝𝑒𝑛𝑑([𝑖 𝑑𝑖𝑣 288, 𝑒𝑛𝑡𝑒𝑟𝑖𝑑𝑥, 𝑒𝑥𝑖𝑡𝑖𝑑𝑥])

end
end
return 𝐴𝑐𝑐𝑖𝑑𝑒𝑛𝑡𝑠

6.3.6 Modification of the algorithm for automated real-time early disruption detection

Since our proposed algorithm doesn’t look into the future and calculates different metrics based on
the currently observed traffic speed and a few measurements in the past (11 units in the current study,
equivalent to 55 minutes from the past), we can perform an early accident detection which will consist
in calculating and comparing the first-order differential (FOD) of Chebyshev metric based on the
monthly profile. The detection of significant positive peaks (e.g. 0.3-0.5 of normalized difference
metric) can identify the amount of disruption in real-time. The end of the disruption can be detected
using the same approach in real-time as well by observing a significant negative peak.

6.4 Results

6.4.1 Data exploration and setup

CTADS data set contains traffic accident reports, which after an initial data mining investigation, we
found to contain several user-input errors; for example, a lot of traffic accident durations have been
rounded to 30 or 360 minutes (see Fig. 6.5d)); or the incident start time which was reported is unrelated
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to any disruptions observed by the vehicle detector stations in the proximity - see Figure 6.5 in which
we have provided two different examples of speed recorded during two different accidents A-5198 and
A-4490; the red lines indicate the official reported start and end time of the accidents, while in reality
the accidents have had a long lag in spreading across the network - see Fig. 6.5a) or were reported
much later that the official speed drop was recorded - see Fig. 6.5b).

At this step we observed a significant amount of user-input errors in accident reports, which affect
the accident duration/impact analysis: 1) accidents can be reported earlier or later than its occurrence
(observable disruption misalignment in time) 2) a report can be filled with "placeholder" duration
values not representing the actual accident duration 3) there may be no observable disruption in traffic
speed despite the accident report (due to placement and management of the accident) (false positive)
4) there may be accident-related traffic disruptions not grasped by accident reports (false negative).
Therefore, incorrect accident start time, duration and end time, unreported presence or abscence of
disruption make it necessary to estimate accident duration characteristics from traffic state data instead
of relying on user reports. In this paper our proposed methodology is really meant to solve the user-
reporting issues related to traffic accidents and to be applied automatically on any data set, regardless
of its nature or geo-location.

The use of PeMS data set allows to estimate the impact of accidents on the traffic states (flow,
speed). For our scenarios, we choose the area of San-Francisco with accidents recorded from 2016
to 2020 in the CTADS data set. We then obtain Vehicle Detector Station locations from PeMS, the
road network shape from OpenStreetMap and we perform an association of CTADS accident reports
with VDS stations along the road within 500m proximity. We then try to segment the disruption time
interval occurred on the day of an accident. Further, we associate observed disruptions in the traffic
speed series with actual accident reports. The purpose of this step is to reduce user-input errors in
accident reports and to enhance the modelling of traffic disruptions with an analysis of traffic speed.

6.4.2 Metric performance comparison

We apply the difference metrics detailed earlier in Section 6.3 to a monthly traffic speed/flow profile
(monthly readings averaged to one day) and reading on the day of the traffic accident. There are two
approaches to applying the difference calculation: 1) a global difference - when we try to find the
difference between the monthly profile and traffic flow/speed readings on the day of the accident; the
global approach is too broad and will not allow the actual comparison between disruptions localized
in time (metric results can be very similar between the very long subtle disruption and abrupt but
impactful one). We measure the amount of difference that occurred within a moving time window
(we choose twelve 5-minute time intervals equivalent to one hour). Traffic speed/flow readings from
the moving window are taken right before the currently observed value to ensure that the difference
estimation algorithm is not looking into the future.

To compare the metric performances we provide an example of speed readings from one of the
detector stations. Each difference metric demonstrates its specifics as represented in Figure 6.6: 1)
the Chebyshev metric, which we define as the maximum difference between the monthly profile and
the observed readings, produces a noticeably rectangular shape and demonstrates a higher selectivity
towards major disruptions than other metrics; the Chebyshev metric will be further used for the auto-
mated accident segmentation; 2) the use of Cosine metric allows to detect the change in the traffic state
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FIGURE 6.5: User input errors located within the CTADS data set

- speed decrease and increase both represented as positive peak values, 3) the Wasserstein difference
allows for smooth representation of the amount of disruption (conceptually, it measures the amount
of work necessary to change one shape into another, which we can rephrase as the amount of work
produced by an accident to deviate the traffic state from the normal operation), 4) the Minkowsky,
Euclidean and Manhattan difference metrics show little to no difference to the Wesserstein distance;
we choose to use the Wasserstein difference since its connection to physical interpretation.

