Dynamic Traffic Assignment modelling for a Sydney Traffic Model

Phoebe Ho

Supervisor: Adriana-Simona Mihaita Summer Vacation Student 2017

Introduction

Transport Systems are a fundamental aspect of our everyday lives and the decisions we make about our transport systems have wide impacts on our economy, our environment and our society. Transport models are representations of these complex real-world transport systems. Models inform planners about three important factors; current performance of transport systems, forecasting future scenarios in response to changes in demographics, land use etc., and comparing the merits of different traffic management strategies.

The goal with trip or traffic assignment is to solve for user equilibrium on the network, where every traveller succeeds in finding a route that minimizes their travel time between origin and destination, and for each OD pair, every used route has the same travel time. Traffic assignment has conventionally been applied statically for a given time period. However there is a growing interest in the development of dynamic, rather than static models. Static assignment inherently cannot capture time dependent phenomena such as bottlenecks and congestion. Dynamic traffic assignment (DTA) is more realistic and consistent in representing traffic dynamics. It can be used for short term and long term analysis, capacity improvement studies and even understanding the impact of traveller information systems.

This document outlines the steps taken to apply Dynamic Traffic Assignment (DTA) to a mesoscopic model for a peak morning period from 7-9am using the software Aimsun. Aimsun was chosen for its flexibility, speed and ability to produce models of any scale and complexity. This work represents a continuation of previous studies which are mixing the traffic simulation modelling together with data-driven aproaches, via various simulation environments, traffic signal control, or multi-agent approaches (see previous works in [1]-[2]..[18]). The current approach will be focusing more on microscopic traffic simulation modelling, powered by data driven streams.

Objectives

The following were the main objectives over the summer period:

- 1. Apply the DTA process to a study area within Sydney to produce a dynamic simulation model
- 2. Exploring the capabilities of the modelling software, Aimsun for DTA purposes
- 3. Documentation of the whole process

Existing Model

The model used for this DTA project was the 2012 Sydney Strategic Travel Model (STM3) provided by RMS. TSS's Sydney Project Model was also considered, however it was found that the former model had the most up to date and detailed representation of the study region in terms of road geometry and characteristics. This model contains 2729 origins and destinations. Although the most recent data at the time was the 2011 ABS Census, it may not have been inputted into the model

and thus may actually contain the 2006 census data. In this case, this model uses a forecasted, or planning demand. Therefore, the V/C ratio may be greater than 1 if it is serving more vehicles than it was originally intended for. For an up to date model, it is expected that the demand is calibrated and is adequately fulfilled by current capacity of infrastructure.

Study Area Selection

The Pyrmont Region was selected for its relatively stable road geometry and minimal entrances and exits from the network. This is to reduce the size of the extracted traversal matrix. The CBD area was also considered, however due to the construction of the Sydney Light Rail Project and lack of current data for a constantly changing network, it was ultimately not chosen.

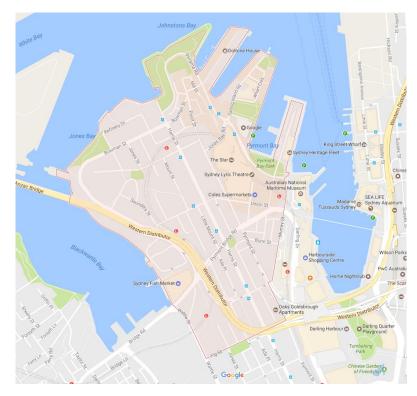


Figure 1: Bounds of the Pyrmont study area

Road Network Characteristics

The network geometry for the study region was updated using Open Street Maps and aerial and street-level photography from Google Maps. The street-level photographs date from late 2014 to late 2015. The curvature and alignment of the roads were adjusted, in particular the Western Distributor was moved substantially to represent the actual location and shape. The small arterials were deemed insignificant and not included in the model. Lane usage and turn bays were also checked since reduced capacity will affect delay times and routing decisions. After consulting the online City of Sydney parking meter map, it was found that during the given study period, all parking lanes are likely to be occupied and so those lanes were removed from the model to represent the actual reduced capacity. The location of bus stops was also reviewed. Road characteristics such as capacity, maximum speed and road type were already included in the existing model.

For sections with a capacity of 0 vehicles per hour, a Python script was written to set the capacity to 900 vehicles per lane. The original reason for these zero capacity sections needs to be clarified. The capacity was changed for this project since the experiments required a non-zero value.

Data Inputs

Initially, the SCATS data for Pyrmont was obtained using Excel sheets for each link containing the intersection ID's, turning ratio, distance, number of lanes and speed limit. For each lane, it was assumed that if there were 2 possible movements (e.g. turning and going straight), the turning ratio would be evenly split, 0.5. These files can be found in the "SCATS_Region_Graphics" folder. The data obtained for each of these links contained mean travel time, throughput, speed limit, inflow and outflow at 15 minute intervals for a 24 hour period. However, for importation into Aimsun we thought that vehicle counts would be required for each detector at each intersection.

SCATS data for vehicles counts were provided for a 4-month period from 1 March to 27 June 2015. The vehicle counts were an average over the whole period. It should be noted that although most sections had data for every consecutive day within the given dates, some days were missing. In future work, it would be more realistic to choose a single day that represents normal operation on the network, or at least to separate the weekdays from the weekend.

When importing the detector counts, the dates must be set to the same as the running date for scenarios and time periods must be exactly matching.

For public transport data, timetables and bus stop information were provided for the Sydney Bus routes 389 and 501, which run through the Pyrmont area. A Python script was written to import the information into the model. The relevant files for this process can be found in the folder "PT_Import". Aimsun currently does not support easy importation of General Transit Feed Specification (GTFS) data, however this is something in development and will be released in future versions of the software. Although there is a light rail system in Pyrmont, it is an underground network and does not affect the behaviour of the road network, so it was not considered for this project. In the future, there is the possibility of using Opal card data to model public transport user behaviour in more detail.

Signal control data is essential for modelling traffic flow realistically. Due to issues with using the SCATS interface, this data was not available.

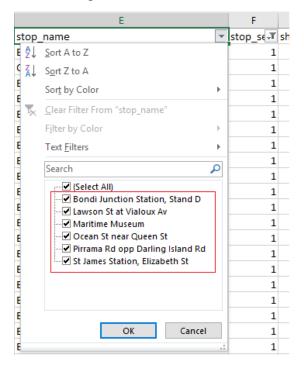
Importation of Public Transport Lines

Although future versions of Aimsun will be compatible with the GTFS format, Python scripting is currently the only way to import public transit data into a model. One such method, using the code "IMPORT_PT_LINE_501" (in the model "stm_17jan.ang") has been detailed below. All files can be found in the "PT_Import" folder. It should be noted that more efficient methodologies may exist.

The offset time is a value indicating the number of seconds from the departure time of the public transport vehicle from the first stop to the arrival time at this stop. It will keep the bus in the stop until the departure time for this stop is reached.

It has been assumed that every bus will stop at every bus stop. While in reality certain buses may not stop if there are no passengers to pick-up or set-down, it is a reasonable assumption to make without conducting an extensive on-site survey.

The mean and deviation of stop time has been set to 10 ± 2 seconds for all stops. A site visit would be needed to approximate conditions in the study area.


Data Preparation

- Create a new Public Transport Line in the Aimsun model (PROJECT > PUBLIC TRANSPORT > New Public Transport Line) and create the new route by manually selecting sections and bus stops.
 - Sydney bus routes, 389 and 501 had several variations of a main route

 if this is the case, the import process will be faster by first creating the route with the most amount of stops, duplicating that route and then removing necessary stops to create the shorter routes.
- 2. Given the raw files 'bus_stop', 'bus_stop_time' and 'bus_trip', use VLOOKUP function in Excel to add the corresponding stop names (from 'bus_stop'), direction ID and route direction (both from 'bus_trip') into the 'bus_stop_time' table. This is to help visualise the different bus routes.