Examples of applying our proposed algorithm are presented on Figure 6.7. The ’Disruption Start’
and ’Disruption End’, which are represented as dashed blue and red vertical lines correspondingly
show a reported accident timeline. The ’Day’ (blue line) represents the traffic speed on the day of the
incident and ’Profile’ shows the average speed for every 5-minute interval across 14 days of measure-
ments. Application of the ’Wasserstein distance (WD)’ shows a gradual measurement of the observed
disruption, while the ’Chebyshev’ metric shows the nearly rectangular outline of a time interval where
disruption is observed. This ’rectangular’ result of the ’Chebyshev’ metric was the main consideration
for the development of the presented algorithm. One of the main observations from the figures as well
as from the procedure of manual markup was that accidents were primarily reported 1-2 hours after
the return of traffic state to normal conditions (which we define as the end of disruption). Other obser-
vation is that accident timeline is often misreported as a ’rounded’ value of either 30 or 360 minutes.
Application of both metrics shows a clear outline of disruption shape observed in traffic speed.
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FIGURE 6.6: Various metrics applied to difference between recorded speed and speed
profile
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FIGURE 6.7: Results disruption segmentation algorithm application for accidents a)
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6.4.3 Combination of our proposed methodology with modern methods for accident
scene segmentation

Image segmentation methods can be utilized to output a degree to which an accident is observed
in an image zhang2021exploring, ultimately helping to create an accident timeline. By leveraging
the power of semantic segmentation, the method can quantify the extent of the accident by assign-
ing scores or probabilities to different elements within the scene. Here’s how this can be done: 1)
Accident-related object detection (Spatial analysis): Semantic segmentation can identify accident-
related objects in the scene, such as damaged vehicles, debris, or injured pedestrians; by calculating
the proportion of these objects within the segmented image, it is possible to assign a degree or score
that represents the severity or extent of the accident at that specific moment, 2) Temporal analysis: by
analyzing the segmented images over time, we can track changes in the accident scene, such as the
motion of vehicles or the appearance of new accident-related elements. This enables the creation of
a timeline that reflects the progression of the accident and the associated changes in the severity or
extent of the event, 3) Probability-based analysis: advanced segmentation methods can output proba-
bility maps that indicate the likelihood of each pixel belonging to a specific class or label; by analyzing
these probability maps, it is possible to compute a score that represents the degree of accident occur-
rence within the scene over the timeline, 4) Accident phase classification: The degree to which an
accident is observed can also be used to classify distinct phases of the accident, such as pre-collision,
impact, and post-collision. By evaluating the changes in accident-related object proportions or scores
over time, the segmentation method can identify critical moments or transitions between different ac-
cident phases. This information can be used to construct a detailed accident timeline that highlights
the key events and their corresponding degrees of severity.

There is potential to connect our proposed methodology with accident scene segmentation research
approaches to create a more comprehensive and accurate framework for analyzing traffic accidents
and predicting disruption durations. Here’s how the two research approaches can be integrated: 1)
Improved incident duration prediction: The segmentation output from the first research can be used as
input for the early detection and disruption segmentation algorithm in the second research. This would
allow for a more accurate identification of critical moments in the accident timeline and better pre-
diction of incident durations, 2) Integration of mathematical metrics: the Wasserstein and Chebyshev
metrics proposed in the second research can be used to refine the segmentation results obtained from
the accident scene segmentation over timeline. This would help to improve the performance of the
accident scene segmentation and contribute to a more accurate incident duration prediction, 3) Joint
machine learning model: The speed disruption segmentation from our research can be combined with
the semantic segmentation methods to create a joint machine learning model. This integrated model
could leverage both the event-driven dynamic context and the mathematical metrics for segmentation
to improve its predictions for incident duration and severity. By connecting these two research ap-
proaches, a more comprehensive framework for analyzing traffic accidents and predicting disruption
durations can be developed. This integrated approach would benefit from the strengths of both meth-
ods, enabling more accurate and reliable predictions for incident durations. Ultimately, this could lead
to improvements in road safety, emergency response, and traffic management.

In conclusion, image segmentation methods can be employed to not only segment the accident
scene but also to quantify the degree to which an accident is observed in an image. This information
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can be used to create an accident timeline that reflects the progression of the accident, the severity
of the event, and the critical moments when interventions or safety measures could have been taken.
This approach in combination with our proposed disruption segmentation method can potentially con-
tribute to better accident analysis, road safety improvements, and more effective emergency response
strategies.

6.4.4 Automated disruption segmentation results

Figure 6.7 presents the results obtained from our algorithm for the automated disruption segmenta-
tion. The segmentation line (dotted blue) represents the estimated disruption intervals represented as
0 and 1 to perform our visualisation investigation better. Figure 6.7a) shows that there may be multi-
ple observed disruptions in a 300*5=1500 time interval. Due to errors in accident reports regarding
the starting time and the duration of the accident, it is non-trivial to determine which disruption is
associated with the accident. The situation may be easier in the case when only one disruption is
observed during the day. According to our algorithm, we select the largest disruption on the day the
accident was reported. Figures 6.7b) and 6.7c) highlight additional specific situations which need to
be considered: 1) higher traffic speed at the end of the day than observed from the monthly profile, 2)
unstable traffic speed approaching normal traffic conditions with high frequency, 3) slight misalign-
ment of disruption intervals with the visually observed disruption intervals. All these problems can be
addressed by using manual segmentation with deployment of Deep Learning models since there are
advanced computer vision methods proposed in recent years (e.g. autoencoders for segmentation).