.4	-	$\times \checkmark$	<i>f</i> _x =\	LOOKUP(D24, bus_stop!\$A:\$B, 2, FALSE)								
Α	В	с	D	E	F	G	н	1	J	к	L	
trip_id 💌	arrival 🔻	departi 🝷	stop_id 🕶	stop_name 💌	stop_se ▼	shape_ 💌	timepo 🔻	directic 🖅 rou	te_(🔻	ection		
121102	21:03:00	21:03:00	202271	Bondi Junction Station, Stand D	1	0	1	0 Mai	itime I	Museum	to North Bo	ndi
121102	21:04:00	21:04:00	202248	Oxford St near Grosvenor St	2	255	0	0 Mai	itime I	Museum	to North Bo	ndi
121102	21:05:00	21:05:00	202532	Old South Head Rd near Edgecliff Rd	3	751	0	0 Mai	itime I	Museum	to North Bo	ndi
121102	21:06:00	21:06:00	202311	Old South Head Rd near Edgecliff Rd	4	934	0	0 Mai	itime I	Museum	to North Bo	ndi
121102	21:06:00	21:06:00	202312	Old South Head Rd near Victoria Rd	5	1109	0	0 Mai	itime I	Museum	to North Bo	ndi
121102	21:08:00	21:08:00	202313	Old South Head Rd near Banksia Rd	6	1504	0	0 Mai	itime I	Museum	to North Bo	ndi
121102	21:08:00	21:08:00	202314	Old South Head Rd opp Penkivil St	7	1657	0	0 Mai	itime I	Museum	to North Bo	ndi
121102	21:09:00	21:09:00	202664	O'Brien St near Simpson St	8	1985	0	0 Mai	itime I	Museum	to North Bo	ndi
121102	21:10:00	21:10:00	202665	O'Brien St near Lamrock Av	9	2230	0	0 Mai	itime I	Museum	to North Bo	ndi
121102	21:11:00	21:11:00	202694	Glenayr Av near Hall St	10	2546	0	0 Mai	itime I	Museum	to North Bo	ndi
121102	21:11:00	21:11:00	202667	Glenayr Av near Curlewis St	11	2730	0	0 Mai	itime I	Museum	to North Bo	ndi
121102	21:12:00	21:12:00	202668	Glenayr Av near Blair St	12	2995	1	0 Mai	ritime I	Museum	to North Bo	ndi
121102	21:13:00	21:13:00	202669	Blair St near Mitchell St	13	3273	0	0 Mai	itime I	Museum	to North Bo	ndi
121102	21:13:00	21:13:00	202670	Mitchell St near O'Donnell St	14	3469	0	0 Mai	itime I	Museum	to North Bo	ndi
121102	21:14:00	21:14:00	202671	Murriverie Rd near Hardy St	15	3760	0	0 Mai	itime I	Museum	to North Bo	ndi
121102	21:15:00	21:15:00	202672	Murriverie Rd opp Frederick St	16	4030	0	0 Mai	itime I	Museum	to North Bo	ndi
121102	21:15:00	21:15:00	202673	Wairoa Av near Murriverie Rd	17	4218	0	0 Mai	itime I	Museum	to North Bo	ndi
121102	21:15:00	21:15:00	202674	Wairoa Av near O'Donnell St	18	4372	0	0 Mai	itime I	Museum	to North Bo	ndi
121102	21:16:00	21:16:00	202675	Blair St near Wairoa Av	19	4603	0	0 Mai	itime I	Museum	to North Bo	ndi
121102	21:17:00	21:17:00	202632	Military Rd opp Blair St	20	4925	0	0 Mai	itime I	Museum	to North Bo	ndi
121102	21:17:00	21:17:00		Military Rd opp Wallis Pde	21	5145	0	0 Mai	itime I	Museum	to North Bo	ndi
121102	_21:18:00	21:18:00	202634	Considerall Dela Tanninua	22	5400	1	0.44-			te Mentle De	a di

- 3. Filter the inbound and outbound data and save as two files. In this example, the files are named, '389 _inbound.xlsx'. (The inbound and outbound data have been split into two separate files purely for the purpose of reducing the number of sheets per Excel book). The inbound and outbound directions are defined below.
 - Outbound: direction = 0, bus heading out of the CBD
 - Inbound: direction = 1, bus heading towards the CBD
- 4. Use the 'stop_sequence' column to determine the variations of routes (e.g. the bus may start or finish at different stops)
 - For example, after filtering the 'stop_sequence' column to stop number 1 and selecting the 'stop_name' filter, you will see the different stops that the route begins at.

The four tables below summarize the variations in the 501 and 389 lines.

Outbound 389, direction = 0, CBD to Eastern Suburbs

First stop	Last stop	Number of stops
Maritime Museum (200015)	Campbell Pde Terminus (202634)	53
Pirrama Rd opp Darling Island Rd	Campbell Pde Terminus (202634)	51
St James Station, Elizabeth St	Campbell Pde Terminus (202634)	43
Ocean St near Queen St (202528)	Campbell Pde Terminus (202634)	27
Bondi Junction Station, Stand D (202271)	Campbell Pde Terminus (202634)	22
Lawson St at Vialoux Av (202192)	Bondi Junction Station, Stand G (202267)	11

Inbound 389, direction = 1, Eastern Suburbs to CBD

First stop	Last stop	Number of stops
Campbell Pde Terminus (202627)	Maritime Museum (200015)	52
Bondi Junction Station, Grafton St, Stand R	Town Hall Station, Park St, Stand J (2000425)	22
Ocean St near Queen St (202522)	Town Hall Station, Park St, Stand J (2000425)	18
Glenayr Av near Warners Av (202692)	Bondi Junction Station, Grafton St, Stand Q (202268)	11
Town Hall Stationk, Park St, Stand J (2000425)	Maritime Museum (200015)	10

Outbound 501, direction = 0, CBD to Western Suburbs

First stop	Last stop	Number of stops
Pitt St opp Barlow St (200083)	West Ryde Interchange (Set Down) (211421)	48
Pitt St opp Barlow St (200083)	Blaxland Rd near Church St (211230)	37

Inbound 501, direction = 1, Western Suburbs to CBD

First stop	Last stop	Number of stops
West Ryde Interchange - Stand B (211426)	Pitt St at Barlow St (2000428)	51
Blaxland Rd near Devlin St (211220)	Pitt St at Barlow St (2000428)	40
Cambrige St near Harvard St (211111)	Pitt St at Barlow St (2000428)	33
Victoria Rd near Terry St (203911)	Pitt St at Barlow St (2000428)	16

- 5. Filter the data for each route variation (with the filter on stop_sequence = 1) and copy the information into a new sheet
 - Sort the arrival times from smallest to largest (ensuring that the range is from 0:00:00 to 23:59:59)
 - Assume that buses leave 20 seconds after the arrival time add 20 seconds to the departure time column
 - Calculate the duration time (time between the one trip and the next)
 - A schedule duration of 0:00:00 is not permitted in Aimsun. A duration of 0 seconds can be interpreted as two buses leaving that stop at the same time, the phenomena of bus bunching. To make the values compatible with Aimsun, modify the arrival time of the 2nd bus to one minute later, so that the duration becomes 1 min.
 - $_{\odot}$ Note that all times given in the raw data have been rounded to the nearest minute.

trip_id	arrival_time	departure_time	calculate	_duration	stop_id	stop_name
258917	0:15:00	0:15:20		4:12:00	202627	Campbell Pde
252889	4:27:00	4:27:20		0:03:00	202627	Campbell Pde
259861	4:30:00	4:30:20		0:30:00	202627	Campbell Pde
257060	5:00:00	5:00:20		0:02:00	202627	Campbell Pde
254067	5:02:00	5:02:20		0:01:00	202627	Campbell Pde
373659	5:03:00	5:03:20		0:19:00	202627	Campbell Pde
254068	5:22:00	5:22:20		0:01:00	202627	Campbell Pde
373660	5:23:00	5:23:20		0:07:00	202627	Campbell Pde
257061	5:30:00	5:30:20		0:12:00	202627	Campbell Pde
254069	5:42:00	5:42:20		0:01:00	202627	Campbell Pde
373661	5:43:00	5:43:20		0:17:00	202627	Campbell Pde
257062	6:00:00	6:00:20		0:02:00	202627	Campbell Pde
254070	6:02:00	6:02:20		0:01:00	202627	Campbell Pde
373662	6:03:00	6:03:20		0:11:00	202627	Campbell Pde

• Save the values from the arrival time, departure time and duration columns in a separate file as "XXX_inbound/outbound_ first/laststop.csv"

					X∎	8 5-	@. =	38	9_in_camp	bell.csv - Excel
					FII	E HOM	INSERT	PAGE LAYO	UT FORM	IULAS DATA RI
					Past Clip			mment Num	ber	Conditional Forma ormat as Table = Cell Styles = Styles
					F11	6	- :)	K 🗸	fx	
						А	в	с	D	E
trip_id		leparture_time_calcu			1	0:15:00	0:15:20	4:12:00	0	L
258917		0:15:20		202627 Campbell Pde	2	4:27:00	4:27:20	0:03:00		
252889 259861	4:27:00	4:27:20	0:03:00	202627 Campbell Pde	3	4:30:00	4:30:20	0:30:00		
259861	4:30:00	4:30:20		202627 Campbell Pde	4	5:00:00	5:00:20	0:02:00		
257060	5:00:00 5:02:00	5:00:20 5:02:20	0:02:00 0:01:00	202627 Campbell Pde 202627 Campbell Pde	5	5:02:00	5:02:20	0:01:00		
373659		5:02:20	0:01:00	202627 Campbell Pde 202627 Campbell Pde	6	5:02:00	5:03:20	0:19:00		
254068		5:22:20		202627 Campbell Pde 202627 Campbell Pde	7	5:22:00	5:22:20	0:01:00		
373660		5:23:20	0:07:00	202627 Campbell Pde	8	5:23:00	5:23:20	0:07:00		
257061	5:30:00	5:30:20	0:12:00	202627 Campbell Pde	9	5:30:00	5:30:20	0:12:00		
254069		5:42:20	0:01:00	202027 Campbe	10	5:42:00	5:42:20	0:01:00		
373661	5:43:00	5:43:20	0:17:00		11	5:43:00	5:43:20	0:17:00		
257062		6:00:20	0:02:00		12	6:00:00	6:00:20	0:02:00		
254070		6:02:20		202627 Campbe	13	6:02:00	6:02:20	0:01:00		
373662	6:03:00	6:03:20	0:11:00	202627 Campber Pde	14	6:03:00	6:03:20	0:11:00		
254071	6:14:00	6:14:20	0:01:00	202627 Campbell Pde	15	6:14:00	6:14:20	0:01:00		
373663	6:15:00	6:15:20	0:10:00	202627 Campbell Pde	16	6:15:00	6:15:20	0:10:00		
254072		6:25:20		202627 Campbell Pde	17	6:25:00	6:25:20	0:01:00		
373664		6:26:20	0:04:00	202627 Campbell Pde	18	6:26:00	6:26:20	0:04:00		
257063	6:30:00	6:30:20	0:05:00	202627 Campbell Pde	19	6:30:00	6:30:20	0:05:00		
248502		6:35:20		202627 Campbell Pde	20	6:35:00	6:35:20	0:10:00		
248503	6:45:00	6:45:20	0:01:00	202627 Campbell Pde	21	6:45:00	6:45:20	0:01:00		

6. For each route variation, select **one trip ID** from the peak time period and select the all the rows for that trip

trip_id	arrival_tin	departure	stop_id	stop_name	stop_sequence	shape_dis	timepoint	direction_	route_direction
92999	18:30:00	18:30:00	2000425	Town Hall Station, Park St, Stand J	1	0	1	1	North Bondi to Marit
92999	18:43:00	18:43:00	200926	Harris St near Allen St	2	1673	1	1	North Bondi to Marit
92999	18:44:00	18:44:00	200928	Harris St near Pyrmont Bridge Rd	3	2027	0	1	North Bondi to Marit
92999	18:44:00	18:44:00	200913	Harris St near Miller St	4	2221	0	1	North Bondi to Marit
92999	18:44:00	18:44:00	200912	Harris St near John St	5	2429	0	1	North Bondi to Marit
92999	18:44:00	18:44:00	200934	Harris St near Bowman St	6	2638	0	1	North Bondi to Marit
92999	18:45:00	18:45:00	200911	Pirrama Rd near Bayview St	7	3155	0	1	North Bondi to Marit
92999	18:46:00	18:46:00	200918	Pirrama Rd near Darling Island Rd	8	3580	0	1	North Bondi to Marit
92999	18:47:00	18:47:00	200931	Pirrama Rd near The Star	9	4424	1	1	North Bondi to Marit
92999	18:48:00	18:48:00	200015	Maritime Museum	10	4802	1	1	North Bondi to Marit

- Sort the arrival times from smallest to largest
- Calculate the time between each consecutive bus stop
 - The first stop will always be 0:00:00 because the offset is calculated relative to the time the bus leaves that stop
 - If the time between stops is 0:00:00, it may either be due to truncation errors since the data is rounded to the nearest minute, or simply that there were no passengers to pick up or set down. Use conditional formatting to identify times with 0:00:00 and add 30 seconds to those cases in the "modify_zero_time" column since it is assumed that the bus stops at every stop.

- Cumulatively add the times from "modify_zero_time" to get the CUMULATIVE offset time for each stop relative to the first stop.
- Save the values from the 'cumulative_offsets' column as "name_offsets.csv"

	stop_id	cumulative_offsets	modify_zero_time	calculate_time_diff	departure_time
27	202627	0:00:00	0:00:00	0:00:00	9:05:00
28	202628	0:01:00	0:01:00	0:01:00	9:06:00
29	202629	0:01:30	0:00:30	0:00:00	9:06:00
76	202676	0:03:30	0:02:00	0:02:00	9:08:00
77	202677	0:04:00	0:00:30	0:00:00	9:08:00
78	202678	0:05:00	0:01:00	0:01:00	9:09:00
79	202679	0:06:00	0:01:00	0:01:00	9:10:00
30	202680	0:06:30	0:00:30	0:00:00	9:10:00
87	202687	0:07:30	0:01:00	0:01:00	9:11:00
38	202688	0:08:30	0:01:00	0:01:00	9:12:00
	2	0:09:30	0:01:00	0:01:00	9:13:00
	2	0:10:30	0:01:00	0:01:00	9:14:00
56	202666	0:11:30	0:01:00	0:01:00	9:15:00
3 5	202695	0:12:30	0:01:00	0:01:00	9:16:00
96	202696	0:13:30	0:01:00	0:01:00	9:17:00
9 7	202697	0:14:30	0:01:00	0:01:00	9:18:00
98	202698	0:15:30	0:01:00	0:01:00	9:19:00
51	202261	0:16:30	0:01:00	0:01:00	9:20:00

X				FORMUL	sets.csv - Exce
	B A	=	%		tional Format
Clipł	board Font	Alignme	nt Numbe	r –	it as Table ∗
	* *	*	-	🐷 Cell St	-
					Styles
F3	8	• :)	X 🗸	<i>fx</i>	
	А	в	С	D	E
1	0:00:00				
2	0:01:00				
3	0:01:30				
4	0:03:30				
5	0:04:00				
6	0:05:00				
7	0:06:00				
8	0:06:30				
9	0:07:30				
10	0:08:30				
11	0:09:30				
12	0:10:30				
13	0:11:30				
14	0:12:30				
15	0:13:30				
16	0:14:30				
17	0:15:30				
18	0:16:30				
19	0:17:30				
20	0:19:30				

To import the data for one route variation in Aimsun, there are some variables in the code that need to be changed.

1. Add the numerical ID to the list of PT Line ID's, and replace the variable in the line

if ptLine.getId() == outbound_westryde_501:

2. Name of the timetable

timetableName = "timetable.csv"

3. Name of the file containing ARRIVAL time, DEPARTURE time, and DURATION of the schedule

```
FILENAME1 =
"C:\\Users\\HO041\\Documents\\JanuaryModel\\PT_Lines\\501_out_westryde.
csv"
```

4. Name of the file containing the OFFSETS

```
FILENAME2 =
```

```
"C:\\Users\\HO041\\Documents\\JanuaryModel\\PT_Lines\\501_out_westryde_off sets.csv"
```

Execute the code.