6.4.5 Comparison of estimated, reported and manual markup of accident durations

There is a significant difference between the estimated and the reported accident durations that we
would like to highlight: 1) the reported accident durations contain a large amount of 30 and 360 min-
utes duration values (nearly 40% of data - see Figure 6.8a)) while the estimated accident durations
using our approach have an average duration of 58 minutes, while the reported is 108 minutes (which
is by assumption skewed due to 360 placeholder values), 3) the estimated accident durations are dis-
tributed between 90 and 355 minutes (0.10 and 0.90 quantiles correspondingly) (see 6.9b)), while the
reported durations are distributed between 29 and 360 minutes (see 6.9a) and manually detected dis-
ruptions distributed between 75 and 440 minutes), which highlights that disruptions observed from
traffic speed are much shorter than reported in the original data set, 4) There is no noticeable correla-
tion between observed and reported durations with high amount of horizontal anomalies in reported
accident durations (see Figure 6.9). Traffic accident duration is most common to follow log-normal or
log-logistic distribution Li, Pereira, and Ben-Akiva, 2018a and on resulting plots, we see that accident
reports are found to represent log-normal distribution to less extent than manual markup or estimated
accident duration.

To perform the ablation study, we perform a manual markup of disruptions observed in traffic
speed for 800 accidents, which will be discussed in the corresponding section.
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FIGURE 6.8: Distribution of accident durations for a) estimated, b) reported accident
durations for the area of San Francisco, c) results of manual markup of disruptions
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FIGURE 6.9: Scatter plot for a) estimated and b) reported accident durations for the
area of San Francisco, c) results of manual markup of disruptions observed in traffic

speed

6.4.6 Extraction of disruption shapes

In previous subsections we applied a Chebyshev metric to perform segmentation of disruptions. To
analyse the disruption impact we apply the Wasserstein difference between monthly speed profile
and daily traffic speeds and extract the corresponding disruption intervals. Wasserstein difference,
originally named an Earth Mover distance, has an intuitive physical interpretation - the minimum
"cost" of altering one pile of earth into the other, which is assumed to be the amount of earth that needs
to be moved times the mean distance it has to be moved. In application to traffic state, it is the minimum
amount of work necessary to alter the traffic state to disrupted condition, or in other words - the amount
of disruption. We compare normalized metric values since every at every vehicle detector station there
is a different average traffic speed. As in our proposed algorithm, we use a 12-units moving window
(one hour) to estimate the Wasserstein difference between traffic speed measurements and provide
the plot for the first 40 segmented disruptions, which allows for shape analysis of traffic disruption
amount (see Figure 6.10): 1) We observe the similarity between multiple disruptions - they have a
‘hill’ shape, 2) there are secondary (double ‘hill’) and long-lasting disruptions. The observed shapes
can be defined through the parametric equation to perform the classification of disruption effects and
facilitate the prediction of disruption impact timeline since we observe that high-peak fast-ascending
disruptions have a probability to end sooner than slowly ascending ones. The analysis of the speed of
ascendance has potential to perform the early classification of disruptions, which is planned for further
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for segmented intervals

6.4.7 Accident duration prediction

We further compare a regression model prediction performance on the CTADS data set by using on
the training data set both our estimated versus the reported accident durations. We report results of a
10-fold cross-validation over 820 accident reports for which we performed a Vehicle Detector Station
association and manual markup of traffic disruptions from traffic speed for ablation study. Firstly, we
need to consider that the performance using reported durations from CTADS can be affected because
of the presence of user-input errors in the form of placeholder values. Secondly, the nature of estimated
accident durations is different since accident response teams usually report the end of the accident at
the moment they finished the accident clearence, without estimating the time for the traffic to return to a
normal condition, which would require additional presence, calculations and access to measurements.

We have further extended the current results by adding newtables with several machine learning
models on the task of predicting a target variable.

Table 6.1 shows the Mean Absolute Error (MAE) results. The model with the lowest MAE is
the CatBoost model, with an estimated MAE of 17.55, followed by the Ridge Regression with an
estimated MAE of 17.87. The highest MAE is reported by the Linear Regression model (76.76). The
CatBoost model outperforms all the other models by a significant margin, with the next best model
(Ridge Regression) having an estimated MAE that is only slightly lower.

Table 6.2 shows the Root Mean Squared Error (RMSE) results. Here, the CatBoost model also has
the lowest RMSE, with an estimated value of 22.55. The next best model is the Ridge Regression with
an estimated RMSE of 22.21. The highest RMSE is reported by the SVM model, with an estimated
value of 208.29. As with the MAE results, the CatBoost model outperforms all the other models by
a significant margin. All the methods use default parameters as they are presented in Scikit-learn
scikit-learn and corresponding modules.

When we are using accident reports to predict the estimated accident duration, we obtain a better
performance using the RMSE metric across all the regression models, which may be connected to the
lower amount of long accident durations than reported.