₿ Pyt	hon Script: 1258324, Name: IMPORT_PT_LINE_501 {ad2b6ffd-0cca-47bd-b722-494e97a53e4d}	?	×
Main	Settings		
	import csv		^
	inbound_victoria_501 = 1258438 inbound_cambrige_501 = 1258442 inbound_blaxland_501 = 1258465 inbound_westryde_501 = 1258436 outbound_blaxland_501 = 1258484 outbound_westryde_501 = 1258486		
	<pre>busStopType = model.getType("GKBusStop") vehicleType = model.getType("GKVehicle") lineType = model.getType("GKPublicLine") defaultPTVehicle = model.getCatalog().findByName("Bus", vehicleType)</pre>		
	timetableName = "timetable.csv"		
	FILENAME1 = "C:\\Users\\HO041\\Documents\\January Model\\PT_Lines\\501_out_westryde.csv" FILENAME2 = "C:\\Users\\HO041\\Documents\\January Model\\PT_Lines\\501_out_westryde_offsets.csv"		
	initialTime = [] depTime = [] durationTime = [] offsetTime = [] hr = [] min = [] sec = [] depHr = [] depMin = [] depSec = [] durHr = [] durHr = [] offHr = [] offHr = [] offSec = []		
E	<pre>def get_sec(time_str): #convert time h:mm:ss to SECONDS h, m, s = time_str.split(":") return int(h) * 3600 + int(m) * 60 + int(s)</pre>		
	with open(FILENAME1) as f: #read file and store data rows = csv.reader(f, delimiter = '\t') for row in rows: temp = row[0].split(",") #split and store the 3 columns in 3 different arrays, initialTime, depTime, durati initialTime.append(temp[0]) depTime.append(temp[1]) durationTime.append(temp[2])	ionTime	
	<pre>with open(FILENAME2) as f: #read in the OFFSET times into string rows = csv.reader(f, delimiter = '\t') for row in rows: temp = row[0].split(",") offsetTime.append(temp[0])</pre>		
 	<pre></pre>	>	~
Name	:: IMPORT_PT_LINE_501 External ID:		
Find:	Find Next Match Case] Whole W	ord
He	Execute Save Line: 93 Column: 29 OK	Can	cel

DTA Execution in Aimsun

Procedure for Dynamic Traffic Assignment in Aimsun

1. Macro Assignment of the Full Network

ain	Outpu	its to Gene	erate	Variables	Param	eters	Attribut	es						
ame: [Macro	Assignmer	it Scenar	io AM 2 Ho	ur			Externa	ID:					
Times														
Date:		1/07/201	5									-		
Initial	Time:	7:00:00	M									÷ Dur	ation: 02	:00:00 ≑
Traffic											Geometry	Configuratio	ns	
Traffic	: Dema	nd:	AM 2 Ho	ur						•	Select	All Nothing	Selected	Filter
Public	Transp	ort Plan:	S 125	8596: PTP	2016 CBD	Bus Pla	n Base Lay	er - copy		•				
Path A	Assignm	nent:	None							•				
Real D	ata Set	t for Valida	tion											
SCAT	'S PYR/	ULT Detec	tor Coun	ts						•				

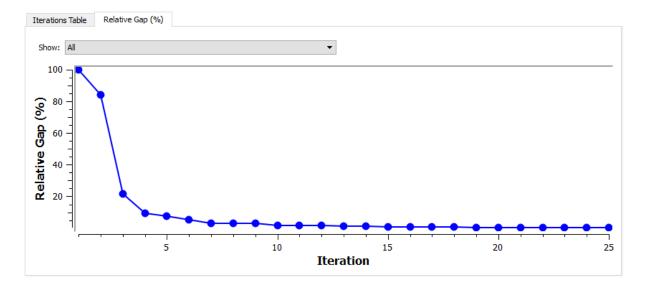
• The Traffic Demand "AM 2 Hour" comes from the OD Matrix "ANG_mf11" for cars. To create a more realistic demand, the values should be extrapolated for 6-10am.

• PTP 2016 CBD Bus Plan Base Layer – copy is an existing PT Plan with updated timetables for the 501 and 389 routes

	s Histogram Path	Assignment Param	eters				
Name:	ANG_mf11	External ID:					
Vehicle Type:	53: Car	 Trip Purpose: 	None	▼ Cor	ntents: N	ot Set	•
Initial Time:	7:00:00 AM	Duration:	02:00:00	÷			
Summary							
Origins: 27	29	Destinations:	2729	Empty Cells:	1267058	Non-Empty Cells:	6180383
Total: 15	80725.94	Minimum Value (≠0):	0.00	Maximum Value	: 4678.26	Diagonal Total:	0.06
Store Locati							
Where: Ai	msun						•

	Marrie Area				External ID:				
ime:		ent Experimen	t AM 2 Hour - copy						
in Database					Engine:	Frank and Wolfe Assignment			
Assignment	Parameters				_				
Maximum Ite	erations:		25	ŧ	Relative Gap:		0.10000 %		-
Conjuga	te Frank-Wolfe								
Ouasi-dynar	nic Network Loadin	a							
	Quasi-dynamic Ne								
	Quasi aynamic No	Control Coolding							
Attributes O	verrides								
PM								^	Up
□ PM_0 □ PT	VERRIDES_INI								Down
	W_LINKS								
	SCATS_06:00_M							~ L	Check All
<								> l	Jncheck All
Scripts									
· .									
Pre-Run:	lone			-	Post-Run: No	one			•
Run Informa	tion								
Assignment	pending.								

- Frank-Wolfe assignment method
- In the tab *Outputs to Generate*, the *Keep in Memory* option for Path Assignment has been made active.


Run time for this assignment: 0 h 31 m 1 s

After running the assignment, volumes are assigned to the full network. Below shows the volumes for the subnetwork.

n Outputs to Generate	Variables A	tributes Outputs Path Assignment		
er Class: All (pcu) 🔻			Сору	Create Traffic Stat
Summary Sections Turns	connectio	s Supernode Trajectories Convergence Validation		
	Value	Units		
Mean Network Occupation	14.4756	%		
Total Network Distance	1.86124e+07	[km]		
Total Network Cost	2.95556e+07	[cost units]		

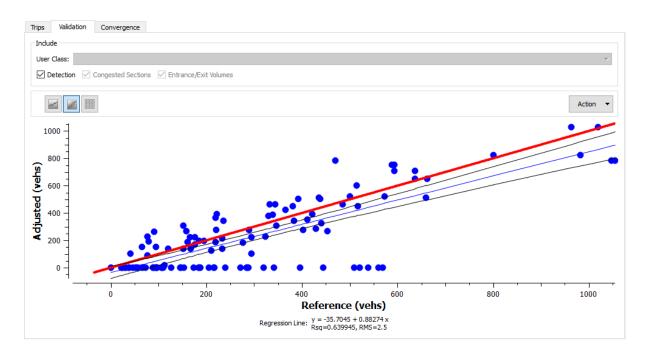
Phoebe Ho

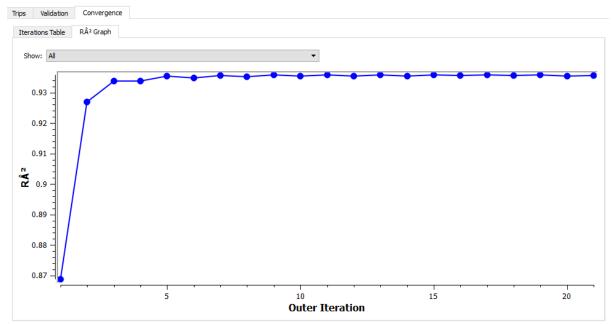
In the Pyrmont Subnetwork, generate a new static traversal matrix and add it to the traffic demand, "Traffic Demand AM 7Feb".

The extracted traversal matrix for the subnetwork contains 33 origins and 39 destinations.