Overall, the CatBoost model consistently outperforms all the other models across all metrics.
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TABLE 6.1: Mean Absolute Error (MAE) Results

Model Reported Manual Estimated
KNN Kuang et al., 2019a 44.11 26.22 19.73
RandomForest Hamad et al., 2020b 26.52 21.89 17.21
XGBoost Chen and Guestrin, 2016 24.22 23.06 18.29
LinearRegression 76.76 24.12 17.82
LightGBM Ke et al., 2017 36.57 22.43 18.26
SVM Xiao, 2021 84.82 23.70 17.55
GBDT ye2009stochastic 26.50 22.37 17.46
CatBoost dorogush2018catboost 23.96 21.58 17.55
NeuralNetwork gallant1990perceptron 55.34 24.33 19.27
RidgeRegression mcdonald2009ridge 84.72 24.26 17.87
Target (Reported) (Manual) (Estimated)

TABLE 6.2: Root Mean Squared Error (RMSE) Results

Model Reported Manual Estimated
KNN Kuang et al., 2019a 142.97 35.27 24.45
Random_Forest Hamad et al., 2020b 93.73 29.94 21.79
XGBoost Chen and Guestrin, 2016 82.67 31.75 23.61
Linear_Regression 117.53 32.54 22.35
LightGBM Ke et al., 2017 99.77 30.55 23.58
SVM Xiao, 2021 208.29 34.23 23.66
GBDT ye2009stochastic 73.14 30.46 22.11
CatBoost dorogush2018catboost 73.05 29.64 22.55
Neural_Network gallant1990perceptron 124.21 33.38 23.18
Ridge_Regression mcdonald2009ridge 134.71 32.48 22.21
Target (Reported) (Manual) (Estimated)

6.5 Ablation study

In this paper, we propose using the F1 score to estimate the quality of time interval segmentation in
binary time series (see Figure 6.11) in which we provide two different examples of different stations
with both manual markups of the incidents - red markups- and our segmentation algorithms - blue
markups- that is more efficient at detecting multiple incidents throughout the 24h time period and not
only one single isolated event. The value on Y-axis shows a positive 1.0 value if the interval contains
the disruption. Examples are provided for Accidents with ID A-1024015 and A-1034382 from CTADS
data set.

Given a ground truth dataset with original reported accident duration, we perform a manual la-
belling of segments and obtain a set of predicted segments obtained from our automated segmentation
algorithm, we compute the precision and the recall of the algorithm, and then combine them into a
single F1 score.
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FIGURE 6.11: Manual markup and algorithm segmentation comparison. Time series
segments represented as binary values of 0 and 1.

F1-score is a popular metric used to evaluate the quality of binary classification models defined as
follows:

precision =
true positives

true positives + false positives
recall = true positives

true positives + false negatives
where true positives are the number of correctly classified positive instances, false positives are

the number of negative instances classified as positive, and false negatives are the number of positive
instances classified as negative.

F1-score is defined as the harmonic mean of precision and recall, given by:

F1-score = 2 ⋅
precision ⋅ recall
precision + recall

F1-score ranges from 0 to 1, with higher values indicating a better classification performance.
In the case where a time series is represented as a series of points with values of 1 for segmented

intervals and 0 for intervals with no segments, F1-score can be applied to estimate the quality of the
time interval segmentation.

To apply the F1-score, we need a ground truth dataset with manually labelled segments (and we
obtain this manual markup for 820 accidents), and a set of predicted segments obtained from our
automated segmentation algorithm. We can use these two sets to compute the precision and recall of
the segmentation algorithm, and then combine them into a single F1-score.
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Precision measures the proportion of true positives among all the predicted positives. In the con-
text of time interval segmentation, the precision measures the accuracy of the algorithm in detecting
the true segments. The Recall measures the proportion of true positives among all the actual positives.
In the context of time interval segmentation, the recall measures the completeness of the algorithm in
detecting all the true segments.

To apply the F1-score to estimate the quality of time interval segmentation, we can compute the
precision and recall for each segment, and then compute the overall F1-score as the weighted average
of precision and recall, weighted by the number of segments. This provides a single metric that reflects
the quality of the time interval segmentation.

As a result (see Figure 6.12), the official reported incident segmentation is found to be very off
(with a mean F1-score of 0.29 - Figure 6.12a)); next, the segmentation done by the algorithm while
selecting only the interval closest to the reported timeline yields the highest average F1-score of 0.51
- Figure 6.12c)) with a peak at 0.3; lastly, when considering multiple segmented incident intervals
detected from our algorithm, it produced a slightly lower F1 score of 0.47 - Figure 6.12b)), but more
evenly distributed. Overall, the algorithm performance that we propose in this paper yields a higher
precision in detecting disruptions from time series of traffic speeds than from the reported accident
timeline. The use of multiple segments produced by the algorithm can highlight multiple disruptions
while producing just a slight decrease in the quality of results. The error for multiple intervals seg-
mentation increases because more additional intervals are considered in the evaluation of the metric,
which may lay outside of originally marked intervals (see Figures 6.11 and 6.7).
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FIGURE 6.12: Histogram of F1-score against manual markup for a) reported accident
time interval and b) estimated segmentation when algorithm detecting multiple dis-
ruption intervals c) estimated segmentation for the single closest interval to reported

incident occurrence time

6.5.1 Parameter importance study

For our model, we have the following variables and their intervals of variation:
• gran: Granularity, an integer value controlling the level of detail (moving window size) in the

metric estimation function. In the provided search space, the range of gran is [2, 40] with a step
of 1. Default value is 12.
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• kernel_size: A list of float values used as weights in the dilation convolution operation. The
search space for the kernel is the size of the convolution [1, ... 4], float values primarily intended
to implement pre-processing operation for the day time-series. Default value is 3.

• selectivity: A float value between 0.01 and 4.0 that determines the power coefficient in post-
processing difference estimations Default value is 2.0.

• shift: An integer value between -32 and +32 that represents a cyclic shift of the resulting time
series to attribute to a shift in convolution operation and facilitate to overall adaptation to the
target segmentation. Default value is 0.

• threshold: A float value that serves as a threshold in the interval processing function, which
is used to perform the binarization of the normalized output array by disruption degree. In the
provided search space, the range of the search space for the threshold is [0.01, 0.99]. Default
value is 0.15.

At the begininning we perform a hyper-parameter search across all the mentioned parameters but
also include a search among metric list (Bray-Curtis, Canberra, Chebyshev, Manhattan, Correlation,
Cosine, Euclidean, Minkowski difference metrics) to determine the best performing difference metric
for our algorithm. By performing search across 3,000 iterations we then estimate the avrage f1 score
obtained when using each metric (see Figure 6.13). The Chebyshev metric yields higher f1 score than
other metrics, possibly due to the structure and interpretation of the metric: high difference between
maximum and minimum traffic speed measurements within a time window can indicate the presence
of the disruption.
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FIGURE 6.13: Connection between metric and F1 score

Our next step is to perform a hyper-parameter search for the Chebyshev difference metric only for
1,000 iterations. We obtained a significant improvement in the average f1 score for multiple interval
comparison - 0.62 (a significant improvement from 0.52). As can be seen from scatter plots (see
Figure 6.14), there are noticeable positive (kernel size vs f1 score), negative (binarization threshold vs
f1 score) and peaking trends (shift vs f1 score) observed in results. Optimal values for the binarization
threshold are located at lower values (between 0.01 and 0.4). Overall, the algorithm requires a positive
shift in the post-processing function, which contributes to a substantial increase from 0.52 to 0.62 in
f1 score when considering the positive shift of the resulting array.
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FIGURE 6.14: Scatter plots between model parameters and F1 score

We further provide a Correlation heatmap between algorithm parameters (see Figure 6.15) and the
resulting f1 score: 1) The highest Pearson correlation values are with variables threshold (-0.55), shift
(0.49), followed by selectivity (-0.32). There are no significant correlations between model parameters
themselves.

In conclusion, the hyper-parameter search led to the selection of the Chebyshev metric, which
demonstrated the highest average F1 score. Fine-tuning the disruption segmentation algorithm hyper-
parameters significantly improved the average F1 score. Trends and optimal parameter values were
identified, and the correlation heatmap showed that threshold, shift, and selectivity had the highest
Pearson correlation with the F1 score.

6.6 Conclusion

Our methodology aims to automatically detect, segment, and extract traffic disruptions and accidents
using distance metrics. This approach improves incident prediction accuracy across multiple machine
learning models and provides better fit to manual markup of observed traffic speed disruptions. By
obtaining the intervals and shapes of traffic disruptions, we can model the impact of accidents with
greater precision, using traffic state measurements rather than just reported parameters (duration, start
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time, etc). This approach provides more data on the accident and allows us to study accident impacts
in greater detail.

Relevance of this work can be summarized in following points: 1) Enhancement of Traffic
Management Systems: Integrate the proposed early detection and disruption segmentation algorithm
into existing traffic management systems to improve and automate incident detection and correspond-
ing data collection. This will help to minimize congestion and the overall impact of incidents on traffic
flow, 2) highlight of reporting errors to standardize data reporting: Establish standardized guidelines
and protocols for reporting traffic incidents, including the accurate reporting of the location, start and
end times, number of lanes affected, and other relevant details; this will ensure that data-driven models
can accurately predict incident severity and disruption length, 3) highlight the necessity of creating
of data standards policies across countries for collecting necessary traffic accident information, 4) de-
velopment of Incident Response Strategies by utilizing the improved incident prediction models to
develop data-driven incident response strategies, including the dynamic traffic rerouting and real-time
traffic guidance; this will help to mitigate the impact of traffic incidents on road users and reduce
the risk of secondary incidents; 5) Data Fusion for a better traffic accident analysis: due to observed
improvement in the quality of prediction arising from data fusion, traffic Authorities can consider
integrating data sets from private companies for jointly analysing traffic datasets of various types to
improve traffic safety by improving accuracy of traffic incident duration prediction.