Retrieve the Real Data Set "SCATS PYR/ULT Detector Counts"

OD Adjustment Scenario


Run time: 0 h 0 m 14 s


in Centroids and Sect	ons Outputs to Generate Variables Parameters Attributes	
me: Static OD Adjustmer	t Scenario AM 1258841 External ID:	
limes		
Date: 1/07/2015		*
Initial Time: 7:00:00 AM		÷ Duration: 02:00:00 ÷
Traffic	Geometry Config	urations
Traffic Demand:	1258782: Traffic Demand AM 7Feb	Nothing Selected Filter
Public Transport Plan:	21258753: Pyrmont Public Transport Plan	
Real Data Set: RDS 1258 Grouping Options	830: SCATS PYR/ULT Detector Counts	
Use Centroid Groupings:	None	
Use Detection Groupings:	None 🔻	

Phoebe Ho

Dynamic Traffic Assignment for a Sydney Traffic Model

	tputs to Generate Variables	Attributes Outputs	Final Path Assignment	Final Assignment Outputs		
me:	Static OD Adjustment Experin	nent AM 1258842		External ID:		
in Databa	ise: 1258842			Engine: Frank and Wolfe A	Assignment	
djustmen	t Parameters					
terations:	20					
Gradient D	escent Iterations: 1 🖨					
ssianmen	t Parameters					
	Iterations:	50		Relative Gap:	1.00000 %	;
	gate Frank-Wolfe	30			1.0000 /0	
	amic Network Loading					
	te Quasi-dynamic Network Loading					
_						
	Overrides					
PM PM	OVERRIDES_INI					^ Up
PT						Down
	NEW_LINKS D_SCATS_06:00_MANUAL_EDITS					Check All
FIXE	D_SCATS_15:00_MANUAL_EDITS					V Uncheck All
cripts						
re-Run:	None		•	Post-Run: None		•
un Inforn	nation					
Help]					OK Can
Help]			-		OK Car
Help Valida	tion Convergence	1000 T 1000 T				OK Can
Valida	tion Convergence					OK Can
Valida	_					
Valida	_					OK Can
Valida	_					
Valida lass: 19	_					
Valida ass: 19	_					
Valida ass: 19	_			-		
Valida ass: 19	_					
Valida ass: 19	_				2	
Valida ass: 19	_				2	
Valida ass: 19	_				2	
Valida ass: 19	_				2	
Valida lass: 19	_				2	
Valida lass: 19	_				2	
Valida ass: 19	_					Acti
Valida ass: 15 5000 4000 	_		•		Regression Line: y = 0.968974 x + R2: 0.977773	Acti
_	_		•		Regression Line: $y = 0.968974 x +$	Actio
Valida ass: 15 5000 4000 	_		•		Regression Line: $y = 0.968974 x +$	Actio

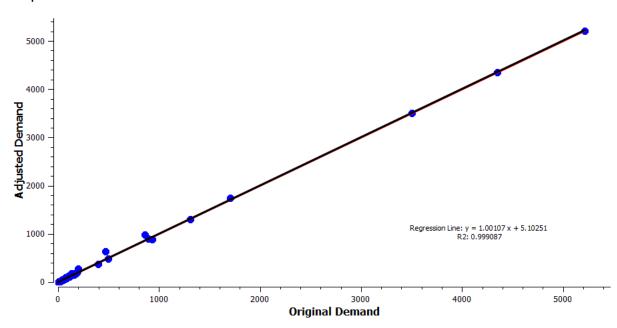
STA for the Subnetwork

Run time: 0 h 0 m 8 s

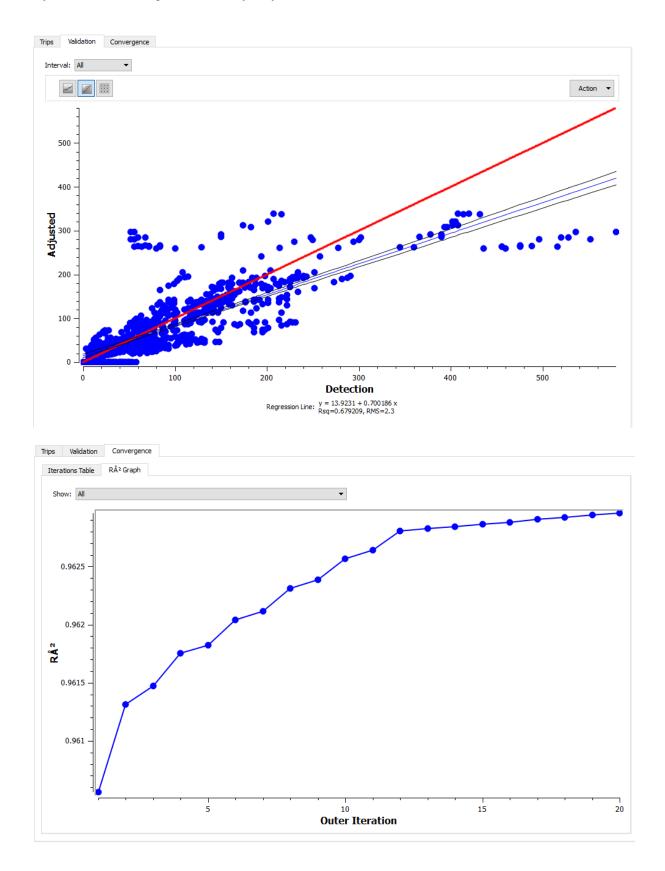
Dynamic Traffic Assignment for a Sydney Traffic Model