Future research in this area: 1) Algorithm’s complexity can be expanded by incorporating cus-
tom kernels, which can be found using hyper-parameter search, 2) Disruption measurements obtained
over time can enable the prediction of traffic incident impact propagation with greater accuracy than
relying solely on reported values, 3) The proposed methodology can be extended to include disruptions
beyond accidents, such as construction or road closures, which can improve the accuracy of impact
prediction, 4) Further improvement can also be achieved by performing data fusion and incorporating
external data sources, such as weather and events, into the incident impact prediction models. We
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are currently modelling the cascading effect on traffic disruptions and how these can be automatically
identified based on multiple incoming traffic state streams; the main challenge of detecting subsequent
incidents lie in the time-span duration of the first incident which is normally stochastic in nature.

Limitations of this work: The current modelling approach has been applied to a San Francisco
data set due to its public availability and easiness to access. However, we would like to test the ap-
proach on multiple other countries and incident databases across the globe; the main challenge is the
lack of both traffic states and traffic accidents logs to be released with synchronised timelines.

6.7 Conclusion

The proposed methodology in this paper aims at detecting, segmenting and extracting the observed
disruptions in the traffic speed which was modelled together with reported traffic accidents by traffic
management centers. The approach is innovative in its distance metric approach for an automatic
incident detection coupled with an incident segmentation which has shown to improve the incident
prediction by almost 41% in RMSE across multiple machine learning models. By obtaining shapes
of disruptions we lay the foundation for accident impact modelling. Many studies still rely on the
modelling of reported accident durations and pre-defined parameters, while they can be estimated
from traffic state measurements, which gives us more data than just aggregated variables (duration,
start time, etc). By having information on how each accident affect the traffic flow, we can study the
accident impact with precision.

Limitations of this work: The current modelling approach has been applied to a San Francisco
data set due to its public availability and easiness to access. However, we would like to test the ap-
proach on multiple other countries and incident databases across the globe; the main challenge is the
lack of both traffic states and traffic accidents logs to be released with synchronised timelines. Future
works: We are currently modelling the cascading effect on traffic disruptions and how these can be
automatically identified based on multiple incoming traffic state streams; the main challenge of detect-
ing subsequent incidents lie in the time-span duration of the first incident which is normally stochastic
in nature.
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Chapter 7

Discussion, Synthesis and Conclusions

7.1 Literative review: discussion, synthesis and conclusions

Summary of the main findings: This research identified a significant gap in both the Australian trans-
port management sector and the academic literature with regard to the implementation of advanced
methods in incident management and response plan solutions. Current practices largely rely on oper-
ational experience rather than data-driven decision-making. The research also highlights the impor-
tance of using deep learning and machine learning in traffic incident management systems (TIMS) to
accurately predict incident durations and identify the most critical factors influencing incident clear-
ance time. This approach has the potential to save operational costs, reduce end-user time, and de-
crease traffic congestion. This review also identified several challenges and gaps in the field of traffic
accident analysis including imbalanced classification, skewed distribution of accident duration data,
reporting errors and anomalies, high-dimensionality of the data, low data availability, incorporation
of textual accident descriptions, utilization of historical traffic data, the use of novel machine learning
and deep learning models, and incident-related traffic state identification.

Discussion of the implications: The findings of this study have several implications for the field of
traffic management and incident response. First, they emphasize the need for a shift from experience-
based decision-making to data-driven approaches in transport management centres. This will enable
more efficient incident management and the allocation of resources. Second, the application of deep
learning and machine learning in TIMS can lead to more accurate predictions of incident durations
across different road types, accident types, and countries with varying driving behaviour. This en-
hanced prediction capability will contribute to existing knowledge and inform the development of
future research and traffic management strategies.

Limitations and future research: The research has some limitations, such as the focus on Aus-
tralian traffic management centres and the lack of exploration of all possible modelling capabilities.
Future research should investigate a more comprehensive approach to incident duration prediction,
encompassing various road types and accident types across different countries. Additionally, further
studies should aim to improve the integration of transport modelling and data-driven solutions, utiliz-
ing the full potential of deep learning and machine learning in TIMS.

Based on the identified challenges and gaps, several potential future research directions have been
proposed:

• Data set integration and fusion models: Combining data sets such as traffic flow, speed, and
occupancy with traffic accident reports can enhance incident duration modelling. This may
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require the use of data fusion models or feature embedding methods.
• Utilization of textual data: Incorporating natural language processing techniques to analyze

textual accident reports can provide valuable insights and improve prediction accuracy.
• Application of advanced machine learning and deep learning models: Exploring more sophis-

ticated ML and DL models can help identify nonlinear relationships and threshold effects in
traffic incident duration prediction.

• Integration of advanced ML pipeline elements: Anomaly detection, hyperparameter optimiza-
tion, dimensionality reduction, and sampling techniques can enhance prediction performance.

• Real-time incident reporting text analysis: Examining the timeline of textual incident descrip-
tions using available data sets like PeMS.

• Standardization of accident reporting form based on data-driven approaches utilizing the feature
importance estimation techniques: assessing the impact of specific factors, such as weather
conditions, on incident duration prediction accuracy, detailing and choosing features that have
the highest contribution to the prediction accuracy.

• Road Type extrapolation tests and model bias considerations: Ensuring the model’s perfor-
mance remains reliable when extrapolating data to other road networks (e.g. cross-network
test) or when applied to different time and space contexts (e.g. time-based cross-validation).

• Advanced data pre-processing methods: Implementing dimensionality reduction and feature
extraction techniques (e.g. using autoencoder) to manage the growing volume and variety of
data collected in traffic networks.

In conclusion, traffic incident duration prediction is a complex and important task that can benefit
from further research involving sophisticated artificial intelligence models. By addressing the iden-
tified challenges and gaps, future research has the potential to significantly improve traffic incident
duration prediction performance, ultimately leading to enhanced traffic flow and reduced impact from
traffic incidents. The study highlights the need for more advanced incident management solutions
that leverage deep learning and machine learning techniques to accurately predict traffic incident du-
rations and identify the most important factors affecting incident clearance time. Implementing such
data-driven approaches will result in better resource allocation and improved traffic management, ulti-
mately benefiting end-users and society as a whole. Further research should explore broader applica-
tions of these techniques in TIMS and investigate their potential in various road types, accident types,
and countries.

7.2 Bi-level framework: discussion, synthesis and conclusions

Summary of the main Findings:
The work around a bi-level framework for traffic incident duration prediction presented a universal

bi-level framework that addresses several challenges for different road network layouts. The study
proposes a framework capable of predicting incident duration regardless of the road network or its
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complexity. It addresses the issues of outliers and imbalanced data classes by proposing a varying
threshold procedure, optimizes both classification and regression problems, and highlights the most
influential factors that affect the incident duration. The research demonstrates that the performance of
machine learning models is highly affected by the dataset and the chosen methodology, emphasizing
the need for a flexible and adaptable approach. This chapter lays the groundwork for bi-level predictive
methodologies regarding traffic incident duration, ultimately aiding incident modelling.

Discussion of the implications:
The proposed bi-level framework for traffic incident duration prediction has significant implica-

tions for the field of study. It fills a gap in the literature by providing a universal framework that can
be applied to different traffic incident datasets and various road network types. This approach offers
a more comprehensive solution to the problem of incident duration prediction, considering varying
incident duration threshold analysis, joint hyper-parameter optimization algorithms, and feature im-
portance selection. By identifying the most influential factors that affect incident duration across three
different types of road networks, this research can help traffic authorities prioritize their efforts and
improve their decision-making processes. The framework’s adaptability also allows for more accurate
predictions and better-informed decisions.

Limitations and Future Research:
While the work in this chapter addressed several challenges in predicting traffic incident duration,

it acknowledges some limitations. The performance of machine learning models is highly dependent
on the quality and size of the dataset and the chosen methodology. Future research could focus on
exploring more advanced machine learning techniques to improve model performance further. Addi-
tionally, more extensive and diverse datasets could be used to test the framework and further validate
its applicability to various road network types and incident scenarios. Incorporating real-time traf-
fic data and dynamic road conditions could also enhance the prediction accuracy and better reflect
real-world complexities.

Conclusions:
Overall the work around the bi-level framework modeling contributes to the ongoing development

of a real-time platform for predicting traffic congestion and evaluating the incident impact during
peak hours. The proposed bi-level framework for traffic incident duration prediction is a significant
advancement in the field, offering a flexible, adaptable, and comprehensive solution. By addressing
the challenges of predicting incident duration on different road network layouts and accounting for
various influential factors.

7.3 Data fusion for traffic incident duration prediction: discussion, syn-
thesis and conclusions

Summary of the main findings: This chapter proposed a novel framework for predicting incident
duration by integrating machine learning prediction methods with traffic flow and textual incident
description features encoded via several Deep Learning methods. The approach showed stable and
significant improvement across all models. Our research also highlighted the importance of using
specific deep-learning encoding approaches for regression models to further enhance performance.
The study revealed that encoding incident-related features efficiently is crucial for predicting traffic
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incident impacts. We also investigated the importance of words in incident descriptions using the
LIME method, which showed that certain word combinations contribute to the classification of inci-
dents into specific severity or duration groups.

Discussion of the implications: This research contributes to the ongoing objective of building a
real-time platform for predicting traffic congestion and evaluating incident impacts during peak hours.
The proposed framework can provide accurate information for both end-user route choice modeling
and operational centers looking to optimize their operations under non-recurrent traffic congestion.
Furthermore, the study lays the foundation for bi-level predictive methodologies concerning traffic
incident duration, which can be beneficial for Traffic Management Centers (TMCs) in improving in-
cident and traffic management.

Limitations and future research: The study has some limitations, including focusing only on the
San Francisco area and considering traffic speed and flow only one week before the incident. Future
research could incorporate more extensive geographical areas, like California, and longer periods of
traffic count data to build traffic speed/flow profiles for more accurate predictions. Also, additional
methods of time series encoding may be utilized. Further work could also explore the spatial and tem-
poral dynamic prediction of incident impact using graph-based modelling approaches. The availability
of the predicted incident duration data integrated with data on traffic flow and textual incident descrip-
tion can improve the TMC incident and traffic management, reducing the time that people spend in
traffic congestion caused by incidents.