	enerate Variable	s Parameters	Attributes					
lame: Static Assignn	nent Scenario AM 7Fe	eb	Ex	ternal ID:				
Times								
Date: 1/07/2	2015						•	
Initial Time: 7:00:0								02:00:00 🜲
T (C-						C		
Traffic						Geometry Con	-	
Traffic Demand:		d from Static OD Adji		ent AM 7Fe	b 🔻	Select All	Nothing Select	Filter
Public Transport Pla	n: 😭 1258753: Py	rmont Public Transpo	rt Plan		•			
Path Assignment:	None				•			
Real Data Set for Va	idation							
None					•			
None					•			
Help							OK	Cano
Help							OK	Canci
	riment: 1258849, Nar	ne: Static Assignment	t Experiment AM	1258849 {7c	leaa263-a48a-42	68-b1f5-1812a1832a		Cance ?
tatic Assignment Exp		ne: Static Assignment Attributes Outputs			leaa263-a48a-42	68-b1f5-1812a1832a		
tatic Assignment Exp in Outputs to Gene	rate Variables	Attributes Outputs		ent		68-b1f5-1812a1832a		
tatic Assignment Exp in Outputs to Gene ime: <u>Static A</u>	rate Variables ssignment Experiment A	Attributes Outputs		ent External I	D:			
itatic Assignment Exp in Outputs to Gene ame: <u>Static A</u> in Database: <u>125884</u>	rate Variables ssignment Experiment A	Attributes Outputs		ent	D:	68-b1f5-1812a1832a Ife Assignment		
itatic Assignment Exp in Outputs to Gene ame: Static A in Database: 125884 Assignment Parameters	rate Variables signment Experiment A	Attributes Outputs M 1258849	Path Assignme	ent External I Engine:	D: Frank and Wo	lfe Assignment	(69)	
tatic Assignment Exp in Outputs to Gene ime: Static A in Database: 125884 Assignment Parameters Maximum Iterations:	rate Variables signment Experiment A	Attributes Outputs		ent External I Engine:	D: Frank and Wo	lfe Assignment		
tatic Assignment Exp in Outputs to Gene ime: Static A in Database: 125884 Assignment Parameters Maximum Iterations: Conjugate Frank-Wo	rate Variables signment Experiment A	Attributes Outputs M 1258849	Path Assignme	ent External I Engine:	D: Frank and Wo	lfe Assignment	(69)	
tatic Assignment Exp in Outputs to Gene ime: <u>Static A</u> in Database: <u>125884</u> Assignment Parameters Maximum Iterations: Conjugate Frank-Wo Quasi-dynamic Network	rate Variables signment Experiment A	Attributes Outputs M 1258849	Path Assignme	ent External I Engine:	D: Frank and Wo	lfe Assignment	(69)	
tatic Assignment Exp in Outputs to Gene ime: <u>Static A</u> in Database: <u>125884</u> Assignment Parameters Maximum Iterations: Conjugate Frank-Wo Quasi-dynamic Network	rate Variables signment Experiment A	Attributes Outputs M 1258849	Path Assignme	ent External I Engine:	D: Frank and Wo	lfe Assignment	(69)	
tatic Assignment Exp in Outputs to Gene ime: Static A in Database: 125884 Assignment Parameters Maximum Iterations: Conjugate Frank-Wu Quasi-dynamic Network Activate Quasi-dyna	rate Variables signment Experiment A	Attributes Outputs M 1258849	Path Assignme	ent External I Engine:	D: Frank and Wo	lfe Assignment	(69)	
tatic Assignment Exp in Outputs to Gene ime: Static A in Database: 125884! Assignment Parameters Maximum Iterations: Conjugate Frank-Wo Quasi-dynamic Network Quasi-dynamic Network Activate Quasi-dyna Attributes Overrides	rate Variables signment Experiment A	Attributes Outputs M 1258849	Path Assignme	ent External I Engine:	D: Frank and Wo	lfe Assignment	(69)	
in Outputs to Gene ame: Static A in Database: 125884 Assignment Parameters Maximum Iterations: Conjugate Frank-Wu Quasi-dynamic Network Activate Quasi-dyna Attributes Overrides PM PM_OVERRIDES_	rate Variables signment Experiment A	Attributes Outputs M 1258849	Path Assignme	ent External I Engine:	D: Frank and Wo	lfe Assignment	(69)	?
itatic Assignment Exp an Outputs to Gene ame: Static A in Database: 125884 Assignment Parameters Maximum Iterations: Conjugate Frank-Wu Quasi-dynamic Network Activate Quasi-dyna Activate Quasi-dyna Attributes Overrides	rate Variables signment Experiment A	Attributes Outputs M 1258849	Path Assignme	ent External I Engine:	D: Frank and Wo	lfe Assignment	(69)	? Up Down
in Outputs to Gene ame: Static A in Database: 125884 Assignment Parameters Maximum Iterations: Conjugate Frank-Wu Quasi-dynamic Network Activate Quasi-dyna Attributes Overrides PM PM_OVERRIDES_	rate Variables signment Experiment A	Attributes Outputs M 1258849	Path Assignme	ent External I Engine:	D: Frank and Wo	lfe Assignment	(69)	?
in Outputs to Gene ame: Static A in Database: 125884 Assignment Parameters Maximum Iterations: Conjugate Frank-Wo Quasi-dynamic Network Activate Quasi-dyna Activate Quasi-dyna Activate Quasi-dyna Maximum Retwork PM OVERRIDES PT_NEW_LINKS	rate Variables signment Experiment A	Attributes Outputs M 1258849	Path Assignme	ent External I Engine:	D: Frank and Wo	lfe Assignment	(69)	? Up Down Check A
an Outputs to Gene ame: Static A in Database: 125884 Assignment Parameters Maximum Iterations: Conjugate Frank-Wo Quasi-dynamic Network Activate Quasi-dyna Activate Quasi-dyna Attributes Overrides PM PM_OVERRIDES_ PT_NEW_LINKS FIXED_SCATS_06 <	rate Variables signment Experiment A	Attributes Outputs M 1258849	Path Assignme	ent External I Engine:	D: Frank and Wo	lfe Assignment	000 %	? Up Down Check A
itatic Assignment Exp ain Outputs to Gene ame: Static A in Database: 125884 Assignment Parameters Maximum Iterations: Conjugate Frank-Wo Quasi-dynamic Network Conjugate Frank-Wo Quasi-dynamic Network Activate Quasi-dyna Activate Quasi-dyna Activate Quasi-dyna Activate Quasi-dyna Marching Conjugate Frank-Wo Quasi-dynamic Network Conjugate Frank-Wo Quasi-dynamic Network PT_NEW_LINKS FIXED_SCATS_06 Compts	rate Variables signment Experiment A	Attributes Outputs M 1258849	Path Assignme	ent External I	D: Frank and Wo	lfe Assignment	000 %	? Up Down Check A
itatic Assignment Exp ain Outputs to Gene ame: Static A in Database: 125884 Assignment Parameters Maximum Iterations: Conjugate Frank-Wo Quasi-dynamic Network Conjugate Frank-Wo Quasi-dynamic Network Activate Quasi-dyna Activate Quasi-dyna Activate Quasi-dyna Activate Quasi-dyna Marching Conjugate Frank-Wo Quasi-dynamic Network Conjugate Frank-Wo Quasi-dynamic Network PT_NEW_LINKS FIXED_SCATS_06 Compts	rate Variables signment Experiment A	Attributes Outputs M 1258849	Path Assignme	ent External I Engine:	D: Frank and Wo	lfe Assignment	000 %	? Up Down Check A
Static Assignment Exp ain Outputs to Gene ame: Static A) in Database: 125884 Assignment Parameters Maximum Iterations: Conjugate Frank-Wo Quasi-dynamic Network Activate Quasi-dyna Activate Quasi-dyna Activate Quasi-dyna Activate Quasi-dyna Marchites Overrides	rate Variables signment Experiment A	Attributes Outputs M 1258849	Path Assignme	ent External I	D: Frank and Wo	lfe Assignment	000 %	? Up Down Check A

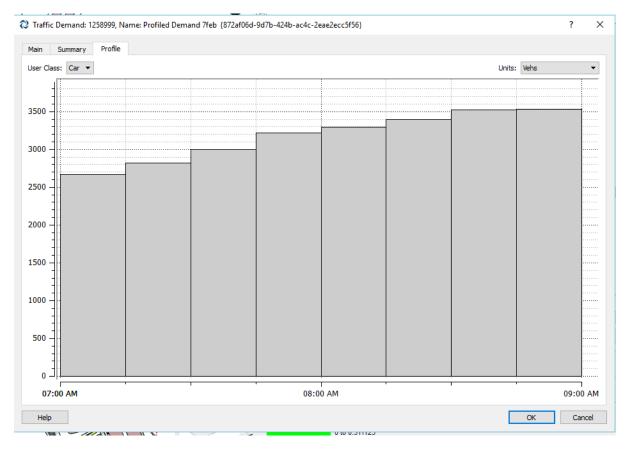
Dynamic Traffic Assignment for a Sydney Traffic Model


	1258849, Variables	ame: Static Assignment Experiment AM 1258849 {7deaa263-a48a-4268-b1f5-1812a1832a69} Attributes Outputs Path Assignment	?
er Class: All (pcu) 🔻		Сору	Create Traffic Stat
Summary Sections Turns	Conn	ctions Supernode Trajectories Convergence Validation	
	Value	Units	
Mean Network Occupation	7.18177	%	
Total Network Distance	42625.6	km]	
Total Network Cost	69949.1	cost units]	
Help			OK Cance

OD Departure Adjustment


💸 Static OD Departure Adjustment Scenario: 1258851, Name: Static OD Departure Adjustme	?	\times
Main Outputs to Generate Variables Parameters		
Name: Departure Adjustment Scenario AM 1258851 External ID:		
Demand		
Date: 1/07/2015 🖨		
Traffic Demand: 🗐 1259100: Adjusted Demand from Static OD Adjustment Experiment AM 7Feb	•	
Warm-up: 00:15:00 🖨		
Paths		
Path Assignment: 💦 1258848: Path Assignment AM 1258848	•	
Travel Time [minutes]: General cost is time in minutes.	•	j
Detection Data		
Real Data Set: RDS 1258830: SCATS PYR/ULT Detector Counts	•	
Help OK	Cance	el l

Run time: 0 h 0 m 10 s


Trips:

Validation:

New Profiled Demand:

Mesoscopic Dynamic User Equilibrium Experiment

58978, Name: Dynamic Scenario 1258978 (b17377de-22f4-4218-894e-e70f2	dea0dfa}			?
erate Aimsun API Variables Strategies and Conditions Parameter	s Attributes			
o 1258978		External ID:		
1/07/2015				*
7:00:00 AM				Duration: 02:00:00 \$
Step () 1		seconds		
		Geometry Configurations		
Profiled Demand 7feb	•	Select All	Nothing Selected Filter	
💭 1258601: Pyrmont Subarea Public Transport Plan	•			
[1258848: Path Assignment AM 1258848]]]] [258848: Path Assignment AM 1258848]]]]] [258848: Path Assignment AM 1258848]]]] [258848: Path Assignment AM 1258848]]]] [258848: Path Assignment AM 1258848]]]] [258848: Path Assignment AM 1258848]]] [258848: Path Assignment AM 1258848]]] [258848: Path Assignment AM 1258848]]]] [258848: Path Assignment AM 1258848]]]]]]]]]]]]]]]	•			
ITS_FIXED_AM	•			
	•			
ation				
etector Counts	•			
				OK Can
	1/07/2015 7:00:00 AM Step O 1 Profied Demand 7feb C 1258601: Pyrmont Subarea Public Transport Plan C 1258601: Pyrmont Subarea Public Transport Plan C 1258848: Path Assignment AM 1258848 ITS_FIXED_AM ton	1/07/2015 7:00:00 AM Step ○ 1 Profied Demand 7feb • © 1258601: Pyrmont Subarea Public Transport Plan • © 1258601: Pyrmont Subarea Public Transport Plan • TTS_FIXED_AM • TTS_FIXED_AM • TTS_FIXED_AM •	1/07/2015 7:00:00 AM Step ○ 1 seconds Profied Demand 7/eb © 1258601: Pyrmont Subarea Public Transport Plan © 1258601: Pyrmont Subarea Public Transport Plan © 1258648: Path Assignment AM 1258848 TTS_FIXED_AM TTS_FIXED_AM	1/07/2015 7:00:00 AM Step O 1 seconds Profied Demand 7feb Select All Nothing Selected Filter Select All Nothing Selected Filter TIS_FIXED_AM TIS_FIXED_AM

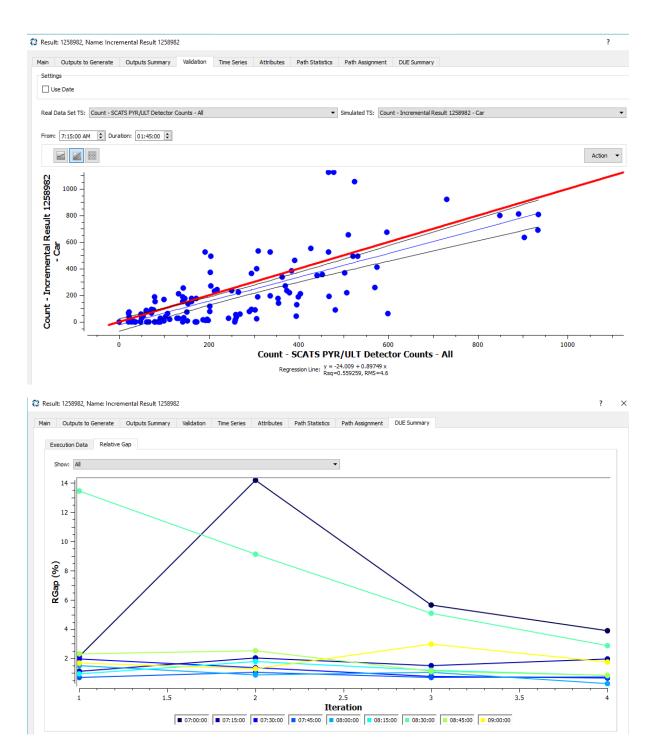
Phoebe Ho

?

×

Dynamic Traffic Assignment for a Sydney Traffic Model

Dynamic Experiment: 1258980, Name: Meso DUE Experiment 1258980 {bc582fe5-08c5-4432-832f-6155e4055918}

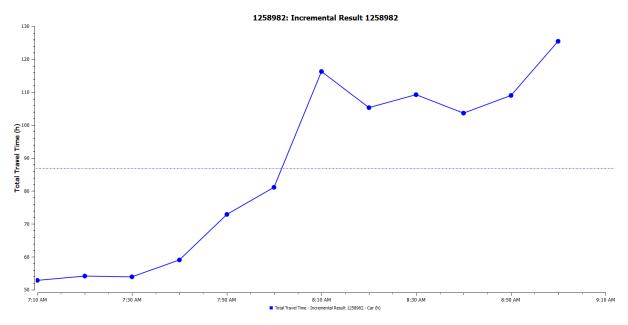

Main	Behaviour	Reaction Time	Arrivals	Dynamic Traffic Assignment	Variables	Policies	Attributes			
Name:	Meso DUE Ex	periment 1258980				External ID:				
1.1	amic Traffic Assi									
	vork Loading: N th Assignment F	lesoscopic Simulato	r Assign	ment Approach: Dynamic User I	Equilibrium					
	-	-) Continue t	he Assignment Process						
	opping Criteria aximum Iteration	ns: 50 🜩 Relat	ive Gap: 5.	00 % 🗘						
Warr	n-up									
Ē	1258998: Warr	n up 7feb								▼ 00:15:00 🔹

Dynamic Experiment: 1258980, Name: Meso DUE Experiment 1258980 {bc582fe5-08c5-4432-832f-6155e4055918}

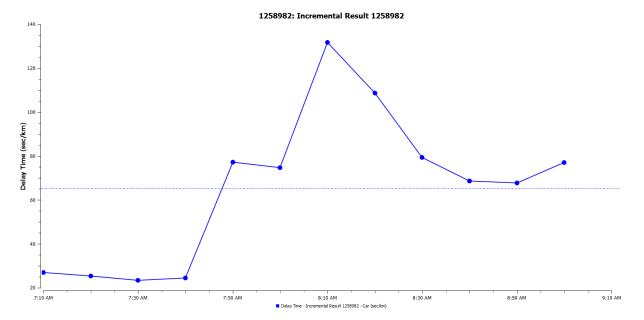
? ×

	ehaviour	Reaction Time	Arrivals	Dynamic Traffic Assignment	Variables	Policies	Attributes	
e:	[00:15:00			Number o	of Intervals:	1	-
activen	ess Weight:	5.00			User-defi	ned Cost Weig	nt: 0.00	Provide Travel
namic l	Jser Equilibriu	m						
assignm ath Cos Basic	ent Model: (st: () MSA) Instantaneou		hted MSA () Gradient-based				Enroute After Virtual Que
	Assignment U mum Paths fro	lsage om Path Assignm	ient: 3					Disable Calculation of New Paths
Maximu	ım Paths per I	Interval: For A	ll the Vehicles	s • 3	▲ ▼			Do Not Consider Paths With a Percentage Below: 1.00
			Vehicl	le Туре				Number of Paths
53: Ca	ar					3		A

Ac
Del



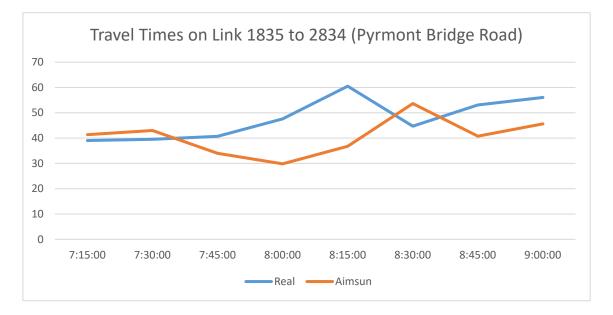
Results & Discussion

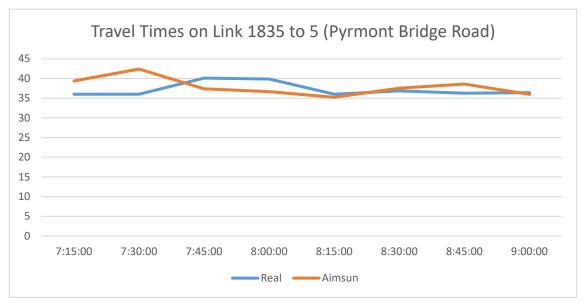

The following graphs are outputs from the Dynamic User Equilibrium experiment.