7.4 Visual transformers for traffic accident risk prediction: discussion,
synthesis and conclusions

Summary of the main findings: This research introduces a novel approach to traffic accident risk
forecasting by reformulating the problem as an image regression task and proposing a unique Contex-
tual Vision Transformer network (C-ViT) that efficiently models traffic accident risk from both spatial
and temporal perspectives. The proposed approach outperforms existing methods, requiring signifi-
cantly fewer training parameters. Additionally, incorporating a static accident risk map with the ViT
model (XVit) further improves performance, establishing a new state-of-the-art. The Coarse-Fine-
Coarse Visual Transformer (CFC-Vit) architecture allows for fine-grained processing of the accident
risk map and introduces an additional scale factor parameter, which can enhance prediction perfor-
mance.

Discussion of the implications: The findings of this study demonstrate the potential of visual
transformers and their variations for traffic accident risk prediction, surpassing previous approaches.
This research highlights the applicability of vision transformers for non-visual tasks and suggests that
further applications of image and video processing methods may yield even better results and open
alternative approaches for accident risk prediction. The proposed methods can contribute to more
accurate and efficient traffic management, accident prevention, and policy-making in urban environ-
ments.

Limitations and future research: This study has several limitations, such as the potential for
improvement in operation combination methods and constraint functions. There may also be a non-
linear dependence between RMSE and the scale factor observed for different datasets, suggesting that
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an optimal scale factor for accident risk map processing may exist and vary between datasets. Future
research can explore alternative combination methods and constraint functions, investigate the optimal
scale factor for various datasets, and apply image and video processing methods to further improve
accident risk prediction.

Conclusions: This research presents a novel approach for traffic accident risk forecasting using
visual transformers and their variations, outperforming existing methods. By incorporating static
accident risk maps and Coarse-Fine-Coarse Visual Transformer architectures, the proposed methods
show significant improvement in prediction performance. These findings can contribute to better traffic
management, accident prevention, and policy-making, while also opening new avenues for applying
vision transformers to non-visual tasks and exploring image and video processing methods for accident
risk prediction.

7.5 Accident Segmentation: discussion, synthesis and conclusions

Summary of the main findings: This research focused on addressing the challenges in traffic accident
analysis due to incorrect or incomplete accident reports and the need for accurate traffic disruption
segmentation. We proposed novel methods for traffic disruption segmentation and association between
vehicle detector stations and accident reports. We also developed a fusion methodology for combining
two large datasets, CTADS and PeMS, to analyze the relationship between traffic accidents and their
effects on traffic flow and speed. Through the evaluation of multiple machine learning models, we
introduced a new modeling approach that focuses on the amount and shape of the disruption associated
with an accident. This research lays the foundation for early traffic accident disruption detection, traffic
disruption speed impact analysis, and the use of observed traffic accident durations for correcting errors
in user reports.

Discussion of the implications: Our findings have significant implications for the field of traffic
accident analysis and prediction. By accurately segmenting and analyzing traffic disruptions, we can
better understand the impact of accidents on traffic flow and speed. This can lead to improved traffic
incident management and more effective allocation of resources in response to accidents. Furthermore,
the fusion of two large datasets enables the investigation of traffic accidents across different countries
and traffic conditions, contributing to a more comprehensive understanding of the factors influencing
accident duration and impact. Our research also provides a foundation for the development of real-time
platforms for predicting traffic congestion and evaluating incident impact.

Limitations and future research: This research has some limitations, such as the reliance on
two large datasets which may not be representative of all traffic conditions worldwide. Additionally,
the fusion methodology may not be applicable to all data sources, and the machine learning models
tested may not be optimal for all situations. Future research should focus on expanding the analysis
to more diverse datasets and investigating other machine learning models for improved prediction
performance. Moreover, further research could explore the spatial-temporal impact of disruptions
within the traffic network and analyze the influence of various accident characteristics on traffic flow
patterns.

Conclusions: In conclusion, this research contributes significantly to the field of traffic accident
analysis by addressing challenges related to data quality and segmentation, proposing novel methods
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for traffic disruption analysis, and evaluating the performance of multiple machine learning models.
The findings of this research have important implications for traffic incident management, resource
allocation, and the development of real-time platforms for predicting traffic congestion and incident
impact. Further research is needed to refine the methodologies and expand their applicability to a
broader range of traffic conditions and datasets.

7.6 Final thesis Conclusion

In conclusion, this thesis demonstrates the potential for leveraging advanced machine learning, deep
learning, and artificial intelligence techniques to improve traffic incident duration prediction, acci-
dent risk forecasting, and overall traffic management. By utilizing novel approaches such as bi-level
frameworks, contextual vision transformers, estimation of observed incident duration via time series
segmentation and integrating deep learning methods with traffic flow and description features, these
studies contribute to the development of more accurate and efficient traffic management systems.

These advancements have important societal implications, as improved incident prediction and
management can lead to reduced congestion, more efficient allocation of resources, and better-informed
policy-making. While there are limitations, there are more areas for future research, such as explor-
ing broader geographical areas, optimizing methodologies, and further investigating the applications
of vision transformers for non-visual tasks, these studies lay the groundwork for the continued de-
velopment and application of cutting-edge techniques in the field of traffic management and incident
response.
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