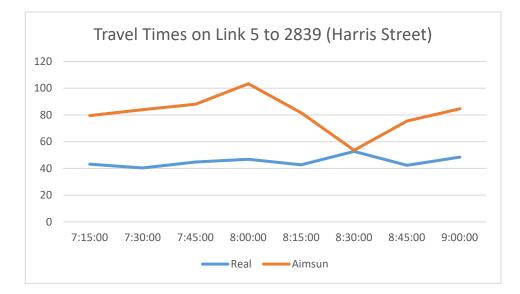
This shows the average speed for all vehicles that have left the system. This is calculated using the mean journey speed for each vehicle.

The total travel time experienced by all the vehicles that have crossed the network.

This graph shows the delay time per vehicle per kilometre. This is the difference between the expected travel time (the time it would take to traverse the system under ideal conditions) and the travel time. It is calculated as the average of all vehicles and then converted into time per kilometre.


The delay times and total travel times both peak at approximately 8am.




In this 9 o'clock snapshot, there are several areas of interest in the southern region of the study area:

- Major area of congestion along the inbound Western Distributor (coming from Anzac Bridge and heading towards the CBD), which peaks at 9 o'clock
- Unintuitive delays along Miller St near Jones St and towards the intersection of Harris St and Fig St

The following graphs compare the simulated outputs with the observed data along major roads. There are some sections with relatively close values, but there is much variation amongst the links.

Future Work

Suggestions from Timothy Lim, TSS-Transport Simulation Systems

- Visual sanity checks at each stage of the process
 - Compare the section volumes for the main used routes
 - Screenline count checks at major entrances into the study area
- Validation of the full network for models built from scratch
 - Generating outputs from an existing model and storing them as either a Real Data Set or as object attributes for comparison
- Individual detector counts are useful for dynamic experiments as they show the distribution of vehicles across lanes. For static assignment, section counts are more appropriate. If detector counts are used, every lane in the network would have to be calibrated. The algorithms struggle to adjust and match the counts to all detectors because there may be too much variance between the volumes.
 - Instead, section wide counts should be used to calibration the traffic flows. This should improve the R squared value after calibration.
- Flow profiles should be graphed to identify times of peak demand
 - Longer study time periods should be used to show greater variance of the demand
 - Since the demand given in the model is restricted for 2 hour periods, the demand can be extrapolated to longer periods.
- Another path assignment should be stored after the profiled demand and used to run a new Static Assignment
- Incremental Results in a Dynamic Experiment are used for really congested networks, where the demand needs to be gradually added.
- Simulated Travel Times for main routes, instead of sections, in a network (using the sub path function) can be used for comparison. They should be within ±15% of the observed values.

Other tasks:

- Updating road geometry for the full network
- Obtaining SCATS intersection signal information, section wide counts and turning movement counts. Using the section wide counts to calibrate will hopefully produce more accurate result.
- Extrapolating the OD matrix for a longer time period

Conclusion

The main challenges for this project were identifying appropriate data, formatting and pre-processing data to import into the software. In addition, the data must be using the same ID naming system at the objects existing in the model. The current outputs could be improved by using more appropriate data forms such as the section wide counts to calibrate, and produce more realistic outputs. However, it is clear that DTA is a much more appropriate tool to use to capture time variance than STA.

1. References

- Mihaita A. S., Dupont L., Camargo M., Multi-objective traffic signal optimization using 3D mesoscopic simulation and evolutionary algorithms, Simulation Modelling Practice and Theory (SIMPAT), https://doi.org/10.1016/j.simpat.2018.05.005, Volume 86, August 2018, Pages 120-138, (IF = 2.063, H5=49).
- Wen T, Mihăiţă A-S, Nguyen H, Cai C, Chen F. Integrated Incident Decision-Support using Traffic Simulation and Data-Driven Models. Transportation Research Record. 2018;2672(42):247-256. doi:10.1177/0361198118782270, (IF = 0.695, H5 = 48)
- 3. Mihaita A.S., Mocanu S., Lhoste, P., "Probabilistic analysis of a class of continuous-time stochastic switching systems with event-driven control", European Journal of Automation (JESA), July 2016.
- Monticolo, D., Mihaita, A.S., Darwich, H., Hilaire, V., "An Agent Based System to build project memories during engineering projects", Knowledge Based Systems Journal (KBS), January 2014
- Monticolo, D. Mihaita A.S. "A multi Agent System to Manage Ideas during Collaborative Creativity Workshops", International Journal of Future Computer and Communication (IJFCC), vol 3., nr 1, February 2014, P66-71, (extended version of the paper presented in ICFCC 2013).
- 6. Mihaita A.S., Mocanu S., "Simulation en temps continu pour la commande orientée événements des systèmes stochastiques à commutation", European Journal of Automation (JESA), 45 1-3 (157-172), Oct 2011.
- Mihaita A. S., Dupont L., Cherry O., Camargo M., Cai C., Air quality monitoring using stationary versus mobile sensing units: a case study from Lorraine, France, 25th ITS World Congress (ITSWC 2018), Copenhagen, Denmark, 17-21st of September 2018.
- 8. Wen Tao, Mihaita A.S., Nguyen Hoang, Cai Chen, Integrated Incident decision support using traffic simulation and data-driven models. Transportation Research Board 97th Annual Meeting (TRB 2018), Washington D.C., January 7-11, 2018.

- Mihaita A. S., Tyler Paul, Wall John, Vecovsky Vanessa, Cai Chen, Positioning and collision alert investigation for DSRC-equipped light vehicles through a case study in CITI, 24th World Congress on Intelligent Transportation Systems (ITSWC 2017), Montreal, Canada, 29 October - 2 November 2017.
- Mihaita A. S, Cai Chen, Chen Fang, Event-triggered control for improving the positioning accuracy of connected vehicles equipped with DSRC, International Federation of Automatic Control World Congress (IFAC WC 2017), 9-14 July 2017, Toulouse, France.
- 11. Mihaita A. S, Tyler Paul, Menon Aditya, Wen Tao, Ou Yuming, Cai Chen, Chen Fang, "An investigation of positioning accuracy transmitted by connected heavy vehicles using DSRC", Transportation Research Board 96th Annual Meeting (TRB 2017), Washington D.C., January 8-12, Paper number 17-03863, 2017, https://pubsindex.trb.org/view/2017/C/1438533.
- 12. Mihaita A. S., Benavides, M., Camargo, M., "Integrating a mesoscopic traffic simulation model and a simplified NO2 estimation model", 23rd World Congress on Intelligent Transportation Systems (ITSWC 2016), Melbourne, Australia, 10-14 October 2016.
- 13. Mihaita A.S., Camargo, M., Lhoste, P., "Evaluating the impact of the traffic reconfiguration of a complex urban intersection ", 10th International Conference on Modelling, Optimization and Simulation (MOSIM 2014), Nancy, France, 5-7 November 2014 (accepted on 18th of July 2014).
- Mihaita A.S., Camargo, M., Lhoste, P. "Optimization of a complex urban intersection using discrete-event simulation and evolutionary algorithms", International Federation of Automatic Control World Congress (IFAC WC 2014), Cape Town, Africa, 24-29 August 2014.
- Issa, F., Monticolo, D., Gabriel, A., Mihaita, A.S., "An Intelligent System based on Natural Language Processing to support the brain purge in the creativity process", IAENG International Conference on Artificial Intelligence and Applications (ICAIA 2014), Hong Kong, 12-14 March, 2014.
- Monticolo, D., Mihaita A.S., "A Multi Agent System to manage ideas during Collaborative Creativity Workshops", 5th International Conference on Future Computer and Communication (ICFCC 2013), Phuket, Thailand, 26 May 2013.
- Mihaita A. S., Mocanu S., "Un nouveau modéle de l'énergie de commande des systèmes stochastiques à commutation", Septième Conférence Internationale Francophone d'Automatique (CIFA 2012) Grenoble, France, 4-7th of July, 2012.
- Mihaita A. S., Mocanu S., "An Energy Model for the Event-Based Control of a Switched Integrator", International Federation of Automatic Control World Congress (IFAC WC 2011), Milano, September 2011.